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This study centers on automatic sleep staging with a single channel
electroencephalography (EEG), with some significant findings for sleep staging. In
this study, we proposed a deep learning-based network by integrating attention
mechanism and bidirectional long short-term memory neural network (AT-BiLSTM) to
classify wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep
stages N1, N2 and N3. The AT-BiLSTM network outperformed five other networks and
achieved an accuracy of 83.78%, a Cohen’s kappa coefficient of 0.766 and a macro
F1-score of 82.14% on the PhysioNet Sleep-EDF Expanded dataset, and an accuracy
of 81.72%, a Cohen’s kappa coefficient of 0.751 and a macro F1-score of 80.74%
on the DREAMS Subjects dataset. The proposed AT-BiLSTM network even achieved
a higher accuracy than the existing methods based on traditional feature extraction.
Moreover, better performance was obtained by the AT-BiLSTM network with the frontal
EEG derivations than with EEG channels located at the central, occipital or parietal
lobe. As EEG signal can be easily acquired using dry electrodes on the forehead, our
findings might provide a promising solution for automatic sleep scoring without feature
extraction and may prove very useful for the screening of sleep disorders.

Keywords: deep learning, single channel electroencephalography, automatic sleep staging, bidirectional long
short-term memory, attention mechanism

INTRODUCTION

Sleep is important for the optimal functioning of the brain and the body (Czeisler, 2015). However,
a large number of people suffer from sleep related disorders, such as sleep apnea, insomnia and
narcolepsy (Ohayon, 2002). Effective and feasible sleep assessment is essential for recognizing sleep
problems and making timely interventions.

Sleep assessment is generally based on the manual staging of overnight polysomnography
(PSG) signals, including electroencephalogram (EEG), electrooculogram (EOG), electromyogram
(EMG), electrocardiogram (ECG), blood oxygen saturation and respiration (Weaver et al., 2005), by
trained and certified technicians. According to the American Academy of Sleep Medicine (AASM)
manual (Iber et al., 2007), sleep can be staged as wakefulness (WAKE), rapid eye movement
(REM) sleep and non-REM (NREM) sleep, which is further divided into three stages, N1, N2
and N3. Usually, it takes about 2–4 h for a technician to mark an overnight (lasting about 8 h)
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PSG. The time-consuming nature of manual sleep staging
hampers its application on very large datasets and limits related
research in this field (Hassan and Bhuiyan, 2016a). Moreover,
the inter-scorer agreement is less than 90% and its improvement
remains a challenge (Younes, 2017). The multiple channels
of PSG also present drawbacks preventing wider usage for
the general population, due to complicated preparation and
disturbance to participants’ normal sleep. Therefore, the past
decades have witnessed the growth of automatic sleep staging
based on single-channel EEG (Liang et al., 2012; Ronzhina et al.,
2012; Aboalayon et al., 2014; Radha et al., 2014; Zhu et al., 2014;
Wang et al., 2015; Hassan and Bhuiyan, 2016a, 2017; Boostani
et al., 2017; Phan et al., 2017; Silveira et al., 2017; Tian et al., 2017;
Lngkvist and Loutfi, 2018; Seifpour et al., 2018; Sors et al., 2018;
Tripathy and Acharya, 2018). These methods may eventually lead
to a sufficiently accurate, robust, cost-effective and fast means of
sleep scoring (Wang et al., 2015).

In the field of machine learning, deep networks are drawing
more and more attention because they can learn from data
directly without manual feature extraction (Lecun et al., 2015;
Tsinalis et al., 2015; Dong et al., 2016; Supratak et al., 2017;
Zhang and Wu, 2017; Bresch et al., 2018; Malafeev et al.,
2018; Stephansen et al., 2018). There are many useful and well-
established deep networks for the data mining of time series,
such as the convolutional neural network (CNN) (Lecun and
Bengio, 1997) and recurrent neural network (RNN) (Elman,
1990). Although CNN has mainly been applied in automated
recognition of images, its application in the analysis of time
series has also been notable (Chambon et al., 2018; Cui et al.,
2018; Zhang and Wu, 2018; Yildirim et al., 2019). That said,
it is generally demonstrated that RNN has better performance
than CNN for the analysis of time series (Fiorillo et al., 2019).
One of the most widely used RNN is the Long Short-Term
Memory (LSTM) neural network, which is capable of capturing
the long-term dependent information underlying the temporal
structure of the time series (Hochreiter and Schmidhuber, 1997).
Furthermore, bidirectional LSTM (BiLSTM), composed of two
unidirectional LSTMs, can read data from both ends of the time
series and is able to make full use of information embedded
in both directions of the time series (Schuster and Paliwal,
1997). Moreover, the concept of attention is arguably one of
the most powerful in the deep learning field nowadays. It is
based on a common sense intuition that we “attend to” a
certain part when processing a large amount of information.
This simple yet powerful concept has led to many breakthroughs,
not only in natural language processing tasks, such as speech
recognition (Jo et al., 2010) and machine translation (Ferri
et al., 2012; Karpathy and Fei-Fei, 2014; Hassan and Bhuiyan,
2017), but also in time series analysis. Recently, Zhang et al.
(2019) proposed an attention-based LSTM model for financial
time series prediction and a comparative analysis conducted by
Hollis et al. (2018) further demonstrates that an LSTM with
attention indeed outperforms a standalone LSTM for forecasting
financial time series.

