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Abstract

It is well recognized that the composition of the mature T cell population is subject to strict homeostatic control. The TCR repertoire
and relative proportions of various T cell subsets are established in the thymus, and continue to be shaped and regulated in the periphery.
As the thymic function declines, peripheral homeostatic mechanisms assume increasing importance. Indeed, loss of thymic function does
not lead to progressive decline of T cell numbers because peripheral mechanisms ensure that the size of the T cell population is maintained
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due to proliferation of residual cells. However, our current understanding of the basic mechanisms of ‘homeostatic’ or lymphopen
proliferation suggests that this drive to maintain population size may be accompanied by loss of TCR diversity and emergence of a
effector T cells. This prediction is supported by experimental and clinical evidence. This consideration is important because lym
seen commonly in clinical practice as a consequence of viral infections, or medical treatment of cancer, autoimmunity, and gra
Lymphopenia may be a simple link between viral infections and autoimmunity, and may be one reason for common failure of v
but non-specific, immunosuppressive drugs in current clinical use.
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1. Introduction

Success of the vertebrate adaptive immune system de-
pends on maintenance of large numbers of lymphocytes, each
bearing a unique antigen receptor, enabling recognition of
a multitude of unknown foreign antigens. In addition, the
immune system must remain tolerant toward self-antigens
to avoid autoimmunity. The primary lymphoid organs, the
thymus and the bone marrow, serve to achieve these goals.
The great diversity of antigen receptors results from random
recombination of antigen receptor genes and self-reactive
lymphocytes are largely eliminated by negative selection. In
recent years it has also become appreciated that the compo-
sition and size of the mature T cell population are subject
to strict homeostatic controls in the periphery. Thus, T cells
undergo proliferation following a lymphopenia-inducing in-
sult in the absence of foreign antigen stimulation, which
enables T cells to restore the size of their peripheral popula-
tion in the absence of thymus[1–5]. Indeed, lymphopenia-
induced proliferation (LIP) has been shown to be an important
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physiologic mechanism in the initial population of the periph-
eral T cell compartment in murine neonates[6]. Lymphopenic
states are also a relatively common occurrence throughout
life, and LIP may be the primary physiologic means of T cell
population recovery in aging individuals with failing thymic
function.

Although mechanisms that regulate LIP are still being de-
fined, it has become apparent that the proliferative capacity of
individual T cells correlates with their avidity for self-ligands
[7–9]. This LIP has the potential to skew the TCR repertoire
toward greater self-reactivity (Fig. 1). In addition, normal
peripheral tolerance mechanisms may fail in lymphopenic
states and T cells can acquire effector functions in the course
of LIP. These factors may explain a long-recognized para-
doxic association of lymphopenia with autoimmunity. In fact,
considering how commonly lymphopenia may occur within
lifetimes of most individuals, it is reasonable to consider
why autoimmunity is not more common, and what mech-
anisms may promote TCR diversity and maintenance of tol-
erance in lymphopenic states. These considerations may have
ig. 1. Schematic representation of immune reconstitution following
unique TCR. Many T cells are lost following the insult. In the prese

functional thymus, the T cell population size is restored via LIP. The max all T

roliferate equally. In contrast, the TCR diversity decreases further and there
ome T cells have a selective advantage during immune reconstitution.
hopenia-inducing insult. Each T cell is shown as a unique symbol, renting
a functional thymus, full TCR diversity is restored. However, in the aof
imal possible diversity is maintained in an idealized situation wherecells

is oligoclonal expansion of potentially auto-reactive T cells in the situation where
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significant implications for clinical protocols that result in T
cell depletion, such as those used in organ transplantation and
treatments of autoimmunity.

