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1. Introduction
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Objective. To explore altered regional neuronal activity in patients with nonarteritic anterior ischemic optic neuropathy (NAION)
and its correlation with clinical performances using the regional homogeneity (ReHo) method, which is based on resting-state
functional magnetic resonance imaging (fMRI). Method. Thirty-one patients with NAION (20 males, 11 females) and 31 age- and
sex-matched normal controls (NCs) (20 males, 11 females) were enrolled in the study. All patients underwent ophthalmic
examination, including eyesight, intraocular pressure measurement, optimal coherence tomography (OCT), visual field analysis,
and fMRI scans. After ReHo was calculated, we investigated group differences in results between the patients and NCs. We
analyzed the relationship between ReHo values for different brain regions in patients with NAION and intraocular pressure, visual
field analysis, and OCT. A receiver operating characteristic (ROC) curve was used to assess the diagnostic ability of the ReHo
method. Results. Compared with NCs, patients with NAION exhibited higher ReHo values in the left middle frontal gyrus,
left middle cingulate gyrus, left superior temporal gyrus, and left inferior parietal lobule. Additionally, they exhibited lower
ReHo values in the right lingual gyrus, left putamen/lentiform nucleus, and left superior parietal lobule. ReHo values in the
left superior parietal lobule were negatively correlated with right retinal nerve fiber layer values (r=-0.462, P=0.01). The
area under the ROC curve for each brain region indicated that the ReHo method is a credible means of diagnosing patient
with NAION. Conclusion. NAION was primarily associated with dysfunction in the default mode network, which may reflect
its underlying neural mechanisms.

for NAION include hypertension, diabetes, dyslipidemia,
anemia, sleep apnea syndrome, and smoking tobacco.

Nonarteritic anterior ischemic optic neuropathy (NAION)
typically presents in patients older than 50 years, with an esti-
mated annual incidence of 2.3-10.2 cases per 100,000 people
[1, 2] in the United States, 2.9-3.8 cases per 100,000 people in
eastern Europe [3], and 6.25 cases per 100,000 people in
China [4]. NAION is often characterized by sudden, painless
unilateral loss of vision with a characteristic visual field defect
and a hyperemic, swollen, or pale optic disc [5]. Risk factors

Although its detailed pathophysiology is unknown, histo-
pathological studies support the notion that infarction of
the short posterior ciliary arteries (vessels that supply the
anterior portion of the optic nerve head) is involved [6].
Recently, optical coherence tomography (OCT) has been
used to successfully detect NAION. OCT is a noninvasive
technology that can detect microstructure changes in retinal
layers, which is useful information for diagnosing NAION.
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Importantly, OCT can reveal changes in the integrity of the
intermediate line and thickness of the outer nuclear layer of
the retina. However, OCT only focuses on abnormal changes
in the eyes. The visual system extends beyond the eye and ret-
ina to the optic nerve and the visual cortex of the brain.
Whether NAION leads to dysfunction in these parts of the
visual system remains unknown.

Based on the blood oxygen level-dependent (BOLD) con-
trast technique, functional magnetic resonance imaging
(fMRI) is an ideal choice for assessing cortical structural/-
functional abnormalities in NAION because of its high
spatial resolution, noninvasiveness, and ability to reflect neu-
ronal activity. A previous study using task-based fMRI found
that activation in bilateral occipital cortex was lower in
patients with NAION than in healthy controls [7]. In
contrast to task-based fMRI studies, resting-state fMRI
(rs-fMRI) can reflect background neurophysiological pro-
cesses and abnormal neuronal activity without external stim-
ulation [8]. Regional homogeneity (ReHo) is a reliable and
sensitive method for measuring rs-fMRI that is thought to
evaluate the local synchrony of adjacent voxels across the
entire brain during resting states [9]. The ReHo method has
been successfully used to assess neurological damage in eye
diseases such as optic neuritis [10] and retinal detachment
[11]. However, spontaneous changes in neural activity
remain unclear in patients with NAION. Here, we used ReHo
analysis to test our hypothesis that NAION is associated with
abnormal neuronal activity in the visual cortex.

