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Abstract. Cartilage endplate (CEP) degeneration is considered 
one of the major causes of intervertebral disc degeneration 
(IDD), which causes non‑specific neck and lower back pain. In 
addition, several non‑coding RNAs (ncRNAs), including long 
ncRNAs, microRNAs and circular RNAs have been shown to 
be involved in the regulation of various diseases. However, the 
particular role of ncRNAs in CEP remains unclear. Identifying 
these ncRNAs and their interactions may prove to be is useful 
for the understanding of CEP health and disease. These RNA 
molecules regulate signaling pathways and biological processes 
that are critical for a healthy CEP. When dysregulated, they can 
contribute to the development disease. Herein, studies related 
to ncRNAs interactions and regulatory functions in CEP are 
reviewed. In addition, a summary of the current knowledge 
regarding the deregulation of ncRNAs in IDD in relation to 
their actions on CEP cell functions, including cell prolifera‑
tion, apoptosis and extracellular matrix synthesis/degradation 
is presented. The present review provides novel insight into the 
pathogenesis of IDD and may shed light on future therapeutic 
approaches.
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1. Introduction

At present, the incidence of non‑specific neck and lower 
back pain in the global population is high and the etiology is 
complex (1,2); this seriously affects the quality of life or even 
causes disability in affected individuals, reduces life expec‑
tancy and increases the economic and social burden (3,4). 
The total annual expenses associated with lower back pain 
were ~£12 billion in the UK in 1998 (5), and US$7.4 billion 
in the USA from 1997 to 2007 (6). Moreover, the total annual 
costs associated with neck pain were US$686 million in The 
Netherlands in 1996 (7). Efforts have been made by researchers 
and clinicians to elucidate the pathogenesis of neck and lower 
back pain and promote treatment strategies (8,9). One of the 
main pathogenic factors of these afflictions is intervertebral 
disc degeneration (IDD)  (10‑13). Currently, various inter‑
vention measures are available for chronic musculoskeletal 
pain, including psychological based therapies  (14‑20), 
pharmacological treatments (21‑24), and physical‑based thera‑
pies (20,25‑27). However, satisfactory results have not been 
achieved in terms of pain relief and functional improvement 
using these methods.

In recent years, various novel interventions have been used 
to explore the treatment of IDD, such as stem cell transplanta‑
tion (28), and nanoparticles (29). At present, stem cell therapy 
for IDD includes hematopoietic precursor stem cells  (30), 
mesenchymal stem cells (MSCs) and adipose‑derived stem 
cells (31). Among them, MSCs have been well studied, including 
autologous and allogeneic MSCs. In 2011, Orozco et al (32) 
used autologous MSCs transplantation to treat IDD and 
showed some pain relief. In 2017, they further used allogeneic 
MSCs to treat IDD, confirming the feasibility and safety of 
this method and having some pain relief (33). However, the 
treatment of IDD with stem cells has yet to achieve satisfac‑
tory outcomes, possibly due to unclear treatment mechanisms, 
low survival rates of stem cells, different sources and injection 
methods of stem cells and a lack of large‑scale clinical studies. 
Recently, nanoparticles have been increasingly used to treat 
IDD. Prussian blue nanoparticles relieve intracellular oxida‑
tive stress and increases the activity of intracellular antioxidant 
enzymes to rescue IDD (34); polydopamine nanoparticles 
alleviate IDD by reactive oxygen species consumption, iron 
chelation and glutathione peroxidase‑4 ubiquitination inhibi‑
tion (29). However, these treatments remain in vitro or have 
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been tested in animal models and not in appropriate IDD 
models. Bioreactors are culture systems that can mimic the 
physiological environment of the IDD and provide an accurate 
nutritional and mechanical environment for the culture of 
intervertebral discs (IVD) organs (35). However, current culti‑
vation techniques do not allow for extended reactor cultivation 
time. According to the research conducted by Šećerović et al, 
the survival rate of fibrous rings decreases by >30% within 
3 weeks (35). Additionally, there are still significant differ‑
ences between the simulated physiological state of the IVD 
in the current IVD bioreactor and the actual human IVD. 
Therefore, there are still significant limitations in the research 
and treatment of IDD using bioreactors.