2. Basic considerations of mechanisms that govern T
cell homeostasis

There are two broad categories of forces that control T cell
homeostasis: stimulatory and inhibitory factors. Although T
cells appear quiescent under steady state conditions, they
are in constant competition for ‘space’, which is determined
by their access to and control by these factors. Individual
clones proliferate, die, and are replaced by new migrants
from the thymus at rates that generally balance each other.
In a lymphopenic state, T cell may be driven to prolifer-
ate due to excess of stimulatory or deficiency of inhibitory
factors. The best-established positive factors include signals
from self-peptide/MHC complexes, and certain cytokines,
such as IL-7 and IL-15, known to play essential and dominant
roles in T cell homeostasis[10–14]. Several other cytokines
and chemokines, e.g., IL-12[15], IL-21 [16], CCL21 [17],
can provide additional positive signals. Co-stimulatory sig-
nals, such as B7, also play a positive role, at least for CD4
T cells [6,18,19]. Less is known about potential inhibitory
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3. The role of MHC signals in T cell homeostasis

It has now been well documented that under steady state
conditions in vivo, T cells receive constant stimulation from
self-peptide/MHC molecules, which is responsible for par-
tial tyrosine phosphorylation of the TCR-associated CD3-�
chain in T cells[23–25]. The importance of this continu-
ous low-level, peripheral T cell stimulation by self-ligands
has only recently begun to be appreciated. It has been pro-
posed to prevent auto-reactivity by increasing the tone of
the negative regulatory elements within the T cell signaling
apparatus[26–28]. It has also been shown that engagement
of self-peptide/MHC complexes facilitates T cell sensitivity
toward foreign peptide/MHC complexes[25,29,30]. Finally,
self-peptide/MHC-induced signals have been proposed to be
critical for homeostasis of naı̈ve T cells.

Self-peptide/MHC-induced signals have been proposed
by many groups to play an important role in T cell sur-
vival [2,3]. Two major types of experiments were used to
test this idea: adoptive transfer into MHC-deficient hosts and
genetic ablation of TCR expression. One difficulty with adop-
tive transfer studies, which have yielded most widely varying
results, has been NK-mediated rejection of the donor popu-
lation. This has proven to be a problem not just for MHC
class I-deficient recipients, but also a problem for studies of
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ay have, at least at first glance, equal access to variou

okine resources[20,21], they clearly differ in their avidit
or self-peptide/MHC complexes. Indeed, T cells with hig
vidity for self-ligands have greater potential to undergo
8,9,22]. Thus, it is quite plausible that LIP may alter the T
epertoire toward greater self-reactivity. In the course of
eview we will also consider mechanisms that may prefe
ially restrain expansion of the most auto-reactive clones
rovide protection against autoimmune disease.

In this discussion it is important to consider that vari
ymphopenic models and clinical states may fundamen
iffer from one another, and that they have generally not
ystematically compared. Thus, RAG-deficient and SCID
ividuals have an absolute deficiency of regulatory T c
nd it is unlikely that cytokines produced by the innate
une elements and stromal cells would represent a lim

esource for an inoculum of transferred T cells. In cont
rradiation or chemotherapy may (a) negatively impact
uction of homeostatic cytokines that normally regulate
teady state, (b) lead to widespread apoptosis and re
f additional cytokines that are pro-inflammatory and/or
unosuppressive, (c) leave residual populations of com

or T cells, and (d) differentially affect the regulatory T c
ubsets. Similar and additional considerations may be
lied to lymphopenia-induced by various viral infectio
he quality of limiting positive and negative factors as
iated with different models and clinical states may gre
ffect the course of LIP, the composition of the recovere
ell population, and the potential for autoimmunity.
HC class II-deficient mice which despite extensive ba
rossing still carry some of the NK target differences fr
he original mutant mice generated in 129 embryonic s
ells[31]. In addition, many earlier studies used lymphope
ecipient mice, which made it difficult to separate effect
HC signals on T cell survival versus LIP. Nevertheless
CR ablation studies have also suggested at least som
ival advantage for T cells receiving baseline TCR stim
ion [32,33]. However, it has been argued that TCR-defic

cells may have decreased signaling via CD4, CD8, C
nd/or CD90 molecules, which may also contribute to T
urvival [31]. In general, näıve CD8 T cells were noted
e significantly more sensitive to conditional TCR abla

n terms of their survival than CD4 T cells. In fact, survi
f näıve CD4 T cells may be entirely independent of to
HC signals[24,31]. However, it remains possible that the

ignals may provide survival advantage to individual T c
nder conditions of competition for space that exist at
teady state, as most of the studies tracked the bulk num
f individual TCR transgenic or polyclonal populations.

