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Abstract

Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors 

and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional 

replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach 

to restoring vision. This paper reviews the current status and explores future prospects of the 

transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This 

review summarizes the status of rodent RD disease models and discusses RO culture and 

analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies 

in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs 

from pluripotent stem cells have significantly improved and become more efficient in recent 

years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. 

However, opportunity remains to optimize tissue differentiation protocols and achieve better RO 

reproducibility. In order to screen high-quality ROs for downstream applications, approaches 

such as noninvasive and label-free imaging and electrophysiological functional testing are 

promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed 

improvements in visual function in several RD models, showing promises for clinical applications 

in the future.
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INTRODUCTION

Vision is critical for humans to perceive the world. The retina originates as an outgrowth of 

the forebrain during embryonic development. The visual pathways start at the retina where 

light is transduced into neuronal signals that are ultimately conveyed to the visual cortex 

for visual perception. The retina is a laminated organ that is broadly composed of retinal 

ganglion cells (RGCs), amacrine cells (ACs), bipolar cells (BCs), horizontal cells, Muller 

cells, and photoreceptors (PRs). Upon absorption of photons by visual photopigments in 

the PRs, a series of biochemical reactions occurs whereby light signals are transduced into 

neuronal signals. Whereas surgical treatments for diseases that damage light transmission 

through the cornea and the lens have been well established, permanent vision losses caused 

by damage to the RGCs as a result of glaucoma, loss of PRs and retinal pigmented 

epithelium (RPE) from age-related macular degeneration (AMD) and inherited retinal 

degenerations (IRDs), and damage to all layers of the retina from diabetic retinopathy, are 

irreversible and no therapies to reverse cell death are available.

Recent decades have witnessed the development of stem cell technology. Under specific 

culturing conditions, stem cells can be differentiated into self-assembled and layered retinal 

tissue spheroids that are called retinal organoids (ROs). ROs have been applied to different 

applications such as disease modeling,1–5 developmental biology,6–9 drug screening,10 

gene therapy testing,2,11–14 and transplantation therapies.15–21 In this review, we focus on 

transplantation studies in recent years. We briefly review common retinal degeneration (RD) 

diseases, summarize common rodent models with IRD used for RO transplantation studies, 

and explore current methodologies used for RO culture and analysis. Lastly, we focus on 

post-transplantation evaluations and their functional effectiveness. Gene therapy in a dish is 

outside the scope of this review and is not discussed.

RD DISEASES AND RODENT DISEASE MODELS

AMD is marked by the degeneration of the PRs and RPE in the human macula and is 

the leading cause of irreversible blindness in people over 65 years old in industrialized 

countries.22 In the early and intermediate stages, AMD is marked by the accumulation of 

drusen, a yellowish retinoid breakdown product in the macula beneath the retina. Advanced 

AMD consists of 2 main categories: wet and dry AMD. Wet AMD involves abnormal 

choroidal blood vessel growth and can be treated by anti-vascular endothelial growth 

factor.23 However, there is no proven treatment for dry AMD characterized by RPE and 

subsequent PR death. The only promising approach may be cellular replacement therapy 

with transplantation.24

Retinitis pigmentosa (RP) is an IRD disease initially affecting peripheral vision progressing 

to loss of central vision in the end stage. Many gene mutations can yield the RP phenotype, 

and this heterogeneous genotypic etiology leads to significant difficulties in studying the 
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disease and developing effective treatment.25 In mutations affecting rod-specific proteins, 

rod PRs will gradually deteriorate over decades, causing losses of night vision in 

adolescence, peripheral vision in young adulthood, and central vision in later life.26 The 

functional progression of vision loss is consistent with the characteristic death of rod PRs 

prior to cone PR death.

Neurons and PRs are highly differentiated cells and lack the ability to repair or regenerate 

after irreversible damage. Gene therapy has gained popularity in IRD treatment in recent 

years as summarized in several reviews.27,28 For example, a recent study applied subretinal 

gene therapy that delivered human melanopsin gene (OPN4) and showed vision restoration 

in retinal degeneration 1 (rd1) mutation mouse model.29 Several additional studies 

demonstrated an improvement in PR survival in RP models when animals were administered 

oral N-acetylcysteine.30–32 While oral and gene therapy approaches demonstrated promise 

to prevent or halt disease progression, they were not able to restore PRs or RPE that were 

already lost.33 Cell and tissue replacement therapy offers an additional avenue for hope to 

patients with advanced RD. Transplantation of human pluripotent stem cell (hPSC)–derived 

ROs offers 1 pathway to replace segments of dead tissue.