2. Materials and Methods

2.1. Participants. Thirty-one patients with NAION were
recruited from the ophthalmology department at Dongfang
Hospital affiliated with Beijing University of Chinese Medi-
cine. NAION was diagnosed by an experienced ophthalmol-
ogist with 5 years of experience. Among the 31 patients, 16
had unilateral NAION (left eye: 8, right eye: 8) and 15 had
bilateral NAION, either sequentially or simultaneously. The
following diagnostic criteria were applied: (1) a typical clini-
cal history of sudden, painless, and monocular visual loss or
successive bilateral visual loss; (2) received standardized
treatment and evaluation in our hospital; and (3) no history
of coronary artery disease, hypertension, sleep disorders, or
drug addiction. Exclusion criteria included the following:
(1) systemic features suggesting optic neuritis, giant cell
arteritis, or posterior ischemic optic neuropathy, or a history
of optic tumor or other ocular diseases; (2) symptoms of
neurological disorders, mental disorders, or the inability or
unwillingness to cooperate; and (3) abnormal function in
the liver or kidney.

Thirty-one normal controls (NCs) from the university
(students) and hospital (staff) were also enrolled in the study.
All the NCs were age and sex matched and met the following
criteria: (1) no history of ocular disease or symptoms of
neurological disease and (2) unaided eyesight > 1.0 on the
vision chart.

No participant had any contraindication for MRI
scanning, such as claustrophobia or irremovable MRI-
incompatible metal in the body. All participants underwent
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a vision acuity test, intraocular pressure measurement
(IOP), visual field (VF) test, OCT to measure retinal nerve
fiber layer (RNFL) thickness, and MRI scanning.

The study was approved by the medical research ethics
committee and institutional review board of Dongfang Hos-
pital affiliated with Beijing University of Chinese Medicine,
Beijing, China. All participants were asked to wear sponge
earplugs and a black blinder during MRI scanning. In addi-
tion, the methods, potential risks, and purpose of the study
were explained to each participant and all provided written
informed consent.

2.2. Imaging Data Acquisition. MR imaging was performed
on a 1.5 Tesla Philips Intera Achieva system (Royal Philips,
Amsterdam, and the Netherlands) with an eight-channel
head coil. During the scan, participants were asked to keep
their eyes open, remain motionless, and not to think about
anything during the functional scans.

General sagittal and axial T1-weighted turbo spin-echo
(TSE) images, T2-weighted fast field-echo (FFE) images, and
short T2-inversion recovery (STIR) images were acquired.

Resting-state fMRI was obtained using an echo planar
imaging (EPI) pulse sequence with each scan. Thirty-five axial
slices were acquired with the following parameters: repetition
time = 3000ms, echotime =30ms, flipangle=90, fieldof
view = 220 mm x 220 mm, matrix = 64 x 64, thickness= 3.6
mm, and gap =0.72mm. Total scan time was 5.06 minutes
with 30.36 seconds for each slice. Further, high-resolution
structural images (3D BRAVO) were acquired with the follow-
ing parameters: matrix = 256 x 256, field of view = 256 mm x
256 mm, thickness = 1.0 mm, number of excitation (NEX) =2,
repetition time = 6.5 ms, echo time = 3.2 ms, and flip angle = 8.
Each T1 3D-BRAVO contained 161 images.

2.3. fMRI Data Analysis. Functional data processing was con-
ducted using DPARSF (Data Processing Assistant for Resting
State fMRI) (http://www.rfmri.org/DPARSF_V2_3), which is
based on SPM8 (Statistical Parametric Mapping) and REST
(Resting-State fMRI Data Analysis Toolkit) (http://restfmri
.net/forum/REST_V1.8), and was implemented in MATLAB
2014a (MathWorks, Natick, MA, USA). Preprocessing com-
prised the following steps: (1) transform EPI DICOM files
into NIFTI files, (2) remove first 10 volumes for signal equi-
librium and participant adaptation to the scan environment,
(3) slice timing correction, (4) head motion correction: to
estimate translation and rotation for each participant (any
participant whose translation was greater than 1.5mm
maximum shift along any axis (x, y, or z) or whose rotation
motion was greater than 1.5° in any direction was dismissed),
and (5) fMRI images were spatially normalized and
resampled to a standard stereotactic Montreal Neurological
Institute (MNI) space using the echo planar-imaging
template and coregistered at a resolution of 3 mm x 3 mm x
3 mm.