The application of deep neural networks for automatic sleep
staging is soaring (Table 1). The PhysioNet Sleep-EDF Expanded
(PSEE) dataset (Goldberger et al., 2000; Kemp et al., 2000) was

the most widely employed dataset in related studies. As shown in
Table 1, Tsinalis et al. (2016) and Phan et al. (2019) reported an
accuracy of 74.0% and 81.9% respectively, for 5-class sleep staging
of the PSEE dataset with a CNN algorithm, while Supratak
found that the combination of CNN and BiLSTM increased the
accuracy to 82.4% (Supratak et al., 2017). There are also some
datasets aside from PSEE that are routinely employed in studies
of automatic sleep staging with a single-channel EEG and deep
learning algorithms. Hsu et al. (2013) built an RNN model on
the PhysioNet Sleep-EDF (PSE) dataset and achieved an accuracy
of 87.2%. On the Montreal Archive of Sleep Studies (MASS)
dataset, Phan et al. (2019) built a CNN model and achieved an
accuracy of 83.6% while Supratak et al. (2017) built a CNN-
LSTM model and obtained an accuracy of 86.2%. A CNN was
also applied on the Sleep Heart Health Study (SHHS) dataset,
yielding an accuracy of 87% (Sors et al., 2018). However, few
works investigated whether the performance of sleep staging
can be further improved by the combination of BiLSTM and
the attention mechanism. Aside from that, there is a lack of
comparison between the performance of deep learning based and
conventional feature extraction based models.

Although deep learning algorithms have shown themselves
promising in automatic sleep staging with a single-channel
EEG, few studies investigated whether the performance of such
algorithms is sensitive to the choice of EEG channel. Therefore,
in this study, the PSEE dataset and the DREAMS Subjects (DRM-
SUB) dataset (Devuyst, 2005) were used. Both datasets have
more than one channel of EEG and the DRM-SUB dataset
was involved in many automatic sleep staging studies with
conventional feature extraction (Hassan and Bhuiyan, 2016a,
2017; Ghimatgar et al., 2019; Shen et al., 2019). A neural
network named AT-BiLSTM was proposed, which uses the neural
attention mechanism of the BiLSTM to classify sleep stages.
For comparison, five other networks, CNN, LSTM, BiLSTM,
the combination of CNN and LSTM (CNN-LSTM), and the
combination of CNN and BiLSTM (CNN-BiLSTM) were also
trained and tested. Our aims are threefold: first, to investigate
whether AT-BiLSTM can achieve the highest performance among
these networks; second, to confirm whether RNN algorithms
(i.e., LSTM and BiLSTM) outperform CNN in sleep staging
with single channel EEG; third, to explore whether the method
of making hybrid networks further improves the performance
of sleep staging.

MATERIALS AND METHODS

Datasets
The data analyzed in this study were obtained from two
open-access datasets: the DRM-SUB dataset and the PSEE
dataset. The DRM-SUB consists of 20 whole-night PSG
recordings (lasting 7–9 h) obtained from 20 subjects (four
males and 16 females, 20–65 years old). Three EEG channels
located in different lobes (Cz-A1, Fp1-A1 and O1-A1) were
included in DRM-SUB, with a sampling rate of 200 Hz.
To investigate the impact of the choice of EEG derivations
on the performance of automatic sleep staging, EEG
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TABLE 1 | An overview of the application of deep networks on sleep staging.

Authors Dataset Channel Model Accuracy

Tsinalis et al. PSEE Fpz-Cz CNN 74.0%

Phan et al. PSEE Fpz-Cz CNN 81.9%

Supratak et al. PSEE Fpz-Cz CNN-BiLSTM 82.4%

Hsu et al. PSE Fpz-Cz RNN 87.2%

Phan et al. MASS C4-A1 CNN 83.6%

Supratak et al. MASS F4-EOG (Left) CNN-BiLSTM 86.2%

Sors et al. SHHS C4-A1 CNN 87.0%

TABLE 2 | Data distribution of sleep stages in both datasets.

