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Abstract: Label-free live cell imaging was performed using a custom-built high-speed confocal
Raman microscopy system. For various cell types, cell-intrinsic Raman bands were monitored.
The high-resolution temporal Raman images clearly delineated the intracellular distribution of
biologically important molecules such as protein, lipid, and DNA. Furthermore, optical phase delay
measured using quantitative phase microscopy shows similarity with the image reconstructed from
the protein Raman peak. This reported work demonstrates that Raman imaging is a powerful label-
free technique for studying various biomedical problems in vitro with minimal sample preparation
and external perturbation to the cellular system.
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1. Introduction

Since it was first observed in 1928 [1], Raman spectroscopy has been broadly used as
an analytical technique in various fields. Inelastically scattered Raman photons from the
sample includes the “finger print” information about the sample. By analyzing Raman
photons, chemical composition of the sample can be obtained qualitatively and quantita-
tively. Confocal microscopy has been utilized to obtain 3-D structural information from
cells [2]. The confocal pinhole only accepts the light from the focus resulting in high
axial resolution. Confocal microscopy was implemented with reflectance, fluorescence, or
even with inelastically scattered photons including Raman [3] or Brillouin [4]. Combining
confocal microscopy and Raman spectroscopy provides the three-dimensional chemical
mapping of biological samples with high spatial resolution.

Puppels et al. first used confocal Raman microscopy for cell study in 1990 [3]. Al-
though it showed promising results, confocal Raman microscopy has not been widely used
for biomedical research, compared to the fluorescence microscopy, due to the low Raman
conversion efficiency. For example, bright field imaging and quantitative phase microscopy
(QPM) are the fastest, as the imaging speed is same as the frame rate of the camera. With
advanced camera technology, more than 1000 fps (frames per second) is not uncommon.
High-speed confocal fluorescence microscopy imaging speed is about 10 frames per second.
High-speed confocal Raman microscopy takes about one minute per frame. In order to
increase the imaging speed of Raman microscopy, line-scanning and multifocal Raman
systems were developed [5,6]. Rather than mapping the whole cell, which can be highly
time-consuming, researchers first identified morphologically relevant features of a cell
under the bright-field imaging and subsequently measured the Raman spectra from the
selected regions of interest [7]. Raman basis spectra were collected from this process
and successfully utilized to develop clinical Raman devices and diagnosis software [8].
This two-step approach was very successful to balance between the high-resolution and
high-speed data acquisitions.
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Due to the advances of optics and electronic components such as spectrograph and
detector, Raman mapping of cells became possible [9,10]. However, in the past, Raman
imaging was not rapid enough to be considered as a practical tool for studying live
cell dynamics. Tracking intracellular chemical composition during fast dynamics was
challenging given these restraints. To address this limited speed issue, we have developed
a custom-designed multi-modal microscopy system [11]. Instead of commonly used two-
dimensional XY motorized stages, dual axis galvanometer mirrors perform fast scanning
over the cells. On top of high-speed Raman imaging, this system also includes quantitative
phase microscopy (QPM) to measure the two-dimensional optical phase delay of the
sample. This multi-modal microscopy system has been applied for the malaria diagnosis by
distinguishing hemoglobin and hemozoin distribution in the infected red blood cells [11].
This system has also been used to track the uptake dynamics of single walled carbon
nanotubes to living macrophages with one frame per minute [12].

Here, we report the custom-built high-speed near-infrared (NIR) confocal Raman
microscope system and demonstrate Raman imaging capabilities with various cell types.
We present a convincing proof that the phase delay from QPM cellular image is mostly
related to protein contents. Three types of live cells were studied to show the universal
applicability of the system. Live HeLa cells (cervical cancer cells) were imaged to demon-
strate the ability to acquire Raman hyperspectral images. Live HT-29 cells (colon cancer
cells) were used to show the comparison between Raman and QPM images. Live RKO
cells (colon cancer cells) were used to demonstrate the temporal imaging and tracking
of different Raman bands with a four-minute temporal resolution. In the present study;,
Raman spectroscopy is shown as a viable option for real-time in vitro cellular imaging with
high spatial and temporal resolution.