IVDs are often referred to as the largest avascular struc‑
tures of the human body (36), which consist of gelatinous 
nucleus pulposus (NP) as the central structure, surrounded 
by lamellar annulus fibrosus (AF) and sandwiched by the 
superior and inferior cartilage endplate (CEP) (37,38). Due 
to the avascular nature of the IVD, small molecules (such as 
nutrients) have to reach the cells through the extracellular 
matrix (ECM) mainly by diffusion (39), from the blood vessels 
at disc margins via two pathways: The CEP‑NP pathway and 
the AF periphery pathway. Several researchers have reported 
that the CEP‑NP nutritional pathway is primarily responsible 
for nurturing cells in the NP and inner AF regions, while the 
AF periphery is mainly for cells in the outer AF region (40‑42) 
(Fig. 1). CEP degeneration can hinder the transport of nutrients 
and causes the dysfunctions of NP and CEP cells  (43‑45), 
including senescence, apoptosis and aberrant cell prolifera‑
tion. Thus, CEP degeneration is considered one of the major 
causes of IDD, which causes neck or lower back pain (46‑48). 
At present, there are numerous clinical treatments available 
for neck and lower back pain; however, these treatments can 
only partially improve some symptoms of patients and cannot 
fundamentally delay or reverse the pathological process of 
IDD (49,50). Therefore, restoring the biological function of the 
CEP and the nutrient supply of IVD, and preventing or even 
reversing CEP degeneration at the molecular level are the new 
aims of treatment for neck and lower back pain.

Non‑coding RNAs (ncRNAs) are present in the majority 
of tissues of different species and account for 99% of the 
total RNA content (51‑54). In addition, ncRNAs, DNA meth‑
ylation and histone modifications are the main mechanisms 
in epigenetics  (55,56). They have been defined as a class 
of RNA molecules transcribed from the genome, but not 
encoding proteins, such as long ncRNAs (lncRNAs) (57,58), 
microRNAs (miRNAs/miRs)  (59,60) and circular RNAs 
(circRNAs) (61‑63), with known biological functions, as well 
as unknown functions (64). ncRNAs have been found to be 
involved in the development of various diseases, including 
cancer, heart failure and even nervous system diseases (65‑67). 
Notably, an increasing number of studies have demonstrated 
that ncRNAs are involved in chondrocyte degeneration 
through multiple mechanisms (68,69) (Fig. 2).

2. miRNAs and CEP

Profile and mechanisms of miRNAs in CEP. Previously, it has 
been determined that miRNAs play a critical role in complex 
gene regulatory networks (70). According to statistics, >1,500 

miRNAs have been found in the human genome, and each 
miRNA can target multiple mRNAs; in addition, each mRNA 
can also be regulated by several miRNAs (71‑73). Short RNA 
molecules of 19‑25 nucleotides in size are a class of ncRNAs 
that regulate the post‑transcriptional silencing of target genes 
by directly binding to the 3'‑untranslated region (UTR), 5'‑UTR 
and coding sequence regions of their target mRNAs  (74). 
The majority of miRNA sequences are conserved across 
species (75). However, miRNA expression varies depending 
on the time and period examined and tissue type, which indi‑
cates that changes in miRNA expression may reflect different 
cellular composition or activation states  (76,77). There is 
evidence to indicate that miRNAs participate in diverse 
chondrocyte processes, such as cell proliferation (78), apop‑
tosis (79) and differentiation (80). They are therefore involved 
in a wider range of processes, such as cartilaginous develop‑
ment, degeneration (81) and regeneration (82). Consequently, 
CEP degeneration is the primary factor leading to IDD and 
maintaining the physiological function of CEP is essential for 
prevention and treatment of IDD (46).

Previous studies have demonstrated that intermittent 
cyclic mechanical tension (ICMT) can lead to CEP degen‑
eration (83,84). However, the role of miRNAs in regulating 
chondrocyte responses to ICMT needs to be elucidated. In 
the study by Feng et al (85), CEP chondrocytes from patients 
without ICMT stimulation were used as controls and speci‑
mens were obtained from patients who underwent posterior 
discectomy and a fusion procedure for IDD. They identified 
a total of 21 significantly upregulated and 62 downregulated 
identified compared with the control.