Rodent models used in transplantation studies are summarized in Table 1. Mutations in 

rodent models primarily yielded RD marked by PR loss. Preclinical studies have also 

focused on immune rejection of transplantable RO materials. The native retina is known 

to be immune-privileged similar to the brain.17 A recent study showed that ROs elicited 

minimal immune response when transplanted,46 thereby allaying some concerns for future 

clinical application. However, to use allogeneic cells for transplantation research, immune 

rejection is still an important factor to consider in the long term,47 as cell rejection can occur 

months after transplantation.48 Human ROs xenografted into animal models raises concern 

of heterologous tissue rejection. Zhu et al42 reported that immunosuppression before 

transplantation allowed for better integration of graft cells and improved functionality. Thus, 

for RO transplantation studies, immunosuppression remains a primary consideration, in 

which animal models for the studies may receive immunosuppression using pharmacological 

agents (eg, cyclosporine A, mycophenolate, and tacrolimus), or genetically immunodeficient 

animals are used.16,19,49,50

RO CULTURE AND ANALYTICAL METHODS

Stage-Specific RO Development

Culture protocols for pluripotent stem cell (PSC)–derived mouse and human ROs were 

summarized and evaluated in previous reviews.51–53 Although timing is different, in most 

protocols, the basic procedure consists of 2 steps: (1) initiation of embryonic bodies (EBs) 

from stem cells by neuro induction media; and (2) long-term differentiation of ROs by 

adding retinal differentiation media. Stage-specific morphologies are shared by PSC-derived 

ROs regardless of induction protocols. Capowski et al54 identified 3 distinct morphological 

stages of RO development by investigating 16 hPSC lines (Figs. 1A–C). ROs in stage 1 

are characterized by a neuroblast layer, rich in RGCs and rare ACs. Stage 2 ROs represent 

a transition period, when different cell types such as PRs, horizontal cells, and ACs start 

to differentiate and RGCs start to degenerate. Lastly, stage 3 ROs are marked by PR layer 
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and outer segment structures with very few RGCs left in the inner layer. The emergence of 

Muller glia that form the structural framework of ROs is also one of the stage 3 markers.54 

The stage-specific morphological features are accompanied by a shift in metabolic activity, 

which was confirmed by recent research. Xue et al55 identified these 3 stages of RO 

differentiation by analyzing the free to bound nicotinamide adenine dinucleotide ratio of 

the ROs’ surface using fluorescence lifetime imaging microscopy (FLIM). ROs in the early 

stage were more glycolytic because they mostly consisted of progenitor cells. During the 

differentiation stage, a metabolic shift from glycolysis to oxidative phosphorylation was 

observed (Fig. 1). At the maturation stage, the ROs developed glycolytic PR layers.55

RO Differentiation Methods

Methodologies for optimizing RO quality published in recent years can be categorized into 3 

types: (1) adjustment of the supplemental reagents in culture media; (2) testing different EB 

formation approaches; and (3) investigation of alternative 3D suspension culture approaches 

beyond conventional tissue plate culture.

For the first category, Zerti et al56 found that the addition of specific reagents such as 

retinoic acid and triiodothyronine (T3) at selected differentiation duration stages could 

provide high-quality ROs that contained specific PR subtypes. Protocols to accelerate 

development of rod PRs by supplementing with 9-cis-retinal are reported.57–59 Pan et al 

employed COCO (a multifunctional antagonist of the Wnt, transforming growth factor-β, 

and bone morphogenetic protein pathways) to promote RO differentiation. They found 

increased number of PR precursors in early-stage ROs (main difference observed was cone-

rod homeobox transcription factor (CRX+) cells showing on day 45). While the difference 

was not significant in later stages, they found COCO treatment reduced neural retina leucine 

zipper (NRL), rhodopsin (RHO), and green opsin (OPN1MW) expression and increased 

blue opsin expression (OPN1SW), which indicated that an enhanced fate of cones and 

decreased fate of rods were apparent in late stages.60

The latter 2 categories will be expanded in the following paragraphs according to the 

chronological order of RO differentiation.