After preprocessing, the linear trend of the time series was
removed and temporally bandpass filtered (0.01-0.08 Hz) to
reduce the effect of physiological high-frequency respiration,
low-frequency drift, and cardiac noise. Then, individual ReHo
maps were generated for each participant based on Kendall’s
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coefficient of concordance (KCC) of the given voxel time
series with its nearest 26 neighboring voxels. In addition, we
made normalized ReHo maps because the averaged KCC for
the whole brain can divide the KCC among each voxel. Finally,
the remaining images were smoothed with a Gaussian kernel
with a full-width-at-half-maximum of 4 mm x 4 mm x 4 mm.

2.4. Statistical Analysis. Independent sample ¢-tests were per-
formed using SPSS 17.0 software (SPSS, Inc., Chicago, IL) to
compare clinical data between patients with NAION and
NCs. Pearson’s linear correlation analyses were used to
explore the correlation between the patient ReHo values
and the clinical parameters with a statistical significance
threshold of P < 0.05. The receiver operating characteristic
(ROC) curves and the area under the curves (AUC) were
used to analyze the ReHo values in the different brain
regions, which were compared between the two groups of
participants.

The final functional MRI results were presented by xjview
toolbox (https://www.alivelearn.net/xjview) and REST soft-
ware. REST was used for statistical analysis. Two-sample
t-tests were used to evaluate the differences in ReHo
values between patients and NCs with sex, age, and dura-
tion of disease as covariates of no interest. Voxels with a
P <0.05 (corrected for multiple comparisons using a false
discovery rate (FDR) corrected threshold of P <0.05) and
cluster size > 23 voxels indicated a significant difference
between patients and NCs.

3. Results

3.1. Demographics and Visual System Measurements. We
found no significant differences in age or sex between
patients with NAION and the NCs. Compared with the
NCs, patients with NAION had significantly worse visual
acuity, thinner RNFLs, and lower mean sensitivity (MS)
(both left and right, P < 0.05). Furthermore, patients had sig-
nificantly higher IOP and mean deficiency (MD) (both left
and right, P < 0.05). Details are presented in Table 1.

3.2. ReHo Differences. Compared with NCs, patients with
NAION exhibited significantly higher ReHo values in the left
middle frontal gyrus, left middle cingulate gyrus, left superior
temporal gyrus, and left inferior parietal lobule. They also
exhibited lower ReHo values in the right lingual gyrus, left
putamen/lentiform nucleus, and left superior parietal lobule.
Details are presented in Table 2 and Figure 1.

3.3. Correlations between ReHo Values and Clinical Data.
The relationship between ReHo values and disease duration,
visual acuity, VF, IOP, and RNFL were examined for each
region. We found that thickness of the right RNFL was
negatively correlated with the ReHo signal value in the left
superior parietal lobule (r=-0.462, P=0.01) (Figure 2).
We did not find any other correlation between ReHo values
and clinical data.

3.4. Receiver Operating Characteristic Curve. We speculated
that ReHo values may be useful diagnostic markers for
NAION. Thus, we performed the ROC curve analysis to

determine the mean ReHo values for each brain region that
differed between the groups. An area under the curve
(AUC) above 0.8 indicates that NAION can be diagnosed
accurately. We found individual AUCs for the left middle
frontal gyrus (0.790), left middle cingulated gyrus (0.797), left
superior temporal gyrus (0.869), left inferior parietal lobule
(0.745), right lingual gyrus (0.846), left superior parietal lob-
ule (0.843), and left putamen/lentiform nucleus (0.832). The
combined AUC for the regions that exhibited lower ReHo
values in patients (left superior parietal lobule, left putamen/-
lentiform nucleus, and right lingual gyrus) was 0.983. The
combined AUC for the regions that exhibited higher ReHo
values in patients (left middle frontal gyrus, left middle cin-
gulated gyrus, left superior temporal gyrus, and left inferior
parietal lobule) was 0.954 (Figure 3).