Although the evidence for survival signals provided
elf-peptide/MHC complexes remains controversial, t
s general agreement that these signals are critical for
reat differences in the individual abilities of various T

ransgenic T cells to undergo LIP can be largely expla
y their differential avidity for self-peptide/MHC complex

7,9]. Similarly, polyclonal T cell populations characteriz
y higher expression levels of CD5, which correlate w
igher levels of basal TCR stimulation, proliferate more
rously under lymphopenic conditions than CD5low popula-

ions[8]. In fact, signals from self-peptide/MHC complex



26 A. Khoruts, J.M. Fraser / Immunology Letters 98 (2005) 23–31

may constitute a limiting resource for T cells undergoing LIP,
which can provide a selective advantage to cells with greatest
affinity for self-peptide/MHC complexes[9,34]. Conversely,
the number and abundance of distinct self-ligands in the pe-
riphery, which is currently not known, can in principle set
the absolute minimum level of TCR diversity for a popula-
tion generated in the course of LIP.

4. The role of costimulation in T cell homeostasis

It is well recognized that costimulatory molecules provide
signals that are critical for the outcome of normal antigen-
specific responses. However, the role of costimulation in
homeostasis of T cells has not yet been extensively studied.
Among the many costimulatory molecules, the role of CD28
so far has received the most attention. Mutant mice deficient
in CD28 or B7 expression have normal lymphoid cellularity,
but show subtle changes within their T cell compartments,
e.g., a greater ratio of CD4 to CD8 T cells compared to
wild-type mice[35]. Interestingly, the numbers of regulatory
CD25+CD4 T cells are markedly reduced in these animals
[36,37], which probably compensates for the immune defi-
ciency expected from loss of B7:CD28 costimulation.

Others and we have recently shown that B7:CD28 cos-
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munity that have been used to demonstrate the suppressive
function of CD25+CD4 T cells involve lymphopenic mice.
Thus, it is formally possible that these cells play a central
role in regulation of the size and composition of the T cell
compartment. Indeed, mice that lack functional expression of
FoxP3, and thus lack regulatory CD25+CD4 T cells, develop
fatal lymphoproliferative autoimmunity[40–42]. A similar
pattern of autoimmunity is seen in humans with immune dys-
regulation, polyendocrinopathy, enteropathy, X-linked syn-
drome (IPEX) that results from FoxP3 mutations[43]. Nev-
ertheless, the contribution of regulatory CD25+CD4 T cells to
control of T cell homeostasis remains controversial. Mere de-
pletion of CD25+CD4 T cells does not induce T cell prolifer-
ation or trigger autoimmunity[19,44]. However, CD25+CD4
T cells do limit the peripheral expansion of naı̈ve polyclonal
CD4 T cells associated with development of inflammatory
bowel disease following their transfer into RAG-deficient
mice[45,46]. In addition, we have shown that CD25+CD4 T
cells can restrain lymphopenia-induced proliferation of naı̈ve
TCR transgenic CD4 T cells that do not respond to any known
self-antigens or components of enteric flora, and do not cause
any disease[19]. Interestingly, similar to the pattern observed
for B7 blockade, CD25+CD4 T cells preferentially restrain
the most vigorously dividing T cells[19], but have little effect
on the initial several cell divisions[19,44].
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lthough not CD8 T cells[6,18,19]. The rate of LIP is substa

ially diminished in the absence of B7:CD28 signals. The
ect becomes considerably more apparent when mixed C
eficient and wild-type populations are allowed to c
ete following co-transfer into B7-sufficient lymphope
osts—the wild-type CD4 T cells become dominant[19].

nterestingly, the absence of B7:CD28 costimulation pre
ntially restrains the most vigorously dividing T cells, but

ittle effect on T cells undergoing only a few cell divisio
19]. This result suggests that in the course of LIP costim
ory B7 signals may especially benefit T cells that receive
ost self-ligand stimulation, which may amplify the se

ion further in favor of a more self-reactive TCR repertoi

. The role of regulatory T cells in T cell homeostasis

A discussion of regulation of any aspect of the imm
ystem cannot any longer be complete without consider
f the potential functions of regulatory T cells. Although m

iple types of regulatory T cells have been identified in re
ears, the majority of investigations so far have focused o
D4 T cell fraction characterized by constitutive expres
f CD25. These cells play a critical role in maintenanc
elf-tolerance[38,39]. CD25+CD4 T cells appear to receive
reater degree of constitutive stimulation by peripheral
ntigens than CD25−CD4 T cells[22], and require expre
ion of Foxp3, a member of forkhead/winged helix family
ranscriptional regulators, for their development and func
40–42]. It is interesting to note that most models of auto
. Lymphopenia is associated with failure of
mmunologic tolerance mechanisms