The biological potency of miRNAs has been well‑estab‑
lished, with their regulatory effects primarily exerted through 
sponge target genes, as depicted in Fig. 2, which illustrates the 
underlying molecular mechanisms.

Roles of miRNAs in CEP. miRNAs are involved in the regu‑
lation of multiple mechanisms as a novel subtype ncRNAs. 

Figure 1. Role of the CEP in the proper nutrition of avascular discs. The IVDs 
receive nutrients from penetration mainly via the AF and CEP. However, 
the CEP route is the main route of disc nutrition. Nutrients from the blood 
vessels in the vertebral body enter the IVD through the CEP and nourish the 
NP and inner AF. In addition, metabolic waste products from the IVD are 
excreted into the surrounding capillaries by opposite pathways. CEP, carti‑
lage endplate; IVD, intervertebral disc; AF, annulus fibrosus; NP, nucleus 
pulposus.
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There is evidence to indicate that the apoptosis of chon‑
drocytes in the CEP is implicated in the pathogenesis IDD. 
Chen et al (86) demonstrated that the expression of miR‑34a 
is markedly elevated in human degenerated CEP chondrocytes 
compared with normal CEP chondrocytes. Furthermore, 
luciferase assays from the same study indicated that Bcl‑2 is 
a target of miR‑34a, while miR‑34a represses the expression 
of Bcl‑2. Functionally, the inhibition of miR‑34a rescues the 
fas‑induced apoptosis of CEP chondrocytes by releasing Bcl‑2, 
which plays an important role in the development of IDD.

It has been shown that miRNAs are involved in the 
tension‑induced degeneration of endplate chondrocytes by 
regulating the miR‑455‑5p/runt‑related transcription factor 
2 (RUNX2) axis. In the majority of cases, more tension is 
borne by endplate chondrocytes compared with other cells 
in human body (87), which is responsible for chondrocyte 
degeneration  (88,89). In chondrocytes, the aberrantly 
low‑expression of miR‑455‑5p increases the degeneration 
level of chondrocytes by upregulating RUNX2 expression 
using ICMT. Furthermore, Xiao et al (90) revealed that the 
up‑ or downregulation of miR‑455‑5p does not affect the 
proliferation or apoptosis of endplate chondrocytes, while 
RUNX2 expression also exhibits a down‑ and upregula‑
tion, respectively. Therefore, these findings result indicate 
that miR‑455‑5p is a therapeutic target for tension‑induced 
degeneration. There is previous evidence to indicate that 
miRNAs are involved in the calcification of CEP chondro‑
cytes induced by matrix stiffness. For example, it has been 
shown that the inhibition of miR‑20a attenuates calcium 
deposition and calcification‑related gene expression, whereas 
the overexpression of miR‑20a enhances the calcification 
of CEP chondrocytes on a stiff matrix, which is positively 
associated with the degree of IDD (91).

The role of CEP chondrocytes in ECM synthesis and 
catabolism, such as collagens and proteoglycans, plays an 
important role in maintaining the structural stability of the 
IVD and in resisting mechanical loads (92,93). In patients 
with IDD, an imbalance in matrix synthesis and breakdown 
in the CEP is observed, as shown by the increased expres‑
sion of breakdown proteins, such as MMP‑3 and MMP‑9, 
and a corresponding reduction in the expression of synthetic 
proteins. Sheng et al (94) found that the overexpression of 
miR‑221 in degenerative CEP tissue accelerates apoptosis by 
downregulating the level of estrogen receptor α. Furthermore, 
the increased level of miR‑221 deteriorates the degradation 
of the ECM by disrupting the balance in the expression of 
ECM‑degrading and anti‑ECM‑degrading genes.