4. Discussion

During the resting-state condition, the default mode network
(DMN) is continuously activated [8]. The DMN contains
numerous areas, including the medial frontal cortex, medial
temporal lobes, inferior parietal cortex, and anterior/poster-
ior cingulate cortex [8, 12]. Many activities that have an
awareness component are related to the DMN, such as anxi-
ety [13], depression [14], and cognition [15]. Previous studies
have identified several diseases that lead to DMN dysfunc-
tion, such as Parkinson’s disease [16], Alzheimer’ s disease
[15], and multiple sclerosis [17]. Vacchi et al. [17] reported
that patients with MS exhibited abnormal DMNs, which
were related to poorer cognitive and behavioral outcomes.
Shao et al. [10] found that patients with optic neuritis showed
low ReHo values in the left middle temporal gyrus, right
superior temporal gyrus, left middle frontal gyrus, bilateral
anterior cingulate cortex, and bilateral superior frontal gyrus.
They also found high ReHo values in the right inferior pari-
etal lobule. Jiang et al. [18] found that patients with primary
angle-closure glaucoma showed abnormal activation of areas
in the visual cortices, frontal lobe, frontoparietal network,
and the DMN. In support of these findings, here, we found
that patients with NAION had higher ReHo values in the left
middle frontal gyrus, left middle cingulate gyrus, left superior
temporal gyrus, and left inferior parietal lobule. At the same
time, they had lower ReHo values in the right lingual gyrus,
left putamen/lentiform nucleus, and left superior parietal
lobule. As an important aspect of rs-fMRI studies, ReHo
analysis may provide information that helps us understand
more about NAION-related functional reorganization in
the brain. The brain is a whole entity rather than a single
individual brain area. Dysfunction in one region leads to
spontaneous brain activity in other brain regions. Therefore,
the lower ReHo values in the left superior parietal lobule
indicates that NAION might damage the DMN, while the
higher ReHo in the left middle frontal gyrus, left middle cin-
gulated gyrus, left superior temporal gyrus, and left inferior
parietal lobule may reflect compensation in the DMN that
helps maintain the stability of the internal network.

The lingual gyrus, located in area V2 of the visual cortex,
is a key part of the visual cortex that receives feedforward
connections from V1. Additionally, V2 plays a critical role
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TaBLE 1: Participant characteristics.
Characteristics NAION (n=31) NCs (n=31) t value P value
Age (years) 35~79 (52.74 + 11.29) 33~66 (50.97 + 8.20) 0.71 0.482
Sex, male/female 31, 20/11 31, 20/11 NA NA
Disease duration (years) 6.00+1.12 NA NA NA
Vision-right 0.53+£0.40 1.08 +0.17 -7.14 <0.001
Vision-left 0.57£0.40 1.10+£0.17 -6.75 <0.001
IOP-right 14.61 +2.38 13.10 + 1.27 3.16 0.002
1OP-left 15.35 +2.03 13.68 + 1.62 3.60 0.001
RNFL-right (pm) 73.00 £23.25 97.58 +£8.24 -5.55 <0.001
RNEL left (um) 79.03 + 28.51 97.80 +6.91 -3.56 0.001
CVF
MS-right 13.83£9.23 26.96 +1.42 -7.83 <0.001
MS-left 16.79 +9.04 26.89+1.29 -6.16 <0.001
MD-right 12.76 £9.30 0.86+1.33 7.05 <0.001
MD-left 10.47 £9.05 0.92+1.28 5.82 <0.001

Abbreviations: SD: standard deviation; NA: not applicable; IOP: intraocular pressure; RNFL: retinal nerve fiber layer thickness; CVF: central vision field; MS:

mean sensitivity; MD: mean defect.

TaBLE 2: ReHo values for patients with NAION and healthy controls.