It is important to note that naı̈ve T cells undergoing man
>5–7) cell divisions in the course of lymphopenia-indu
roliferation acquire phenotypic and functional charact

ics that are virtually indistinguishable from effector/mem
cells[6,18,19,47–50]. They can produce effector cytokin

uch as IFN-�, become independent of CD28 costimula
uring antigen activation, alter expression of surface m
rs commonly used to distinguish naı̈ve and memory T cell
.g., CD44, CD45RB, CD62L, CD122, CD132, and acq
bility to migrate into peripheral tissues. In addition, rec
vidence suggests that T cells that acquire memory/eff
henotype in the course of LIP become resistant to t
nce induction by conventional protocols, for example a
en exposure accompanied by costimulatory blockade[51].
ur own recent data with TCR transgenic T cell adop

ransfer experiments suggest that administration of sys
ognate antigen in a tolerogenic form that leads to pa
eletion and functional inactivation of antigen-specific C
cells in normal animals, fails to render them unrespon

n lymphopenic hosts and causes dramatic clonal expan

. Animal models of autoimmunity associated with
ymphopenia

If LIP leads to preferential expansion of most auto-reac
cell clones and failure of normal tolerance mechanisms
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not a significant leap in imagination that it would also lead to
development of autoimmune diseases. In fact, there are mul-
tiple animal models that support this idea. Interestingly, regu-
latory CD25+CD4 T cells have proven to be of central impor-
tance in control of autoimmune phenomena in most of these
models. One of the earliest examples is autoimmunity affect-
ing multiple organs (e.g., stomach, thyroid, pancreatic islets,
adrenal glands, gonads) that follows thymectomy between
days 2 and 4 after birth in mice[52]. Similar autoimmunity
follows thymectomy and sublethal irradiation in rats[53].
It was suspected early that neonatal thymectomy resulted in
preferential elimination of suppressor T cells, and eventually
Sakaguchi et al. defined this subset by constitutive expression
of CD25[54]. It was then demonstrated that the same patterns
of organ-specific autoimmunity that follow neonatal thymec-
tomy could be reproduced by adoptive transfer of CD25-
depleted splenic cell suspensions into athymic nude mice, and
autoimmunity was prevented by a co-transfer of CD25+CD4
T cells. Interestingly, fatal inflammatory bowel disease or
lung inflammation, rather than polyglandular autoimmunity
dominates the clinical picture in SCID or RAG−/− mice that
receive näıve polyclonal CD4 T cells, and this disease is also
suppressed by CD25+CD4 T cells[55–58].

As might be predicted, neonatal thymectomy is associ-
ated with a restriction in the TCR repertoire and oligoclonal
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Several animal models of spontaneous autoimmunity have
linked to lymphopenia[65]. Among these is the nonobese di-
abetic (NOD) mouse, which like most of such models have
multiple described immune defects, but provides an interest-
ing case study for the discussion here. The lymphoid tissues
of NOD mice contain fewer T cells[16]. In addition, al-
though the regulatory CD25+CD4 T cells in these mice are
functional, they are present in smaller numbers than seen in
other mouse strains[36]. It has been further shown that the
NOD mice over-express IL-21, which drives rapid prolifera-
tion of at least a subset of T cells but does not provide survival
signals[16]. Therefore, T cells in the NOD mice may expe-
rience continuous pressure to undergo LIP, which allows for
expansion of an unstable population of auto-destructive T
cells.