In most differentiation protocols, the first step in RO production is to initiate EBs, which 

are 3-dimensional (3D) aggregates of PSCs to develop into neurospheres. Different EB 

formation methods were tested by Mellough et al61 where they studied 3 approaches: (1) 

mechanical cutting; (2) enzymatic dissociation of stem cell colonies into small pieces; and 

(3) dissociation into single cells followed by force reaggregation.62,63 Their results showed 

that mechanically cutting EBs from 2-dimensional (2D) culture under static conditions (vs 

shaker condition) produced most consistently laminated, mature, and functional ROs.61

Once EBs are formed, they are further differentiated in 2D matrix culture using growth 

factor–reduced Matrigel or other hydrogels. When the eye field structures are formed, the 

ROs are excised and transferred to 3D suspension culture.64,65 Afterwards, the 3D culture 

continues for months while ROs follow typical gestational development and eventually 

develop mature PR layers on their outermost surface.
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To improve 2D differentiation, Dorgau and colleagues placed EBs onto an extracellular 

matrix that contained decellularized peptides from neural retina and RPE. They observed 

an improvement in RPE differentiation, ROs synaptogenesis, and light responsiveness.66 

Compared to conventional extracellular matrix, decellularization provided necessary 

biochemical and biophysical components, as well as the biological scaffold for cell 

engraftment and differentiation.66

However, the 2D differentiation on extracellular matrix is not necessary for all protocols. 

Hunt and colleagues skipped the 2D differentiation and encapsulated EBs into different 

hydrogels including RDG-alginate, hyaluronic acid (HA), and HA/gelatin hydrogels. They 

found that up to day 45 in culture, the 0.5% of RGD-alginate enhanced the derivation 

of RPE and increased the yield of EBs compared to suspension cultured control group.67 

However, to confirm that hydrogel-assisted 3D differentiation is better than suspension 

culture, longer differentiation duration is needed. In another example, Kim and colleagues 

mixed human embryonic stem cell (hESC) aggregates in ice-cold Matrigel and dispersed in 

medium supplemented with N2 and B27 on day 0 for floating culture. They transferred the 

single-lumen cysts to 24-well plates for attachment culture on day 4 to 5, and enzymatically 

lift by dispase on day 15 with 3D RO culture immediately initiated. Using this protocol, they 

successfully developed cone-rich ROs, which are of particular interests in transplantation 

studies.68

Some studies for RO production focused on improving the long-term 3D differentiation of 

ROs. Besides conventional 3D suspension culture in tissue culture plates, several research 

teams designed and fabricated autonomous long-term culture devices to improve ROs 

long-term culture quality and to reduce variability. Ovando-Roche et al69 applied a stirred-

tank bioreactor to culture ROs and improved the laminar stratification and increased the 

yield of PR cells. Similarly, DiStefano et al70 used a rotating wall vessel for 3D RO 

culture and as a result accelerated differentiation and improved overall quality. Microfluidic 

and/or millifluidic bioreactors can minimize shear stress on developing RO while allowing 

targeted long-term imaging and reduce the total culture medium consumption.71–73 Xue 

et al73 developed a shear stress-free micromillifluidic bioreactor that produced ROs with 

comparable quality as those in static culture, while allowing real time functional imaging 

with the all-transparent design. Studies comparing rotating wall vessel and low-shear 

systems will address whether shear stresses damage the outer segment structures in mature 

organoids.

RO Validation and Characterization

The heterogeneity and variability of RO production necessitates validation of RO tissues 

prior to their use in downstream applications. Common methods for organoid validation 

include immunohistochemistry (IHC), flow cytometry, single-cell transcriptomics,74 and 

single-cell RNA sequencing (scRNA seq).75–77 Transmission electron microscopy enables 

visualization of micro/nanostructures such as outer segments, inner segments with 

mitochondria, connecting cilia and disc structures. However, the detrimental nature of 

these commonly used methods is the mortal requirement to either fix the tissue or 

to dissociate the tissue into single cells. Destructive characterization halts organoid 
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use in downstream applications including transplantation. Therefore, noninvasive and 

nondestructive characterization methods are gaining popularity in organoid research.

Several noninvasive characterization methods are reviewed in this article, including optical 

coherence tomography (OCT), confocal imaging of genetically engineered reporters, FLIM, 

and hyperspectral imaging.

OCT was proposed for assessing 3D-cultured ROs by Browne et al in 2017.78 Further, 

OCT was implemented to visualize surface topography and internal anatomy by Capowski 

et al.54 Scholler et al79 developed a dynamic full-field OCT system to achieve label-free 

visualization of organelle motility with submicrometer spatial resolution and millisecond 

temporal resolution. OCT performs well in cross-sectional and surface imaging. However, 

OCT cannot be used to identify cell types within ROs.

To visualize the lamination and cellular composition in ROs at cellular resolution, confocal 

laser scanning microscopy shows better performance. PSC reporter lines have been widely 

used for identifying cell lineages, subtypes, and ROs’ developmental stages in live culture. 