Peak MNI (mm)

Conditions Brain region R/L X y Peak T value Cluster size (mm”)
NAION > NCs Middle frontal gyrus L -39 42 0 3.6565 93
NAION > NCs Middle cingulate gyrus L 0 -21 39 3.1801 65
NAION > NCs Inferior parietal lobule L -33 -69 51 3.1296 66
NAION > NCs Superior temporal gyrus L -51 3 -6 3.1149 88
NAION < NCs Lingual gyrus R 21 -87 -6 -2.9064 71
NAION < NCs Putamen/lentiform nucleus L -39 -9 -15 -3.5122 95
NAION < NCs Superior parietal lobule L -24 -69 48 -4.4565 82

Note: two-sample t-tests were used test for differences between the NAION and NC groups. The threshold was set with P < 0.05, corrected for multiple
comparisons using false discovery rate. Abbreviations: NAION: nonarteritic anterior ischemic optic neuropathy; NCs: normal controls; ReHo: regional

homogeneity; L: left; R: right; MNI: Montreal Neurological Institute.

in object and shape visual processing [19] and stereo vision
[20]. Additionally, the lingual gyrus is thought to be involved
in processing visual memory [21] and is the termination of
Meyer’s loop, which carries visual information from the con-
tralateral superior visual field. Chen et al. [22] observed that
patients with primary angle-closure glaucoma showed signif-
icantly lower ReHo values in area V2 compared with NCs.
Using an optimized voxel-based morphometry, Chen et al.
[23] found that primary open-angle glaucoma might lead to
significant reduction of gray matter volume in bilateral visual
cortex. By analyzing changes in the brain activity, Shao et al.
[24] found abnormal ReHo levels in the middle occipital
gyrus and the lingual gyrus in patients with strabismus and
amblyopia. In addition, Aguirregomozcorta et al. [7] investi-
gated cortical reorganization in 9 patients with NAION using
task-based fMRI. They found that occipital activation was

lower in patients than in controls when stimulating the
affected eye. In the current study, we observed that the ReHo
index in the lingual gyrus of patients with NAION was lower
than that in the controls, which was consistent with the
results from previous studies. The lower ReHo might reflect
cognitive impairment in NAION. Thus, we speculated that
NIAON might lead to impaired function in V2.

The middle frontal gyrus (MFG), lying between the
inferior and superior frontal gyri, has been widely reported
to be involved in contingency awareness [25] and cognition
[26]. Moreover, the MFG plays a critical role in the parieto-
prefrontal pathway [27], which are involved in visuospatial
working memory [28]. Griffis et al. [29] found that patients
with early-onset blindness showed increased functional
connectivity between the frontal and occipital lobes. In the
present study, therefore, the higher ReHo in the cluster of
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FIGURE 1: Spontaneous brain activity in patients with NAION and healthy participants Significant differences in activity were observed in
patients with NAION in the left middle frontal gyrus, left middle cingulate gyrus, left superior temporal gyrus, left inferior parietal lobule,
right lingual gyrus, left putamen/lentiform nucleus, and left superior parietal lobule (false discovery rate corrected, cluster size > 23 voxels,
P <0.05) (a, b). The mean ReHo values for NAION and NC groups (c). Abbreviations: NAION: nonarteritic anterior ischemic optic
neuropathy; NCs: normal controls; ReHo: regional homogeneity; L: left; R: right.
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FIGURE 2: Correlations between right RNFL and the ReHo value of
the left superior parietal lobule Abbreviations: REFL: retinal nerve
fiber layer thickness; r: Pearson’s correlation coefficient.

regions in the left MFG may reflect compensation of visual
function and strengthening the parietofrontal networks in
NAION. The result suggests that crossmodal plasticity of
the parietoprefrontal pathways occurs in individuals with
NAION.

The superior temporal gyrus (STG) is the secondary
auditory area and plays an important role in auditory pro-
cessing [30] and auditory memory [31]. It is also associated
with visual search insights [32] and visual information
processing [33]. The increased ReHo value that we observed
for spontaneous brain activity in the STG might reflect
plasticity that compensates for NAION-related damage to
visual function. This potential compensatory mechanism
has also been suggested in participants with other visual
deficits, such as neuromyelitis optica [34] and blindness [35],
and the mechanism could represent general changes that
enable people with impaired vision to perform sensory-
guided motor behaviors. Therefore, we speculate that NAION
might lead to dysfunction of the auditory and visual informa-
tion processing.