Dataset Total epochs WAKE (%) N1 (%) N2 (%) N3 (%) REM (%)

PSEE 41663 19.2 6.6 42.2 13.4 18.5

DRM-SUB 20265 17.6 7.3 40.7 19.4 14.9

signals from all three channels were used separately for the
following analysis.

Twenty healthy subjects (10 males and 10 females, 25–
34 years old) from the PSEE dataset were also included. There
are two EEG channels (Fpz-Cz and Pz-Oz) available in the
PSEE dataset, with a sampling rate of 100 Hz. For each
subject, two PSGs of about 20 h each were recorded during
two subsequent day-night periods at the subjects’ homes. In
order to remain consistent with previous studies (Supratak
et al., 2017), for each subject and each PSG, only the data
from 30 min before sleep-onset (i.e., the first sleep epoch
after light-off in the evening) and 30 min after the last sleep
epoch in the morning were included. Both channels were
investigated separately.

For both datasets, labels of sleep staging for each 30-s EEG
epoch were provided by the data distributors according to AASM
rules. Five staging classes, i.e., WAKE, N1, N2, N3, and REM were
used in this study. The distribution of 30-s EEG epochs of both
datasets is illustrated in Table 2.

Construction of the AT-BiLSTM Network
The proposed AT-BiLSTM network architecture for automatic
sleep staging is illustrated in Figure 1. It is composed
of two main components, three stacked BiLSTM layers for
feature exacting and one attention layer to weight the most
relevant parts of the input sequence. According to a preset
parameter, called the input dimension m, each raw 30-s
EEG epoch is divided into multiple vectors, which are fed
into the BiLSTM part sequentially to construct a feature
matrix. Then to emphasize the different importance of different
vectors, an attention layer is applied in the intra-epoch feature
learning and summarizes the outputs of the BiLSTM part
with different weights. Finally, the probability of each sleep
stage can be derived from a fully connected (FC) layer and
a softmax layer.

Given a 30-s EEG epoch X [x1,x2,,xN] with N data points,
a moving window with input dimension of m is applied to X
without overlap, leading to the matrix form of X, as shown in
Equation 1, where n equals to N/m and Xt represents the vector

in time step t.

X1
X2
...

Xt
...

Xn


=



x1 x2 · · · xm
xm+1 xm+2 · · · x2m

...
... · · ·

...

x(t−1)m+1 x(t−1)m+2 · · · xt×m
...

... · · ·
...

x(n−1)m+1 x(n−1)m+2 · · · xn×m


t ∈ [1, n] (1)

All the vectors are fed into the first BiLSTM layer, forward and
backward respectively. For time step t, the output of the forward
or backward network, denoted as hf

t or hb
t , can be obtained,

respectively, according to Equation 2 or 3.

hf
t = σ(Wfxxt +Wffhf

t−1 + bf ) (2)

hb
t = σ(Wbxxt +Wbbhb

t−1 + bb) (3)

where σ is the logistic sigmoid function, W is the weight matrix
(e.g., subscription “fx” in W represents the forward network of
xt) and b is the bias vector of the network (bf and bb represents
the bias vector of forward and backward network, respectively).

The weighted sum of hf
t and hb

t , denoted as ht, is computed as
the output of the first BiLSTM layer following Equation 4.

ht = Whfhf
t +Whbhb

t + bh (4)

The output of the previous BiLSTM layer is fed into the next
layer in the same way. The third layer gives the final output of
the BiLSTM part, which is weighted by the attention layer before
feeding into the FC layer. Considering that EEG signal in different
time steps should contribute differently to the classification task,
it is rational to give strong weights to the more discriminative
parts and vice versa. Formally, the attention weight at at the time
step t is computed according to Formula (5) – (6).

ut = tanh(wwht + bw) (5)

at =
exp(uT

t uw)∑
t exp(uT

t uw)
(6)
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FIGURE 1 | Illustration of the proposed AT-BiLSTM network architecture for
automated sleep staging. The network consists of a BiLSTM part, an attention
layer, a full-connected (FC) layer and a softmax layer. The input of the network
is a raw 30-s EEG time series and the output is the probability of each sleep
stage. The dashed rectangle on the EEG time series represents a vector of
EEG signals at a time step.

In Formula (5)–(6), ut represents the state of the hidden
layer obtained from a simple neural network, uw represents a
weight vector randomly initialized, at represents the similarity
betweenut and uw obtained by softmax function.

st =
∑

t
atht (7)

By weighting and summing the output of the BiLSTM part, the
attention vector, denoted as st, can be obtained and fed into
FC layer, preceding to the softmax layer which finally yields the
probability of each sleep stage.