Using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 

9 (CRISPR/Cas-9) genome editing, Philips et al created the first human rod reporter line, 

which tagged green fluorescent protein (GFP) to the NRL gene of the WA09 hESC line.80 

Using zinc finger nuclease technology, Collin et al generated a cone-rod homeobox (CRX)-

reporter hESC line,81 which could be applied to isolate PR precursors81 and for use in 

transplantation.34 Vergara et al82 developed a 3D automated reporter quantification (3D-

ARQ) system to effectively monitor the ROs’ developmental process, fluorescence intensity 

changes, reproducibility evaluation, and realized high throughput screening. Compared to 

reporter lines that required genetically engineered fluorescence label, 2-photon imaging 

that integrates FLIM and hyperspectral imaging on ROs can realize label-free imaging 

by exciting intrinsic fluorophores, offering the advantage of visualizing the metabolic 

signatures and molecular distribution within ROs.55,78 Further investigation is required to 

identify metabolic signatures with specific cell types.

Another important aspect is to evaluate the functionalities of ROs in advanced stages for 

light sensitivity and synapses generation. Common methods for RO electrophysiological 

functional analysis include patch-clamp,64,83 fluorescent calcium imaging,84–86 2-photon 

microscopy87 and microelectrode arrays (MEAs),88 reviewed by Afanasyeva et al.89 In 

more recent studies, Li et al90 systematically characterized the electrophysiology of ROs at 

different stages (D90, D150, and D200) using patch-clamp recording and found that PR cells 

in ROs after D200 showed similar characteristic currents as those in human retina. Cowan 

et al91 compared ROs with human retina in transcriptomes, and they further characterized 

the functionality of ROs by measuring the light responsiveness, imaging synaptic layers, and 

functional synapses. Furthermore, Bharathan et al9 applied human ROs as a model system to 

study the synaptogenesis in human retina, identified stages of human outer plexiform layer 

development, and successfully recapitulated key aspects of synaptogenesis between PRs and 

BCs.

Xue et al. Page 6

Asia Pac J Ophthalmol (Phila). Author manuscript; available in PMC 2023 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROS FOR TRANSPLANTATION

RO transplantation is becoming a promising therapeutic approach for RD diseases. The 

current transplantation strategies for treating degenerative diseases can be categorized into 

4 types: selected types of cells, transplanting RO sheets, RPE and cograft of RPE and RO 

pieces. In this section, we summarize recent research of each method and discussed their 

pros and cons (Table 2, Fig. 2).

Transplant Selected Cells

Single-cell transplantation offers advantages including: (1) targeted treatment for loss of 

certain cell types; (2) controllable purity and quality of the isolated cells; and (3) a 

potentially larger contact area between host and graft cells because the cells can spread 

over a larger area in the subretinal space.

So far, neural and retinal progenitors,41,96 immature PR precursors,35,92,97–100 and fully 

mature101 PRs have been used for transplantation. Among them, immature but no longer 

dividing rod and cone precursor cells that can continue differentiation in the host retina are 

considered as the most feasible donor cell types.36,102 For cell selection and purification, 

fluorescence-activated cell sorting was used. Lakowski et al36 established a cell surface 

biomarker combination for PR precursor enrichment from hPSC-differentiated ROs and 

fetal retinae (CD73+/CD29−/SSEA1−). This combination of markers was also capable 

of eliminating mitotically active cells to avoid possible tumor development.36 Collin et 

al34,76 developed a hESC line that produced transplantable cone dominant PR precursors. 

Recently, Zerti and colleagues transplanted CRX-GFP labeled hESC-derived PR precursors 

[dissociated from 90 days of differentiation (DD) ROs] into end-stage degeneration 

Pde6brd1 mouse models. Light sensitivity restoration and up to 1.5% of cell integration 

into the putative host outer nuclear layer were observed.35 Ribeiro et al39 transplanted 

purified cone precursors from hPSCs to immunodeficient rd1 mice and demonstrated vision 

improvements (Fig. 3A).

Retinal progenitor cells are also a common source for transplantation. Chao and colleagues 

injected 1 million retinal progenitor cells into a nonhuman primate, Saimiri sciureus, and 

observed extended axonal projections into the host retina and optic nerve without the need 

for immunosuppression for 3 months. No obvious PR integration was detected.93

However, compared to sheet transplantation, single-cell transplants lack integrity and 

mechanical stability, which reduced the donor cell survival and further development within 

the host tissue. Cells injected as a bolus usually aggregated in the subretinal space but only 

a subpopulation would migrate into the host retina and there were issues with long-term 

survival.36,103–105 Further, the orientation of PR cells was also hard to control.