Recent studies have demonstrated that cartilage endplate 
stem cells (CESCs) can maintain the normal function of the 
NP and CEP through miRNAs. Chen  et  al  (95) revealed 
that miR‑637 is expressed in low levels in the degenerative 
CEP, and the inhibition of miR‑637 promotes the osteogenic 
differentiation ability of degenerative CESCs. However, the 
upregulation of Wnt family member 5A partially annuls 
the inhibitory effects of miR‑637 overexpression on the 
osteogenic differentiation of degenerative CESCs. In addi‑
tion, Chen and Jiang  (96) examined the effects of normal 
CESC‑derived exosomes on autophagy, apoptosis and ECM 
metabolism in the NP. Bioinformatics analysis was used to 
analyze differences in miRNA expression, and dual‑luciferase 
reporter assays were used to detect target associations. They 
confirmed that exosomes‑derived miR‑125‑5p from CESCs 
regulate autophagy and ECM metabolism in the NP by 
targeting SUV38H1.

There is evidence to indicate that the reduction of the 
proliferation of CEP chondrocytes is implicated in the 

Figure 2. Biological processes and functions of miRNAs, lncRNAs and circRNAs. (A) Functions of miRNAs may include mRNA cleavage and translational 
repression; (B) the functions of lncRNAs include transcriptional regulation, translational regulation, protein scaffolding and miRNA sponging; (C) the func‑
tions of circRNAs include miRNA sponging, protein sponging and translational scaffolding. miRNAs, microRNAs; lncRNAs, long non‑coding RNAs; 
circRNAs, circular RNAs.
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pathogenesis of IDD. Using a double luciferase assay, 
Wang et al (97) indicated that the target gene of miR‑142‑3p 
is high mobility group box 1 (HMGB1), the expression of 
which is significantly increased during the process of IDD. 
Functionally, the inhibition of chondrocytes proliferation 
ability follows the addition of a HMGB1 inhibitor.

In conclusion, the aberrant expression of seven miRNAs has 
been discovered to be involved in various cellular processes, 
such as proliferation, apoptosis and calcification‑induced 
apoptosis, with their specific regulatory mechanisms and 
expressions documented in Table I.

3. lncRNAs and CEP

Profile and mechanism of lncRNAs in CEP. From the 
discovery of the first ncRNA in bacteria in 1980 (98) to a 
few long‑stranded ncRNAs, such as H19 and Xist character‑
ized in the pre‑genomic era, to the entry of the genomic era 
in the 21st century, immense progress has been made in the 
depth and breadth of research into lncRNAs (99). Previously, 
lncRNAs were considered as biologically non‑functional 
transcriptional ‘noise’ (100). However, at present, lncRNAs 
are considered important regulatory factors with multiple 
biological functions  (99,101), which cannot be translated 
into protein. The expression patterns of various lncRNAs 
regulate the different phenotypes of cells (102). In addition, 
lncRNAs function through a variety of mechanisms, such 
as acting as a scaffold, bait, signal and guide (103). Of note, 
lncRNAs play the role of competitive endogenous RNAs 
(ceRNAs) or small interfering RNA and participate in the 
lncRNA/circRNA/miRNA/mRNA network as transcriptional 
regulators  (104), which mainly regulate gene expression 
or control signaling pathways by competitively inhibiting 
or destroying specific miRNAs  (105,106). LncRNAs play 
an important role in various life processes of organisms, 
including the cell cycle (101,107‑109), differentiation (110‑112), 
and metabolism (57). Furthermore, they participate in the 

occurrence and development of diseases by affecting gene 
expression (113), chromatin structure (114) and cell signaling 
pathways (115).

It has been shown that there is a clear difference in 
lncRNA expression between degenerated endplate chondro‑
cytes and normal endplate chondrocytes (116). In 2020, the 
expression profile of lncRNAs was reported for the first time 
in the endplate of degenerated cartilage. In degenerated chon‑
drocytes, 369 lncRNAs exhibited a differential expression, 
including 316 upregulated and 53 downregulated lncRNAs, 
contrasting with the non‑degenerated CEP of cervical 
fractures. In addition, Li et  al  (117) identified the highly 
selective expression of 34 lncRNAs in human fetal growth 
plate chondrocytes by employing RNA sequencing. A total 
of eight lncRNAs were adjacent to the loci of protein coding 
genes that participate in skeletal development, suggesting that 
cartilage‑selective lncRNAs may be involved in chondrogen‑
esis is through the regulation of protein coding genes.

In summary, the biological functions of lncRNA in chon‑
drocytes can be mediated by various mechanisms, including 
miRNA sponging, protein scaffolding and translational regula‑
tion. Additionally, specific expression patterns of lncRNAs in 
degenerated endplate chondrocytes have been demonstrated.