Construction of Baseline Networks
Apart from the proposed AT-BiLSTM network, we also
constructed five baseline networks, including three single

networks, i.e., CNN, LSTM and BiLSTM, and two hybrid
networks, i.e., CNN-LSTM and CNN-BiLSTM.

Single Networks
Figure 2A illustrated the CNN topology used in this study, which
is fed with a matrix reconstructed from a raw 30-s EEG epoch
according to Equation 1. It consists of three convolution blocks
and three max pooling layers. Each convolutional block contains
a one-dimensional convolutional layer and a rectified linear unit
(ReLU) activation layer. The input matrix is padded with zeros
to ensure that the number of rows in the matrix is constant
during the convolutional process. The output of CNN is fed into
a FC layer, then activated by softmax function to obtain the sleep
stage probability.

Two scenarios were considered in single RNN network. In the
first scenario, three layers of LSTMs were stacked, also followed
by a FC layer and a softmax layer. The second scenario employed
stacked BiLSTM layers instead of the LSTM layers.

Hybrid Networks With CNN and RNN
As shown in Figure 2B,C, a CNN part followed by an RNN part
was adopted in the hybrid networks, in order to make use of
RNN for further processing the features extracted by CNN. The
structures of the CNN part and RNN part are the same with the
single networks aforementioned.

Datasets Splitting Strategy
Machine learning algorithms require independent training and
test sets for model training and performance evaluation. Also,
k-fold cross validation is preferred in application. Generally,
there are two types of training data partitioning for clinic data:
subject-wise and epoch-wise (Figure 3). For the subject-wise
method, all the subjects were split into k folds equally and onefold
is taken as the test set in turn while the remains as the training
set. For the epoch-wise method, all the 30-s EEG epochs from
all the subjects were merged and then split into k equal folds
for each stage randomly. That is, for each sleep stage, all the 30-
s EEG epochs from all the subjects were collected and divided
into k folds. Consequently, the epochs of a subject may appear
in both the training and test set, violating the independence
between the training and test set and contributing to a virtual
high performance. Thus, in the present study, the subject-wise
method with fivefold cross validation was adopted. The model
was trained using the training set and evaluated using the test set.
Finally, all evaluation results were combined.

Experimental Setting and Network
Optimization
Using the first fold as the test set, the network parameters, such
as the input dimension, the number of hidden units in each
LSTM/BiLSTM/convolutional layer, and the filter/stride size of
each convolutional layer and pooling layer, were determined by
a grid-search to minimize the errors of networks with Python 3.6
and TensorFlow v1.15.0 (Abadi et al., 2016). The standard cross-
entropy loss was used as the loss function in model training due
to its good performance in measuring the errors of networks with

Frontiers in Physiology | www.frontiersin.org 4 March 2021 | Volume 12 | Article 628502

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-628502 February 25, 2021 Time: 20:9 # 5

Fu et al. Deep Learning for Sleep Staging

FIGURE 2 | Structure of the baseline networks for sleep staging: (A) the CNN network, (B) the CNN-LSTM network and (C) CNN-BiLSTM network. The CNN
network consists of a CNN part, a full-connected layer and a softmax layer. In the CNN part, there are three convolution layers and three max pooling layers. Each
convolution layer has 256 filters with a size of 7 × 1 each and each pooling layer has one filter of size 5 × 1. A rectified linear unit (ReLU) follows the convolution layer
and precedes the pooling layer. The CNN part in panels (B,C) has the same topology with panel (A). For the LSTM/BiLSTM part, there are three stacked
LSTM/BiLSTM layers with each layer consists of 256 memory cells. The target for all the networks was the probability of each sleep stage.

FIGURE 3 | Schematic diagram for the dataset splitting of training and test set: (A) subject-wise method; (B) epoch-wise method. For the subject-wise method, all
the 30-s EEG epochs from a subject will be included in the training set or the test set as a whole while for the epoch-wise method, the epochs of a subject may
appear in both the training and test set.

discrete targets (Boer et al., 2005). Each network was trained for
30 epochs with a mini batch size of 64 sequences. As a result,
the input dimension m was set as 5, the number of hidden units
as 256, and the stride size for both convolution layers and max
pooling layers as 1 × 1. The filter size of each convolutional

layer and max pooling layer in CNN were set to 1 × 7 and
1× 5 respectively.