Transplant RO Sheets

Compared to single-cell transplantation, the advantages of transplanting ROs sheets are that: 

(1) the RO sheet preserves the complete layered structure of retina, which is easier for 

integration into host retina; (2) the survival rate of transplanted tissue is higher due to the 
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intact interneural connectivity; and (3) the tissue piece offers higher mechanical support and 

provides a better microenvironment for the retinal cells to differentiate and function.

Mandai et al41 transplanted mouse-induced pluripotent stem cell (iPSC)–derived RO 

pieces (DD11–17) into end-stage rd1 mice model and observed light-responsive behaviors. 

Iraha and colleagues transplanted hESC/iPSC-derived RO sheets (DD64–66) into 

immunodeficient IRD mouse models with the graft tissue showing long-term survival and 

maturation (DD200–220). Host-graft synapse formation was observed and light responses 

were detected from retinal wholemounts.40 Tu and colleagues transplanted human iPSC-

retinas (DD58–78) into rhodopsin mutant SD-Foxn1 Tg (S334ter)3LavRrrc nude rats 

and performed IHC and electrophysiology recording with a MEA after sacrificing the 

animal (5–10.5 months). Light responses were detected at the grafted area in 4 of 7 

transplanted rat retinas.43 In the same study they also transplanted ROs (DD62 and 

DD53) into a cynomolgus monkey and a rhesus monkey. The visually guided saccades 

test revealed a mild recovery of light perception after 1.5 years of transplantation in 

rhesus monkey.43 In different studies, RO sheets (DD 30–65 and 70) were transplanted 

into immunodeficient rhodopsin mutant SD-Foxn1 Tg(S334ter)3LavRrrc nude rats16 (Fig. 

3B) and immunodeficient Royal College of Surgeons (RCS) rats.19 Improvement of visual 

responses was demonstrated by optokinetic tests (OKTs) and recording from the superior 

colliculus (SC) in both IRD models. Interestingly, RO transplants improved visual responses 

in RCS rats in spite of the absence of functional RPE cells. PR development and synaptic 

connectivity were identified with IHC.

However, the disadvantage of this method includes the requirement of a highly trained 

operational skillset and a larger retinal incision compared to transplantation of dissociated 

cells since the RO sheet needs to be placed flat into the subretinal space in the correct 

orientation. Also, uniformity and retinal cell purity of the RO sheets are critical to avoid 

tumorigenesis or fibrosis resulting from contamination with undifferentiated or nonretinal 

cells. In addition, although the transplants form retinal layers, PRs frequently form spherical 

structures called rosettes, with PR outer segments in the center (mostly disconnected from 

RPE) (Fig. 3B).16,19,41,43,46 This may be related to possible rosette formation in organoids 

before transplantation, and trauma to organoid pieces during transplantation.

Transplant Cograft of RPE and RO Sheet

Besides RO sheets, PSCs-derived RPE is also a promising tissue source for transplantation 

and vision restoration. RPE plays critical roles in vision by performing vital functions 

such as: (1) transporting nutrients, ions, and water to the PRs; (2) supplementing 11-

cis-retinal in the visual cycle by isomerization of all-trans-retinal; (3) protecting against 

photooxidation and light absorption; (4) removing shed PR outer segment membranes with 

phagocytosis; and (5) secreting essential extracellular molecules (eg, laminin, collagen, and 

HA) to maintain retinal integrity, functionality, and PR viability.106,107 Several studies used 

hESC/iPSC-derived RPE sheets (or “patches”) for retinal degenerative therapy in animal 

models108–111 and clinical trials112–115 (reviews116,117). These studies reported maintenance 

or improvement of visual function and delated RD. However, this approach has not been 

successful in stopping disease progression.
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Considering the limited performance of mere RPE or RO transplantation, some research 

groups proposed that combination of these 2 tissues might provide enhanced effects. Early 

studies found that in vitro coculture of rat neural retina and RPE cells promoted PR 

integration and axonal growth by increasing the synthesis of rhodopsin.118 Further, reduced 

apoptosis, gliosis, and increased glutamate synthesis were observed compared to retinal 

culture alone.119 However, since the culturing conditions are different for RPE and RO, the 

cocultures of these 2 tissues were usually short-term in the range of a few days.118,119 As a 

result, it was challenging to coculture RPE and RO to the stage ready for transplantation.