Roles of lncRNAs in CEP. Evidence suggests that diabetes 
causes CEP degeneration by altering endplate thickening 
and reducing porosity (118‑121). Furthermore, chondrocyte 
apoptosis, characterized by various signaling molecules, is 
involved in the degeneration of CEPs  (122,123). Based on 
these findings, Jiang et al (124) induced CEP cell degeneration 
with high‑glucose medium and revealed that the knockdown 
of lncRNA MALAT1 reduces the apoptosis of chondrocytes. 
Furthermore, they demonstrated that lncRNA MALAT1 
promotes high glucose‑induced rat CEP apoptosis via the 
p38/MAPK signaling pathway. lncRNAs, as gene expression 
modulators, are expected to be a novel target for the treatment 
of disc degeneration; however, to the best of our knowledge, 

Table Ⅰ. ncRNA expression, targets and effects in CEP.

ncRNA	 Expression	 Target	 Effect	 (Refs.)

miR‑34a	 Upregulated	 Bcl‑2	 Promotes apoptosis of CEP	 (86)
miR‑455‑5p	 Downregulated	 RUNX2	 Inhibits degeneration of CEP	 (90)
miR‑20a	 Upregulated	 ANKH	 Mediates the CEP calcification	 (91)
miR‑221	 Upregulated	 Erα	 Attenuated protective effect of estrogen	 (94)
miR‑637	 Downregulated	 WNT5A	 Inhibits osteogenic differentiation of CEP	 (95)
miR‑125‑5p	 Downregulated	 SUV38H1	 Regulates autophagy and ECM metabolism in NP	 (96)
miR‑142‑3p	 Downregulated	 HMGB1	 Regulate proliferation, apoptosis, migration, and	 (97)
			   autophagy of CEP	
MALAT1	 Upregulated	 ep38/MAPK	 Promotes apoptosis of CEP	 (124)
CircSNHG5	 Downregulated	 miR‑495‑3p	 Protect CEP From Degradation	 (140)
circRNA_0058097	 Upregulated	 miR‑365a‑5p	 Promoted morphological changes of endplate	 (136)
			   chondrocytes, and increased ECM degradation	

ncRNA, non‑coding RNA; CEP, cartilage endplate; RUNX2, Runt‑related transcription factor 2; ANKH, ankylosis protein homolog; Erα, 
estrogen receptor alpha; WNT5A, Wnt Family Member 5A; SUV38H1, suppressor of variegation 3‑8 homolog 1; HMGB1, high mobility 
group box 1; MALAT1, lung adenocarcinoma transcript 1; miR, microRNA; circ, circular RNA; SNHG5, small nucleolar RNA host gene 5.
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studies on lncRNAs in CEP degeneration are limited and, 
thus, further studies on their mechanism of action in CEP 
degeneration are warranted.

4. circRNAs and CEP

Profile and mechanisms of circRNAs in CEP. circRNAs, which 
are single‑stranded and covalently closed, were first reported 
as viroids  (125), which are pathogens of certain plants in 
1976 and were first detected in human HeLa cells by electron 
microscopy in 1979 (126). Later on, with the development of 
high‑throughput RNA sequencing and bioinformatics tools, 
circRNAs began to be considered as a general feature of the 
human transcriptome and are ubiquitous in numerous other 
metazoans, including mammals  (127), unicellular eukary‑
otes (128), prokaryotes (129) and viruses (130). Previous studies 
have identified multiple functions of circRNAs, including 
serving as protein scaffolds or miRNA sponges and being 
translated into polypeptides (131,132). In addition, the unique 
covalently closed structure of circRNAs that provides them with 
a longer half‑life and greater resistance to RNase R compared 
with linear RNAs (133), renders them as potential candidates for 
use as diagnostic biomarkers and therapeutic targets.