For backpropagation, the adaptive moment estimation
(ADAM) algorithm was adopted because it solves the
optimization problem in non-stationary conditions and
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works faster than the standard gradient descent algorithm and
the root mean square propagation (Kingma and Ba, 2017). The
main hyper-parameters used for ADAM algorithm were set
as: learning rate (α = 0.001), gradient decay factor (β1 = 0.9),
squared gradient decay factor (β2 = 0.999), and epsilon (ε = 10–8)
for numerical stability. Moreover, a dropout layer before the
last FC layer was used to avoid over-fitting and its dropout rate
was set to 0.2, leading to 20% of the weights dropped during
the training phase.

Performance Metrics
Overall metrics, including accuracy, macro F1-score (MF1) and
Cohen’s kappa (κ) were used to evaluate the performance of each
model. Performance on individual sleep stages was also assessed
via class-wise precision and sensitivity.

Cohen’s kappa coefficient is a statistical measure of inter-
rater agreement for categorical items (Cohen, 1960). When two
persons (algorithms or raters) try to evaluate the same data,
Cohen’s Kappa coefficient, κ, is used as a measure of agreement
between their decisions. In this study, it measures the amount of
agreement between the output of the proposed algorithm and the
provided labels of sleep stages.

Another metric used for performance evaluation here is
the area under the receiver operating characteristics (ROC)
curve, called AUC. The ROC curve is a graphical tool and
demonstrates the classification performance by plotting the true
positive rate (TPR) against the false positive rate (FPR) at
different classification thresholds (Zweig and Campbell, 1993).
Furthermore, it provides a convenient way for selecting the
threshold that provides the maximum classification TPR while
not exceeding a maximum allowable FPR level (Kim et al.,
2019). For an n- class classification task, n ROC curves can be
obtained by splitting the task into n binary classification tasks.
For each binary classification task, its AUC value can be used
as a class-wise measure of performance and the macro-average
AUC of these tasks can be regarded as an overall metric for the
performance evaluation.

RESULTS

Table 3 shows the overall performance of different networks
on the PSEE dataset. The proposed AT-BiLSTM network
outperforms other networks with overall accuracy, κ, MF1

and MAUC of 83.78%, 0.766, 82.14% and 97.45% on channel
Fpz-Cz, respectively and an overall accuracy, κ, MF1 and
MAUC of 80.79%, 0.731, 79.27% and 96.33% on channel Pz-
Oz, respectively. The AT -BiLSTM network performs better than
the other networks overall. For the single networks, the RNN-
based networks outperform the CNN network while the results of
BiLSTM and LSTM are comparable. The hybrid networks further
improve the overall performance compared to the single models.
Moreover, AT-BiLSTM achieves better precision and sensitivity
on N3 and REM than the hybrid networks with CNN and RNN,
although they have a comparable performance on stages Wake,
N1 and N2. Furthermore, better performance is found in Fpz-
Cz than Pz-Oz channel, regardless of the network topology used,
indicating EEG derived from the frontal lobe is more valuable
than those from the parietal lobe in sleep staging.

Table 4 shows the performance of different networks on the
DRM-SUB dataset. The AT -BiLSTM network still outperforms
other networks, suggesting its good generalization in sleep
staging. Consistent with the results in PSEE dataset, the frontal
EEG channel (Fp1-A1 here) achieves the best performance. The
results are in line with a recent work, which found that EEG
signals from an Fp1-A1 channel yielded higher accuracy values in
automatic sleep staging than those of a Cz-A1 or O1-A1 channel
(Ghimatgar et al., 2019).

Figure 4 illustrates the hypnograms labeled manually by a
clinical technician of sleep and by the trained AT-BiLSTM model.
The corresponding EEG recoding was obtained from the first
person in PSEE dataset (SC4001E0), who spent 7 h during
sleep. Noting that the subject is located in the test set for the
trained model. The accuracy of the automatic sleep staging for
this subject is 87.30%, showing considerable reliability of the
proposed AT-BiLSTM network. Most of the wrong classifications
were made during the transitions from one stage to another.

Table 5 shows the class-wise performances obtained on the
PSEE dataset. For most stages, better performance is achieved by
the AT-BiLSTM model than the baseline networks and Fpz-Cz
channel outperforms the Pz-Oz one. Although the classification
accuracy of stage N1 is significantly lower than that of the other
stages, which might due to the small percentage of N1 during
sleep, it is higher than those reported in previous studies (Hsu
et al., 2013; Supratak et al., 2017). Similar findings can be found
on the DRM-SUB (Table 6).

Furthermore, ROC curves were used to compare
the performances of the proposed AT-BiLSTM model

TABLE 3 | The overall performance of different networks on the PSEE dataset (value in bold represents for the best among all the networks).