A more promising option was to culture RPE and RO separately until ready for 

transplantation, and then put them together with bioadhesives as cograft and transplant into 

the host.45 Previous research demonstrated the feasibility of transplanting grafted sheets of 

fetal retinal progenitor cells with its RPE into animal models44,120 and human121 to address 

the challenges of the lack of physical cell-cell interactions and undesirable host environment 

for development.122 However, the use of fetal retina was ethically controversial, and access 

to the tissue has been very limited. Recently, Thomas et al combined ROs and polarized RPE 

sheets using bioadhesives (gelatin, growth factor–reduced Matrigel, and medium viscosity 

alginate). Long-term survival (up to 6.5 months) of the cograft in immunodeficient RCS 

rats’ subretinal space and improvement in visual function were observed (Fig. 3C).45 

This study has proven the feasibility of cograft transplantation for severely degenerated 

retina.45 Challenges remain due to the complexity of the donor tissue preparation and rosette 

formation in the RO transplants.

Transplant With Biomaterial Scaffolds

Researchers also turned to engineering approaches to realize outer retinal reconstruction. 

Specifically, biomaterial scaffolds constructed by synthetic polymers, silk, alginate, HA, and 

extracellular matrix were used as reviewed by Hunt et al.123 Recently, Lee et al124 designed 

and fabricated an ultrathin (30 μm) biodegradable scaffold patterned with micrometer-level 

precision, which was called “poly(glycerol sebacate) ice cube tray.” Compared to their 

previous “wineglass” design125 that only achieved single-layer PR seeding, the ice cube 

tray design supported multiple layers of hPSC-PRs with more than 300k cells in a single 

5-mm-diameter scaffold similar to the area of a human macula. This design presented slower 

degradation in vitro (up to 30 days).124 However, more investigations are needed to scale up 

manufacturing, delivery strategies to animal models, and in vivo functional tests.

POST-TRANSPLANTATION ANALYSIS

Finally, to evaluate the effectiveness of transplantation, different post-transplantation 

tests have been performed with animal models. The host used in these studies had 

intact neural pathway from the optical nerve to the visual cortex, despite the loss of 

PRs (Fig. 2C). Therefore, the transplantation performance was a direct result of the 

integration, differentiation, and function of the grafted tissue within the host retina. Thus, 

post-transplantation tests normally focused on examining the following performance: (1) 

light and contrast sensitivities and visual acuity of subjects with behavioral tests; (2) 

connectivity of the visual pathway between retina and visual cortex with retinal and 
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brain electrophysiology recordings; and (3) integration, differentiation, and synaptogenesis 

between graft and host tissue with OCT, histology, and analysis of retinal and synaptic 

markers in correlation to functional results. Common post-transplantation tests are 

categorized and summarized in Table 3 and shown schematically in Figure 2.

Behavioral Tests

Behavioral tests are advantageous because they are noninvasive and can be repeated at any 

time points after transplantation. In particular, OKT is one of the most popular behavioral 

tests. Rodents show slow horizontal head and body movements when a virtual-reality visual 

field (black and white stripes of varying density) is rotated around them. The stripe density 

eliciting a response determines the spatial threshold. For each eye, only a field rotation 

in the temporal-to-nasal direction evokes the tracking response, making it possible to 

distinguish between a transplanted and a nonsurgery eye in the same animal. Lesions of 

the visual cortex had no effect on OKT, suggesting that OKT was driven by subcortical 

and contralateral pathways.126 Several studies have shown improvements in optokinetic 

responses after RO sheet transplantation.16,19,45

Multiple behavioral tests for visual functions had been used in different studies. For 

example, Mandai and colleagues adapted a shuttle-avoidance system to test for light 

sensitivity and response in animals after transplantation. A warning light was presented to 

the mouse before an electric shock was administered to train the mouse to move into another 

chamber through a small opening as soon as it saw the warning light (Fig. 2C).41 Similarly, 

a light avoidance system used bright light as a cue to test the animal’s light response 

capability.21,35 Another light avoidance test measured the animal’s preference to evade light 

without using electric shocks.37,39 Tu and colleagues applied a visually guided saccades test 

on rhesus monkeys, in which the animal facing a color LCD monitor was trained to gaze at 

a central fixation spot followed by a random presentation of a target spot somewhere else in 

the monitor. The resulting saccades landing within a 50 × 50 pixels square containing the 

visual target were judged as correct responses.43

Electrophysiological Tests

Global or full-field electroretinogram (ERG) represents mass electrical response of the retina 

to photic stimulation. The basic approach of global ERG is to stimulate the eye with a 

bright light source such as a flash produced by LEDs or a strobe lamp while monitoring 

electrical activities in the eye. The flashes of light should elicit a biphasic waveform (the 

a- and b-waves) recordable from the cornea. Full-field ERGs are in general not sensitive 

enough to detect visual improvements once RD has progressed too far. For example, Lin 

et al19 could only detect ERG response improvements at 2 months post-transplantation of 