8. Lymphopenia in human autoimmunity

Lymphopenia has long been associated with a variety of
human autoimmune diseases. Examples of lymphopenia di-
agnosed mostly by peripheral blood sampling include Sjo-
gren’s disease and rheumatoid arthritis[66,67], systemic lu-
pus erythematosus[68,69], polymyositis and dermatomysitis
[70,71], celiac disease and Crohn’s disease[72,73]. In addi-
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xpansion[59]. Indeed, mice are normally lymphopenic
he initial weeks after birth and even in the presence
hymus depend on LIP to fill their T cell compartment[6].
hymectomy performed between days 2 and 4 after
liminates the source of new T cells that could diversify
CR repertoire, and specifically prevents development of
latory CD25+CD4 T cells[60]. It is interesting to note th

he essential features of the neonatal thymectomy mod
utoimmunity were reproduced by neonatal infection by
ouse T lymphotropic virus (MTLV)[61]. The virus cause

ransient selective depletion of CD4+ T cells in the thymu
nd periphery, but does not directly infect organs tha

ater targeted by the autoimmune response. Similarly t
eonatal thymectomy model, the timing of infection app
ritical. Administration of MTLV after day 7 does not cau
utoimmunity. Furthermore, regulatory CD25+CD4 T cells
ppear to be preferentially affected by the neonatal M

nfection, and autoimmunity can be prevented by adopt
ransferred CD25+CD4 T cells.

The adoptive transfer models recapitulate the role
oth lymphopenia and regulatory CD25+CD4 T cells in dis
ase pathogenesis. Inflammatory bowel disease in SCI
AG−/− recipients is driven by CD4 T cells specific for e

eric flora antigens that undergo selective hyper-expan
62,63]. However, clinical immunopathology develops o
ollowing establishment of a critical number of pathoge
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um is an important variable in pathogenesis of disease in
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ion, most of these diseases are associated with poor s
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mented to be commonly accompanied by splenic and
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he T cell population in the rheumatoid arthritis patients
evealed a number of features consistent with poor th
unction and enhanced activity LIP activity. These includ
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rants, contraction of TCR diversity, and oligoclonal T
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It has been speculated that transient lymphopenia-ind
y viral infections might be a non-specific trigger of

oimmunity [61,65]. Indeed, lymphopenia is commonly a
ociated with many viral infections, e.g., influenza[77,78],
easles[79,80], rubella [81], parvovirus[82], West Nile
ncephalitis virus[83], severe acute respiratory syndro
SARS) virus[84], and others. Infections with some of the
iruses have specifically been causally linked with auto
unity [85–91]. Arguably, the virus most recognized

ymphopenia is the human immunodeficiency virus (H
hich causes profound and progressive depletion of
cells [92]. Indeed, acquired immunodeficiency syndro

AIDS) is associated with autoimmunity[93,94]. Further-
ore, autoimmunity is increasingly recognized to be
ered in significant numbers of AIDS patients by highly

ive anti-retroviral therapy (HAART), which allows reco
titution of the T cell compartment[95]. Interestingly, HIV
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ith HAART, which may protect them from autoimmun
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that might otherwise be more severe or present with higher
incidence[97]. It is noteworthy that immune reconstitution
proceeds variably in treated AIDS patients, and the different
mechanistic factors that may explain the range of respon-
siveness to HAART and susceptibility to HAART-triggered
autoimmunity still need to be defined[98–103].

9. Iatrogenic lymphopenia, autoimmunity, transplant
rejection, and anti-tumor immune responses

Induction of lymphopenia is common in medical practice.
The obvious examples include radiation and chemotherapy
for cancer and T cell depletion by antibodies and immuno-
suppressive medications.

Lack of increased reported incidence of autoimmunity
among cancer survivors suggests that transient lymphopenia
caused by irradiation or chemotherapy alone is insufficient
for autoimmune disease induction. Alternatively, an existing
association has not yet been made, or subtle signs of au-
toimmunity, e.g., auto-antibodies, may simply not have yet
been recognized. In addition, as noted earlier, major differ-
ences may exist between irradiation and/or chemotherapy-
induced lymphopenic states versus those induced by viral
infections or genetic immunodeficiencies. Nevertheless, it
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Campath-1H with intent to treat multiple sclerosis developed
autoimmune hyperthyroidism[112].