Networks Fpz-Cz Pz-Oz

Acc. κ MF1 AUC Acc. κ MF1 AUC

AT-BiLSTM 83.78 0.766 82.14 96.08 80.79 0.731 79.27 93.63

CNN 78.84 0.706 76.10 92.89 76.45 0.669 74.56 89.91

LSTM 81.59 0.747 79.25 95.36 79.02 0.706 75.92 92.14

BiLSTM 81.48 0.740 80.13 93.78 78.95 0.707 77.44 91.81

CNN-LSTM 82.58 0.759 80.40 93.96 79.51 0.718 76.44 92.36

CNN-BiLSTM 82.58 0.759 81.15 94.67 79.37 0.710 77.92 92.70

Frontiers in Physiology | www.frontiersin.org 6 March 2021 | Volume 12 | Article 628502

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-628502 February 25, 2021 Time: 20:9 # 7

Fu et al. Deep Learning for Sleep Staging

TABLE 4 | The overall performance of different networks on the DRM-SUB dataset (value in bold represents for the best among all the networks).

Networks Fp1-A1 Cz-A1 O1-A1

Acc. κ MF1 AUC Acc. κ MF1 AUC Acc. κ MF1 AUC

AT-BiLSTM 81.72 0.751 80.74 94.99 81.62 0.749 80.76 95.25 77.09 0.685 75.98 94.91

CNN 77.84 0.732 67.17 89.90 75.82 0.664 73.98 91.00 72.45 0.617 70.84 90.59

LSTM 80.19 0.738 70.96 94.29 80.53 0.733 80.23 94.65 74.13 0.641 72.32 92.97

BiLSTM 80.31 0.739 70.41 93.84 80.41 0.733 79.58 94.66 74.22 0.644 72.98 92.85

CNN-LSTM 80.55 0.738 71.96 94.43 80.87 0.736 79.24 94.50 75.78 0.665 74.52 93.73

CNN-BiLSTM 80.61 0.737 71.62 93.87 80.83 0.738 80.71 94.68 75.94 0.666 74.42 93.79

FIGURE 4 | The hypnograms labeled (A) manually by a clinical technician of sleep and (B) by the trained AT-BiLSTM model. The corresponding EEG recoding was
obtained from PSEE dataset (SC4001E0).

TABLE 5 | The class-wise performance obtained on the PSEE dataset (value in bold represents for the best among all the networks).

EEG signal Networks Precision Sensitivity Class-wise AUC

W N1 N2 N3 REM W N1 N2 N3 REM W N1 N2 N3 REM

Fpz-Cz AT-BiLSTM 86.38 45.06 87.82 88.88 76.84 89.42 25.76 89.18 89.62 82.18 97.58 88.85 97.31 99.34 97.33

CNN 84.68 34.32 84.78 82.66 67.08 83.88 19.34 84.98 82.63 77.22 95.98 82.00 94.18 97.99 94.32

LSTM 84.72 43.28 85.98 88.68 71.92 87.74 20.68 88.16 85.12 80.14 98.72 84.85 97.25 99.08 96.94

BiLSTM 81.34 41.23 86.95 86.71 69.90 88.32 20.84 86.88 89.42 81.43 96.70 81.18 96.54 99.04 95.45

CNN-LSTM 85.72 45.16 88.46 87.22 71.04 90.14 12.46 86.54 88.46 79.22 96.52 81.29 96.77 99.17 96.09

CNN-BiLSTM 85.16 42.51 87.56 87.42 75.72 88.72 25.34 87.42 88.64 79.76 97.19 83.26 96.96 99.22 96.74

Pz-Oz AT-BiLSTM 82.58 40.24 84.64 84.84 71.76 82.58 40.24 84.64 84.84 71.76 96.23 82.54 96.08 98.76 94.52

CNN 78.48 24.18 81.16 79.42 63.28 78.48 24.18 81.16 79.42 63.28 94.59 75.96 92.70 95.17 91.14

LSTM 79.84 41.82 82.94 82.36 64.82 79.84 41.82 82.94 82.36 64.81 95.34 78.34 94.80 98.35 93.88

BiLSTM 80.64 42.94 83.78 82.26 66.70 80.64 42.94 84.28 82.26 66.74 95.19 76.55 95.16 98.46 93.69

CNN-LSTM 80.95 42.65 83.95 82.55 69.75 80.95 42.65 83.95 82.55 69.75 95.31 78.72 95.26 98.48 94.04

CNN-BiLSTM 79.52 44.62 84.26 83.04 70.37 79.55 44.62 84.26 83.04 70.38 95.79 80.53 95.16 98.39 93.63

for different sleep stages with the frontal channels in
both datasets (Figure 5). As shown in Figure 5, AT-
BiLSTM is sufficient to identify WAKE, N3 and REM, but
insufficient to identify N1.