RO sheets to immunodeficient RCS rats, but rodent models with more severe RD had never 

shown recordable ERGs.127

To circumvent this shortcoming, MEA-based microelectroretinography (mERG) technique 

was used to ascertain the effectiveness of transplantation.37,40,41,43 Compared to full-

field ERGs, which only detected changes in mass retinal field potentials, local and 

multilocal ERGs offer higher signal-to-noise ratio and thus are more suitable for tracking 
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degenerative processes or functional recovery. Fujii et al128 had tested an MEA-based 

mERG system on rd1 mice with progressive PR degeneration, and were able to record 

light-evoked mERGs with consistent RGC spike responses. Garita-Hernandez transplanted 

optogenetically transformed iPSC PR precursors to Rho−/− mice. They were either derived 

from neonatal mice expressing Natronomonas pharaonis halorhodopsin (NpHR) coupled to a 

rod promoter; or derived from iPSC-ROs expressing hyperpolarizing chloride pump Jaws, a 

redshifted cruxhalorhodopsin couple to a cone promoter.37 Function of the transplanted PRs 

was demonstrated by behavioral tests (light-dark box), MEA recordings, and patch-clamp 

recording from GFP+ donor PRs (in the absence of functional outer segments) that were 

specific for the action spectrum of these bacterial opsins (580 nm).37

Another very sensitive technique is electrophysiological recording from the SC16,19,45 in 

the midbrain, which plays a central role in integrating multiple sensory inputs to motor 

behaviors such as eye and head movements.129 In this test, a microelectrode is directly 

placed on the surface of SC; under full-field retinal stimulation at specific light intensities, 

visual thresholds, and visual responses (spike counts) of specific retinotopic areas of the SC 

were recorded.

In Vivo Imaging Tools to Determine Transplant Survival and Differentiation

Spectral-domain OCT (SDOCT) is widely used to examine the transplanted regions.16,19 

SDOCT offers high axial resolution to show different layers of the retina and visualize 

the transplanted region thickness. However, SDOCT cannot provide specific morphological 

information, and the resolution is not high enough to visualize single cells.

Aboualizadeh and colleagues studied the dynamic nature of transplanted cells at 

cellular resolution utilizing near infrared fluorescence adaptive optics scanning light 

ophthalmoscopy. They tracked the survival, migration, and neurite outgrowth of individual 

fluorescent PR precursors in the living monkey eyes in the long term (Fig. 2C).95 

Similarly, Liu and colleagues applied confocal scanning laser ophthalmoscopy to evaluate 

in vivo biomarkers of transplanted PR cells qualitatively and quantitatively. They were 

able to observe migration of the transplanted tissue as well.38 While these 2 techniques 

demonstrated high resolution and dynamic imaging, it relied on genetically engineered 

reporter cell lines (CRX+/tdTomato and Rho+/GFP) to emit fluorescent light, which is not 

applicable for future clinical use in human subjects.

Analysis of Transplant Differentiation and Connectivity

RO sheets and retinal progenitor cells derived from ROs were usually transplanted while 

they were in an immature state to facilitate integration and further development in the host. 

IHC for specific retinal markers was commonly used to identify the differentiation within 

the transplant over time (examples please find references16,40,41).

A critical indicator of transplanted tissue viability was the formation of synapses between 

neurons or within the PR ribbon synapse. IHC was considered a robust and high throughput 

analytical tool to visualize synaptogenesis. This included combining donor label with 

staining for synaptic markers.16,19,40 Akiba and colleagues has proposed an automatic 

synapse quantification method that could not only quantify the number of synapses, but 
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also estimate the probability of “synapse-ness” from IHC images. This method was named 

as “Qualitative and Quantitative Analysis using Bayes Theorem Optimized for Synapse 

Evaluation (QUANTOS).”18 Because the transplanted RO sheet also contained BCs, which 

might cause inappropriate bipolar to BC synapses between graft and host, Matsuyama et al21 

generated mouse RO retinal sheets with reduced numbers of retinal BCs and demonstrated 

improved visual recovery and better integration after retinal transplantation. Similar results 

were achieved with genetically modified human ROs.130 He et al131 transplanted retinal 

progenitor cells derived from mouse C-Kit-mXCherry and Rosa-lsl-CGaMP5 mESC-derived 

ROs to the subretinal space of 21-day old RCS rats. Retinal progenitor cells expressing 