The inferior parietal lobule (IPL) plays an important role
in visual word recognition [36]. Dysfunction of the IPL is also
found in some diseases such as Alzheimer’s disease [37]
and schizophrenia [38]. We demonstrated that patients
with NAION showed increased ReHo values in the left
IPL, which might reflect compensation for visual dysfunc-
tion in NAION.

The superior parietal lobule (SPL) is another part of the
visual pathway, which plays a critical role in visuomotor
coordination [39]. It is also involved in audio-visual multi-
sensory [40] and language processing [41]. In our study, we
found that patients with NAION showed low ReHo values
in the SPL, which might be associated with impaired visuo-
motor function. Furthermore, we observed that the ReHo
value in the left superior parietal lobule was negatively corre-
lated with the thickness of the right RNFL. A previous study
showed that patients with NAION had significantly thinner
globe RNFLs than the controls [42]. Kernstock et al. [43]
found that RNFL thickness in patients with NAION
decreased rapidly and was below normal values by Month 2
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after onset and had further decreased by Month 4. This pro-
gressive thinning between Months 2 and 4 suggests ongoing
atrophy of nerve fibers. Similarly, Resch et al. [42] found that
compared with the controls, RNFL thickness decreased sig-
nificantly during the 3 months following disease onset.
Moreover, they found that the inner plexiform layer of
ganglion cells became thinner throughout the course of the
disease [44]. To some extent, the degree to which RNFL
thickness is reduced indicates the severity of NAION. Over-
all, these findings may suggest that when atrophic RNFL
damage is severe, it can cause dysfunction of visuomotor
coordination in the left SPL.

An initially unexpected—and very interesting—{finding
was that locations with increased ReHo values were all
located in the left hemisphere. Although this could be a coin-
cidence, it might be related to the very important roles that
the left cerebral hemisphere plays in visual-word recognition,
which have been suggested by neuroimaging and neuropsy-
chological studies [45, 46]. Indeed, studies have demon-
strated that visually processing word is more effective in the
left cerebral hemisphere than in the right [47, 48]. Therefore,
the increased ReHo values that we found in the left cerebral
hemisphere might reflect functional reorganization that
compensated for impaired visual function that resulted from
NAION.

In the present study, ROC analysis was applied to deter-
mine the reliability of using ReHo values to diagnose
patients. Several neuroimaging studies focusing on ocular
diseases have successfully applied ROC analyses to discrimi-
nate those with ocular disease from NCs [11, 22, 24, 49, 50].
According to these studies, the ability to discriminate condi-
tions are considered excellent, moderate, fair, and failed
when AUC values are 0.9-1, 0.7-09, 0.5-0.7, and less than
0.5, respectively [22, 24, 50]. The present study found that
the brain regions with abnormal ReHo values consistently
showed a high degree of sensitivity and specificity with
higher AUC values. The AUC values for each of these regions
were over 0.7. Furthermore, the AUC values for the com-
bined brain regions (higher or lower values than controls)
were both over 0.9. Therefore, the results the present study
indicate that these abnormal ReHo values (i.e., changes in
the brain) can serve as biomarkers for diagnosing NAION.

The current study has several limitations that should be
considered. First, NAION typically occurs unilaterally.
Involvement of the other eye can occur years after the first
eye is affected. However, patients typically visit different
clinics because treatment is ineffective. When patients arrive
at our hospital, some already exhibit NAION in both eyes.
Thus, it was difficult to recruit patients with only one affected
eye. Second, patients in the present study did not undertake
neuropsychological tests though a few people complained
insomnia or irritability. Further research is required to exam-
ine this issue in more detail. This limitation could be resolved
using larger patient samples.

5. Conclusions

The present study revealed that patients with NAION exhibit
an abnormal spontaneous brain activity, including a negative
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correlation with contralateral RNFL. The abnormal sponta-
neous activity demonstrated that patients with NAION had
undergone neural remodeling. The findings may be related
to functional brain networks and the DMN, as well as to
visual compensation. The current results provide important
information that improves our understanding of the inherent
neural mechanisms underlying NAION.
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