Table 7 illustrates the results of a comparison between the
proposed AT-BiLSTM model and the state-of-the-art works
using the same dataset of DRM-SUB (Hassan and Bhuiyan,
2016a,b; Hassan and Subasi, 2017; Ghimatgar et al., 2019; Shen
et al., 2019). With the same dataset, same EEG channel and

same dataset splitting strategy, the proposed AT-BiLSTM model
achieves the highest accuracy.

DISCUSSION

In this study, we proposed an AT-BiLSTM network for automatic
sleep staging with single-channel EEG. The main findings
were: (1) the frontal EEG derivations contribute to better
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TABLE 6 | The class-wise performance obtained on the DRM-SUB dataset (value in bold represents for the best among all the networks).

EEG signal Networks Precision Sensitivity Class-wise AUC

W N1 N2 N3 REM W N1 N2 N3 REM W N1 N2 N3 REM

Fp1-A1 AT-BiLSTM 88.48 45.92 84.98 89.08 68.26 89.34 25.88 85.12 85.18 83.06 99.50 88.80 93.05 96.69 96.93

CNN 83.54 40.82 79.76 87.14 63.02 84.22 11.54 85.92 78.52 78.96 97.85 82.77 87.05 86.85 94.96

LSTM 83.63 44.16 82.58 88.26 68.14 89.92 19.18 84.82 84.74 75.28 99.35 87.06 92.33 96.40 96.33

BiLSTM 85.24 43.82 83.28 86.82 66.28 86.78 17.36 85.31 86.83 77.74 98.90 85.83 92.01 96.39 96.07

CNN-LSTM 87.12 42.26 84.52 86.26 66.44 87.04 23.34 84.52 87.66 79.91 99.26 88.22 91.94 96.61 96.13

CNN-BiLSTM 86.62 46.92 83.88 86.74 66.38 89.98 20.74 84.54 85.88 79.86 99.21 86.30 92.04 96.28 95.54

Cz-A1 AT-BiLSTM 88.02 42.02 84.98 87.56 69.22 90.96 22.22 86.32 86.28 80.92 99.40 89.24 93.62 97.10 96.87

CNN 83.68 23.44 75.18 86.14 65.12 86.55 8.92 85.36 73.28 72.68 98.18 82.81 88.39 90.85 94.77

LSTM 87.24 43.88 83.44 87.76 69.26 89.54 22.34 86.12 86.26 77.04 99.14 88.59 92.39 97.06 96.09

BiLSTM 86.46 39.68 83.82 88.58 67.12 89.24 20.62 85.36 83.38 78.42 99.27 88.56 92.57 96.77 96.14

CNN-LSTM 84.34 48.72 81.44 89.58 70.64 91.34 14.16 87.66 82.46 78.06 98.99 88.43 92.42 96.49 96.15

CNN-BiLSTM 86.22 42.96 82.32 87.98 70.88 90.36 23.68 86.78 84.26 76.58 99.30 88.68 92.48 96.66 96.29

O1-A1 AT-BiLSTM 88.86 46.58 78.76 83.20 62.56 91.36 18.53 81.94 78.67 72.74 99.55 89.76 92.40 96.67 96.18

CNN 86.21 38.78 73.48 82.92 52.02 84.38 7.56 80.62 72.40 65.38 98.25 82.82 87.94 92.30 91.63

LSTM 83.66 28.76 74.96 83.98 55.44 90.44 8.12 81.88 75.96 62.66 99.17 84.52 91.31 96.09 93.75

BiLSTM 89.92 39.72 75.06 80.52 56.02 87.72 13.14 79.64 81.02 62.96 99.24 84.52 91.28 95.89 93.33

CNN-LSTM 90.52 42.81 76.32 82.25 59.18 88.76 13.56 82.34 78.86 68.73 99.23 87.46 91.39 95.13 95.46

CNN-BiLSTM 88.04 45.96 76.26 82.44 60.84 89.92 11.72 82.18 79.62 67.68 99.26 86.43 91.41 96.40 95.44

FIGURE 5 | ROC curves for sleep stages using the proposed AT-BiLSTM models trained with (A) Fpz-Cz channel of PSEE dataset and (B) Fp1-A1 channel of
DRM-SUB dataset.

TABLE 7 | Comparison of sleep staging performance on the DRM-SUB dataset between the proposed method and previous works based on conventional
feature extraction.