2. Materials and Methods
2.1. Setup

A Ti: Sapphire laser (3900S, Spectra-Physics, Milpitas, CA, USA) with 785 nm output
wavelength was used as an excitation source of the custom-built NIR confocal Raman
microscopy system (Figure 1) [11]. The collimated beam from the laser was cleaned by
a laser line filter (BPF, LL01-785-12.5, Semrock, Rochester, NY, USA) and directed to the
dual axis galvano mirrors. Laser beam was scanned in two dimensions by the galvano
mirrors (CT-6210, Cambridge Technology, Bedford, USA). A high numerical aperture
(NA 1.2) water immersion objective lens (Olympus UPLSAPO60XWIR 60X/1.20, Tokyo,
Japan) focuses the laser light onto the cells and collects the scattered light from the cells,
too. A piezoelectric actuator combined with a differential micrometer (DRV517, Thorlabs,
Newton, MA, USA) controls the fine and coarse movement of sample focusing. A bright
field imaging (75X magnification) of the cells was captured by inserting a flip mirror after
the tube lens so that the sample plane can be imaged onto a CMOS camera (BCN-B050-U,
Mightex, Toronto, ON, Canada). Raman photons generated from the cells pass through two
dichroic mirrors (DM1: Semrock LPD01-785RU-25, Rochester, USA, DM2: Semrock LPD01-
785RU-25 x 36 x 1.1, Rochester, USA). A step-index multi-mode fiber (Thorlabs M14L01,
Newton, MA, USA) collects the Raman photons at the confocal pinhole location. Depending
on the sample type, sampling volume can be increased or decreased by changing the
collection fiber. The collected signal was delivered to the imaging spectrograph (Holospec
£/1.8i, Kaiser Optical Systems, Ann Arbor, USA) and detected by a thermoelectric-cooled,
back-illuminated, and deep depleted CCD (PIXIS: 100BR_eXcelon, Princeton Instruments,
Trenton, USA). A single-mode fiber (Thorlabs P1-780A-FC-1, Newton, MA, USA) collects
the reflected Rayleigh photons from the second dichroic mirror (DM2) and delivers them
to a photomultiplier tube (PMT, H9656-20, Hamamatsu, Hamamatsu City, Japan) and a
PMT controller (C7169, Hamamatsu, Hamamatsu City, Japan). This confocal reflectance
setup provides co-registered images, which guide the optimal field of view for the Raman
imaging. LabView 8.6 and a DAQ board (PCI-6251) from National Instruments (Austin,
USA) control the experimental setup. Furthermore, Hilbert phase microscopy [13] was
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selected as a QPM modality. Based on Mach-Zehnder interferometry, the incident laser
beam was divided into two and merged in front of the CMOS camera. From the intensity
changes of the 1001 cm~! peak during the axial scanning of the polystyrene bead, the axial
resolution of the current configuration (50 pm core size collection fiber) was estimated to
be 2.2 um [14].
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Figure 1. Schematic diagram of confocal Raman and quantitative phase microscopy system.

2.2. Cell Preparation

HeLa, HT-29 and RKO cells were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) with 10% fetal bovine serum (FBS) and 1% antibiotics. In order to maintain the
viability of cells during the imaging, the selected cell was grown using custom-made petri
dish with a quartz coverslip (043210-K], Alfa Aesar, Haverhill, MA, USA) at the bottom
for at least 48 h before the imaging for good adherence of cells to the substrate. The
quartz-bottom plates with the cells and culture media were imaged successfully without
any damage to the cell over a period of 24 h.

2.3. Raman Mapping of Live Cells

60 mW of laser power was focused onto a micron size spot and delivered to the cells
in fast raster scan. For the HeLa cells, 40 x 40 spectra were measured from 27 pm X 27 pm
with a 1.0 s integration time. The total imaging time was about 27 min. For the HT-29
cells, 40 x 40 spectra were measured from 13 um x 13 um with a 0.5 s integration time.
The total measurement time was approximately 14 min. For temporal imaging of the
RKO cell, 40 x 40 spectra were measured from 36 um X 36 um at each time point with
0.15 s integration time. Ten Raman images were measured with a four minutes temporal
resolution. Note that the integration time has been shortened with optimization and
improvement of the system.

3. Results

One of the major advantages of this custom-built system is the flexibility of the
system. The confocal sampling volume can be changed by changing the core size of the
collection fiber. High-spatial resolution at the theoretical limit is not needed to characterize
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powder or liquid samples where integrated signal from larger volume is more critical.
In that case, collecting as much Raman photons with a larger-core fiber is more relevant
than collecting less signal while maintaining high resolution. When the sample has a
fine structure, high-spatial resolution should be maintained. Cells fall into this category.
Without this high spatial resolution, Raman imaging would not differentiate signals among
different intracellular organelles. Although the focal plane is laterally positioned in the
nucleus, the large focal volume integrates the Raman signal from the entire cell depth.
Therefore, increasing the confocal sampling volume will decrease the Raman contrast. The
axial resolution of the current system was configured to be 2.2 um using a 50 pm core
collection fiber.