Organ transplantation is one clinical situation where lym-
phopenia is induced deliberately. It is noteworthy that in this
setting there is a large precursor frequency of graft-specific
T cells among the residual host T cells, and a large precur-
sor frequency of host-specific T cells among in the grafts.
Indeed, graft-versus-host disease is the rule rather than ex-
ception in bone marrow transplantation where induction of
lymphopenia is mandatory. Furthermore, in an attempt to
minimize acute rejection and decrease the burden of long-
term immunosuppression, T cell depletion has become an in-
creasingly common immunosuppressive strategy at the time
of solid organ implantation. However, it is possible that iatro-
genic lymhopenia may actually play a causal role in chronic
rejection, and may exacerbate acute rejection in patients who
discontinue their chronic immunosuppressive medications.
In this respect it can be noted that despite some promise, the
potent T cell-depleting drug Campath-1H was not able to pre-
vent graft rejection in the preliminary studies and longer-term
outcomes are still pending[113,114]. The ultimate goal of
transplantation immunologists is induction of graft-specific
tolerance rather than generalized immunosuppression. In-
deed, increased understanding of T cell activation, such as
costimulatory requirements, have already yielded multiple
p this
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as been shown experimentally that sublethal irradiation
otentiate anti-tumor immune responses by transfused
gous or syngeneic T cells that undergo homeostatic p
ration[104]. Similarly, cytotoxic chemotherapy can imp

olerization of tumor-specific effector T cells[105] and en
ance the potency of immunotherapy directed against

umors[106].
Potent immunosuppressive drugs currently used to

utoimmunity and prevent rejection have the potentia
ause lymphopenia. This is true, for example, for cyclosp

(CsA) and corticosteroids, which cause thymic invo
ion by deletion of double-positive CD4+CD8+ thymocytes
nd peripheral lymphopenia[107–109]. It is interesting to
bserve that experimental autoimmunity can be induce

reating animals with irradiation and CsA followed by C
ithdrawal [110]. While multiple mechanisms may play

ole in this disease, e.g., abrogation of central and perip
olerance, it is possible that lymphopenia-induced aut
unity may also play a role. In some human conditions,

nflammatory bowel disease, corticosteroids are very e
ive in controlling acute disease exacerbations, but fa
rophylactic agents with continuous use[111]. Indeed, it is
ossible that summation of lymphopenic insults induce

ntermittent corticosteroid use, can lead to acceleratio
nderlying autoimmune disease in the long run. Notably
reasingly potent T cell depleting drugs are being introd
nto the clinics. One example is the anti-CD52 monoclo
ntibody Campath-1H, which causes profound and prolo
epletion of T cells and other hematopoietic cells. In a se

ng paradox, the drug already proved to pose a risk of
ering autoimmunity. Thus, a third of patients that rece
romising experimental approaches aimed to achieve
oal. However, induction of lymphopenia may abrogate g
pecific tolerance induction and accelerate graft reje
51].

0. Conclusions

Research into understanding immunologic tolerance
he past few decades has primarily focused on pheno
f individual lymphocytes and biochemical mechanisms
erlying T cell anergy and suppression. The mechanism

mmunosuppressive drugs are generally understood in
f their effects on intracellular signaling pathways. Howe
nderstanding of immunologic tolerance is incomplete w
ut appreciation that all adaptive immune responses are
ted by populations of lymphocytes. The T cell populatio
ery complex and can be characterized in terms of the d
ity of the TCR repertoire, abundance of self-reactive clo
nd proportions of regulatory, naı̈ve, and varying phenotyp
f effector and memory T cells. The compositions of th
ell compartment and its many sub-compartments are
ect to strict homeostatic control mechanisms. While m
isruptions of T cell homeostasis are known to result from

ections or medical interventions, they are generally tho
o represent merely transient phenomena. In fact, thes
esult into permanent changes in the composition of the T
ompartment at the population level that can compromis
rotective capabilities of the immune system and augme
otential to cause autoimmunity. Increased understandi
echanisms that regulate T cell homeostasis may imp
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our current strategies to restrain the unwanted and augment
the desired immune responses. Among the strategies to op-
timize the diversity of the TCR repertoire and maintenance
of self-tolerance may be protection of the regulatory T cell
populations and costimulatory blockade. It is likely that in
the near future generalized immunosuppression and delib-
erate T cell depletion will be retired as risky and relatively
ineffective as long-term treatments. The next generation of
immunosuppressive strategies in treatment of transplant re-
jection and autoimmunity will aim to optimize the diversity of
the TCR repertoire, preserve and perhaps enhance the func-
tion of regulatory T cells, and target T cell depletion to just
the unwanted antigen-specific subpopulations. Conversely,
understanding the mechanisms that regulate T cells home-
ostasis will improve the attempts to achieve preferential ex-
pansion and effector function of anti-tumor specific T cells.
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