We previously conducted a study to compare degenerative 
CEP to healthy CEP using a human ceRNA microarray (134). 
It was revealed that 578 circRNAs were differentially regulated 
in degenerative CEP samples compared with healthy tissues. 
Of these, 435 circRNAs were highly expressed, while 143 
were significantly repressed. In addition, it has been indicated 
that biomechanical stimulation is essential for the growth and 
maintenance of endplate cartilage function (102). Excessive 
mechanical loading, on the other hand, alters the distribution 
of the ECM in the CEP, ultimately leading to the destruction 
of normal cartilage structure and the interruption of nutrient 
supply (135). By applying an ICMT of 0.5 Hz and an exten‑
sion of 10% to primitive human endplate chondrocytes, 
Xiao  et  al  (136) verified upregulated expression levels of 
17circRNAs and the downregulated expression of another 12 
with fold changes 1.5 by using a circRNA microarray technique.

Compared with miRNAs and lncRNAs, circRNAs exhibit 
an enhanced richness, stability and specific expression (137). 
Furthermore, various mechanisms such as miRNA sponging, 
protein scaffolding and translational regulation can be utilized 
to regulate the chondrocyte process by circRNAs (138) (Fig. 2).

Roles of circRNAs in CEP. Specific circRNAs regulate the 
ECM and proliferation via a ceRNA mechanism, which 
contributes to the development of IDD (139). Specifically, 
circRNA_0058097 and circ small nucleolar RNA host 
gene 5 (SNHG5) are involved in ECM regulation (136,140). 
circSNHG5 is related to CEP cell proliferation. miR‑495‑3p 
stimulates ECM degradation and inhibits chondrocyte cell 
proliferation by inhibiting Cbp/P300‑interacting transacti‑
vator with glu/asp rich carboxy‑terminal domain 2, whereas 
circSNHG5 alleviates the negative effects by sponging 
miR‑495‑3p. However, in IDD tissues, the expression of circ‑
SNHG5 is repressed, resulting in an aberrantly higher level of 
miR‑495‑3p and IDD. The upregulation of circRNA_0058097 
expression was observed in the loading group that was subjected 
to an ICMT of 0.5  Hz and 10% elongation degeneration. 

Furthermore, circRNA_0058097 can sponge miR‑365a‑5p 
and overexpression of miR‑365a‑5p alleviates tension‑induced 
chondrocyte degeneration (130). These results suggest that 
the fate of CEP cells in IDD can be modulated by circRNAs, 
which have the potential to serve as therapeutic targets.

5. Conclusions and future perspectives

Neck and lower back pain is the most prevalent of all musculo‑
skeletal conditions, and it places a major strain on individuals, 
health systems and social care systems (141). CEP degenera‑
tion is one of the primary causes of IDD that leads to neck 
and lower back pain (46). However, the mechanisms involved 
have not yet been fully elucidated. Recently, it has been shown 
that ncRNAs are involved in the degeneration of chondrocytes, 
including endplate chondrocytes (142).

The present review summarizes the latest evidence 
concerning the regulation of endplate chondrocytes in IDD 
based on miRNAs, lncRNAs and circRNAs. In addition, the 
present review summarizes the mechanisms through which 
proliferation, calcification, apoptosis and ECM degrada‑
tion of the CEP can be regulated by regulating downstream 
target genes (Table  Ⅰ). The data presented herein provides 
novel insights into the etiology of endplate chondrocyte 
degeneration and identify ncRNAs as potential novel targets 
for the treatment of IDD. However, effective therapeutic 
approaches, such as bone/cartilage targeted hydrogel (143), 
and exosome‑based bone‑targeting (144), are hampered by 
an incomplete understanding of the mechanisms of CEP 
homeostasis and degeneration. Recently, the advent of novel 
materials like lipid nanoparticles and cationic polymers has 
enhanced the targeting specificity of therapy, while also miti‑
gating toxicity and immunogenicity concerns. Furthermore, 
technological breakthroughs such as CRISPR/Cas gene 
editing have lowered off‑target effects and boosted RNA 
interference levels. Therefore, injectable hydrogels or 
nanoparticles (145,146), recombinant adeno‑associated viral 
vector‑mediated gene delivery (147), and mesenchymal stem 
cell‑based therapies (148) interfere with RNA expression in 
endplate chondrocytes to achieve the purpose of treating disc 
degeneration. At the same time, interfering with the central 
nodes in the regulatory network allows ncRNAs to provide a 
future for IDD treatment.
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