The live HeLa cell was imaged and analyzed using single peak analysis. Raman
images were reconstructed from different Raman bands between 613 cm ! and 1825 cm ™!
(Figure 2a). Images reconstructed from single Raman bands with 15 cm~! bandwidth
reveal high-resolution images and biochemical maps. Specifically, the 720 cm ™!, 785 cm ™!,
1004 cm ™!, and 1450 cm ! peaks correlate to the cytoplasm, DNA, protein and lipid
distributions, respectively [15]. This information is well correlated to the bright-field image
in Figure 2c. Since the protein signal is uniformly spread over the entire cell volume, this
signal was excluded and a pseudo-color image was generated from three other Raman
bands corresponding to the cytoplasm, DNA, and lipid Raman signals. In Figure 2e, the
red color represents 785 cm ! (DNA) and is localized to the cell nucleus. Green and blue
represents 720 cm ™! (cytoplasm) and 1450 cm~! (lipids), respectively. Although Raman
imaging cannot compete with the imaging speed and resolution of fluorescence imaging,
Raman imaging can be performed without any staining, sample preparation, or external
perturbation to the cell. In summary, Raman imaging and mapping can simultaneously
track multiple chemical components of the live cell in vitro.

Phase contrast microscopy is the most commonly used method to see detailed cellular
morphology without staining the cell. Recently, quantitative phase microscopy (QPM)
with a full field interferometric measurement, has become a popular tool to study cellular
dynamics and morphology [16,17]. However, since optical phase delay is an indirect
measurement of chemical information, the interpretation of QPM images is not necessarily
trivial. Live HT-29 cells were used to see the most relevant chemical component for phase
contrast imaging. For this study, four Raman images corresponding to the 720 cm™!,
785 cm™!, 1004 cm~!, and 1450 cm~! peaks (Figure 3a) were compared to the QPM image
(Figure 3c). Among the four images, the Raman image from the 1004 cm ! peak correlates
the closest with the QPM image. This result confirms recent works in QPM that the phase
delay in cells mostly represents protein distribution [18]. Therefore, protein related cellular
phenomena are a preferable target for QPM techniques.

Temporal imaging capability was demonstrated by measuring multiple Raman images
from live RKO cells. Ten Raman images (40 x 40 pixels) were acquired with 0.15 s integra-
tion time. With no time delay between frames, 16,000 (40 x 40 x 10) Raman spectra were
acquired over a 40 min time period. 720 cm~!, 785 cm~!, and 1450 cm ! Raman bands
were selected for constructing the temporal pseudo-color images (Figure 4b). Intracellular
chemical changes such as DNA degradation, protein contents change, or lipid droplet
formation can be monitored with a temporal resolution of four minutes.
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Figure 2. (a) Raman images of a live HeLa cell from various Raman bands between 613 em~! and 1825 em ™. Different
Raman bands show different distributions throughout the cell. (b) A total of 1600 overlaid Raman spectra (40 x 40 spectra)
from a single cell. (c) Bright-field image of live HeLa cell used in the experiment. (Scale bar: 5 um). (d) Representative
spectra from cytoplasm, nucleolus, and lipid droplets. (e) Pseudo-color image reconstructed from 785 cm™! (red), 720 cm ™!

(green), and 1450 cm ! (blue) Raman bands.
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Figure 3. (a) Four Raman images reconstructed from live HT-29 cell (40 x 40 pixels). (b) Pseudo-color image reconstructed
from 785 cm ™! (red), 720 cm~! (green), and 1450 cm~! (blue) Raman bands. (c) Quantitative phase microscopy image of
the same cell. (Scale bar: 3 um) Optical phase delay measured from QPM is similar to the reconstructed image from the
1004 cm~! Raman peak.
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Figure 4. (a) Bright field image of live RKO cell used in the experiment. (Scale bar: 10 um) (b) Temporal Raman images of
live RKO cell (40 x 40 pixels) with four-minute temporal resolution. Red, green, and blue represent 785 cm~ L, 720 cm L,
and 1450 cm~! Raman bands, respectively.

4. Discussion

Here, we have demonstrated the temporal high-resolution Raman imaging of live cells.
Intracellular distributions of biochemically relevant components, such as DNA, protein,
and lipids, were successfully monitored with a temporal resolution of four minutes and an
axial resolution of 2.2 um. Through the design, assembly, and optimization of the confocal
Raman system using the latest state-of-the-art components, Raman imaging of cells is
possible and a practical method for studying dynamic cellular systems.
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As reported, confocal Raman imaging can become a powerful method for monitoring
the status of the cell and associated chemical changes in real-time. Since the cells do not
need to be stained or altered for Raman imaging, live cell dynamics can be observed with
minimal or no external perturbation. Many biological applications will benefit from these
label-free quantitative chemical imaging capabilities. Few ongoing examples include study-
ing the effects of cellular uptake of particles [12,19], effects of drugs/UV radiations [14,20],
and cellular growth and development.
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