CaMP5 were enriched by cell sorting for C-Kit. Transplanted cells were observed to have 

migrated into the degenerating retina. The development of functional synapses was shown 

by IHC for presynaptic and postsynaptic markers and with 2-photon calcium recording of 

donor cells.131

Cytoplasmic Material Transfer Between Transplant and Host

Several studies in recent years have demonstrated that transplanted dissociated PR 

precursors exchanged cytoplasmic material (proteins and RNA) with remaining host PRs 

and thus might result in rescue of host PR function103–105,132,133 (review134,135). This 

transfer can be bidirectional, from donor to host, and vice versa.103,132,133 In addition, 

transfer of mitochondria between mesenchymal stem cells and different ocular cell lines 

has been demonstrated in vitro.136 This may explain the beneficial effect of transplants on 

host PRs. It was thought that material exchange required PR-to-PR communication, which 

could not occur in severe RD when the PR layer is completely gone.134,137 Cytoplasmic 

transfer between PRs also occurs during normal retinal development.138 However, transfer 

can also be seen from PRs to the Muller cells and ACs in the inner nuclear layer when 

grafting cells to rats with normal outer nuclear layer.103 Thus, the identity of donor cells 

in the host retina needs to be clearly demonstrated by nuclear labels (eg, male donor into 

female host,37,103,105,132 or a human nuclear marker for hPSC-derived transplants in rodent 

hosts16,19,43).

CONCLUSIONS

In conclusion, methods to derive RO from PSCs have significantly improved and become 

more efficient in recent years. Meanwhile, more novel technologies are applied to 

characterize and validate RO quality. However, there is still room for differentiation protocol 

optimization to achieve better RO reproducibility. In order to screen high quality ROs 

for downstream applications, approaches such as noninvasive and label-free imaging, and 

electrophysiological functional testing are promising and worth more investigation. Lastly, 

transplanted RO-derived tissues have allowed improvements in visual function in several RD 

models, and this is promising for clinical applications in the future.
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FIGURE 1. 
Three developmental stages of retinal organoids as shown by phase-contrast microscopy 

and fluorescence lifetime imaging (FLIM). The schematic diagram in the first row was 

taken from Capowski et al.54 (Fig. 10, republished with permission of The Company of 

Biologists Ltd, from Capowski et al, Reproducibility and staging of 3D human retinal 

organoids across multiple pluripotent stem cell lines. Development. 2019;146: dev171686. 

doi:10.1242/dev.17168; permission conveyed through Copyright Clearance Center, Inc). The 

FLIM NADH map in the third row was taken from Xue et al.55 (Fig. 1A) (scale bars: second 

row—200 μm; third row—50 μm). INL indicates inner nuclear layer; MG, Muller glia; 

NADH, nicotinamide adenine dinucleotide; NBL, neuroblastic layer; OPL, outer plexiform 
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layer; PR, photoreceptor; PRP, photoreceptor precursors; RGC, retinal ganglion cell; SAC, 

starburst amacrine cells.
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FIGURE 2. 
Overview of different transplant types from retinal organoids (ROs) and post-transplantation 

testing. A, Three different transplants obtained from RO. B, Schematic diagram of 

transplantation procedure. C, post-transplantation analysis that targets on different regions 

in the brain. Fluorescence adaptive optics scanning light ophthalmoscopy image was 

taken from Aboualizadeh et al95 (Fig. 4C); shuttle-avoidance system (SAS) schematic 

diagram was modified from Mandai et al41 (Fig. 3A). Optical coherence tomography and 

fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) targeted on retina, 

shuttle-avoidance system (SAS) targeted on visual cortex (VC), and optokinetic test (OKT) 

targeted on superior colliculus (SC) (color-coded).
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FIGURE 3. 
Transplantation examples—single cell, sheet, cograft. A, Single-cell transplantation. Taken 

from Ribeiro et al39 (graphical abstract; Fig. 3A). B, Sheet transplantation. Taken from 

McLelland et al16 (Supplemental Fig. 1; Figs. D–E; republished with permission of 

Investigative Ophthalmology & Visual Sciences, from McLelland et al, Transplanted 

hESC-derived retina organoid sheets differentiate, integrate, and improve visual function 

in retinal degenerate rats. Invest Ophthalmol Vis Sci. 2018;59:2586–2603; doi:10.1167/

iovs.17-23646; permission conveyed through Copyright Clearance Center, Inc). C, Cograft 

transplantation. Taken from Thomas et al45 (Fig. 1I; Figs. 3A–B; Figs. 7E–F). h-GCL 

indicates host ganglion cell layer; h-IPL, host inner plexiform layer; h-INL, host inner 
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nuclear layer; PSCs, pluripotent stem cells; RtOgs, retinal organoids; t-INL, transplant inner 

nuclear layer; t-OPL, transplant outer plexiform layer; t-ONL, transplant outer nuclear layer.
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