Authors Year Methodology Dataset splitting strategy Channel Accuracy

Hassan and Bhuiyan, 2016a 2016 Tunable Q-factor wavelet transform, random forest (Hassan
and Bhuiyan, 2016a)

Epoch-wise Fp1-A1 72.28%

Hassan and Bhuiyan, 2016b 2016 Implementation of ensemble empirical mode decomposition
in conjunction with random under sampling boosting
(Hassan and Bhuiyan, 2016a)

Epoch-wise Fp1-A1 74.59%

Hassan and Subasi, 2017 2017 Tunable Q-factor wavelet transform, bagging (Hassan and
Subasi, 2017)

Epoch-wise Fp1-A1 78.95%

Shen et al. 2019 Essence features extraction method (Shen et al., 2019) Subject-wise Cz-A1 80.90%

Ghimatgar et al. 2019 Features in time domain, frequency domain, cepstral
domain, wavelet features, autoregressive coefficients and
non-linear features with Hidden Markov Model (Ghimatgar
et al., 2019)

Subject-wise Fp1-A1 81.22%

Proposed method Raw EEG signal and AT-BiLSTM Subject-wise Fp1-A1 81.72%

Frontiers in Physiology | www.frontiersin.org 8 March 2021 | Volume 12 | Article 628502

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-628502 February 25, 2021 Time: 20:9 # 9

Fu et al. Deep Learning for Sleep Staging

performance of sleep staging than those located in the
central, occipital or parietal lobe; (2) the proposed AT-
BiLSTM network outperforms the other networks based
on CNN or RNN; (3) The proposed deep learning
network achieves higher accuracy than conventional feature
extraction methods.

Two EEG datasets, i.e., PSEE and DRM-SUB, with different
EEG derivations were used in our study. To clarify the
influence of the EEG channel on automatic sleep staging, here
we applied the proposed method to all the EEG channels
in both datasets. The results obtained from both datasets
are similar: the model adopting frontal derivation behaved
better than those from other lobes. Such a finding indicated
that the performance of sleep scoring was sensitive to the
selection of EEG channel and the derivations from the
frontal region are the optimal choices. Physiologically, the
prefrontal cortex is deactivated and reactivated during the
sleep cycle, indicating its involvement in the wake–sleep cycle
(Maquet et al., 1996). With the development of wearable
EEG devices, EEG signals can be easily obtained using dry
electrodes on the forehead (Hassan and Bhuiyan, 2016a); the
proposed method would be promising in supporting people
monitoring sleep.

In recent years, many automated sleep staging methods based
on deep neural networks used CNNs for feature extraction and
RNNs to capture temporal information. These approaches have
significantly improved the accuracy of sleep staging (Hassan
and Bhuiyan, 2016a; Boostani et al., 2017; Sors et al., 2018). In
general, for the sequence-to-label model based on RNN, only the
output vector at the last time step is retained for classification,
e.g., via a softmax layer (Phan et al., 2017). However, it is
reasonable to combine the output vectors of different time
steps by some weighting schemes. Intuitively, those parts of
the input sequence which are essential to the classification task
at hand should be associated with strong weights, and those
with less importance should be weighted correspondingly less.
Ideally, these weights should be automatically learned by the
network. This can be accomplished with an attention layer
(Luong et al., 2015). Besides, previous works demonstrated that
the performance of classification or regression can be further
improved by stacking multiple BiLSTM in neural networks
(Liu et al., 2017; Wang et al., 2018; Liu et al., 2018). Aside
from that, we found the overall performance of the RNN
based model to be better than that of the CNN models in
automatic sleep staging, which might indicate that the RNNs
are promising in capturing the temporal nature of an EEG
time series. From such a perspective, the highest performance
achieved by the proposed AT-BiLSTM might further confirm
the role of stacking layers and attention mechanism in feature
extracting of time series.

In this study, all experiments were performed on a
server configured with 64 CPUs [Intel(R) Xeon(R) CPU @
2.10 GHz), 64 GB memory, a GPU (NVIDIA GeForce GTX
1,080 Ti] and a Windows Server 2016 system. A CNN

network has the lowest computational cost as its training
time for each batch was 0.16 s on average. LSTM and
CNN-LSTM networks take similar times (8.46 and 8.60 s
respectively) for each batch in training. The computational
cost of BiLSTM based networks is twice that of LSTM based
networks because they must calculate the input sequence
in two directions and set up double parameters. Moreover,
approximately 1.3 s more is required for each batch with the
attention layer.

Our study demonstrated that a deep learning approach
without manual feature extraction can also provide sufficient
accuracy for sleep staging, which is even better than conventional
methods based on manual feature extraction. Therefore, the
proposed method is a promising choice for computer-aided
detection of sleep stages and similar 1-D signal classification
problems. In conclusion, our findings provide a possible solution
for automatic sleep scoring without manual signal preprocessing
and feature extraction. With the development of wearable EEG
devices, such a solution would be valuable in the screening of
sleep disorders at home for the general population.
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