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N E U R O S C I E N C E

Low-dimensional criticality embedded in 
high-dimensional awake brain dynamics
Antonio J. Fontenele†, J. Samuel Sooter†, V. Kindler Norman,  
Shree Hari Gautam, Woodrow L. Shew*

Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental 
information processing capabilities and has fueled decades of debate. We offer a resolution of this debate; we show 
that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical 
circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional 
subspace with large fluctuations consistent with criticality—a dynamical regime with moderate correlations and 
multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional 
subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical 
subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a 
computational model, we show that the emergence of a low-dimensional critical subspace at large timescales 
agrees with established theory of critical dynamics. Our results suggest that the cortex leverages its high dimen-
sionality to multiplex dynamical regimes across different subspaces.

INTRODUCTION
The ongoing dynamics of neuronal populations in the cerebral cortex 
are high-dimensional and the nature of the dynamics differs across 
dimensions. Some dimensions contain large amplitude fluctuations, 
while other dimensions tend to have smaller fluctuations. Accumu-
lating evidence shows that a relatively small fraction of the total pos-
sible dimensionality—i.e., a low-dimensional subspace—contains 
much of the large amplitude collective fluctuations (1–6). This fact is 
commonly used to justify simplified views of population activity us-
ing just a few dominant dimensions defined by principal compo-
nents analysis (PCA), for example (7, 8). Less commonly discussed 
are the smaller amplitude, more desynchronized fluctuations in the 
higher dimensional subspace, beyond the first few principal compo-
nents (PCs). These basic observations lead to an interesting possible 
resolution of a long-standing debate in systems neuroscience.

The debate concerns the answer to a fundamental question: What 
is the dynamical regime of cortical neural networks in awake ani-
mals? Some researchers argue in favor of a desynchronized dynamical 
regime with weak collective fluctuations. This view is supported by 
measurements of low correlations of spikes recorded from pairs of 
neurons. Also, the desynchronized regime comes with potential 
computational benefits, like low noise and high input discrimination 
(9–12). Others argue for the importance of synchronized dynamics, 
based on observed oscillatory brain activity and potentially im-
proved long-range signal transmission (13–15). Of particular impor-
tance for our work here, a third camp argues in favor of criticality—a 
dynamical regime poised at the boundary between uncorrelated and 
strongly coordinated regimes (16–20). Criticality manifests with 
moderate correlations and highly diverse spatiotemporal fluctua-
tions and is thought to confer multiple functional advantages, like 
optimal information transmission, large dynamic range, fluid intel-
ligence, and efficient coding (21–29).

How might consideration of the high-dimensional geometry of 
population dynamics help resolve the debate about cortical dynami-
cal regime? Here, we hypothesize that cortical populations could 
support more than one dynamical regime at the same time by sepa-
rating different regimes into different subspaces. Criticality could 
occupy the low-dimensional subspace with large fluctuations (first 
few PCs) while a more desynchronized regime could occupy the 
higher-dimensional subspace with weak fluctuations (PCs beyond 
the first few). If this possibility is correct, then a cortical circuit need 
not choose between weak and strong correlations; it can have both 
simultaneously.

Is this hypothesis consistent with previous studies? In particular, 
how could this hypothesis be consistent with the multiple previous 
studies that have analyzed recordings of spikes from the awake cor-
tex and concluded that the activity was not consistent with critical-
ity (30–35)? These studies found activity that appeared to be weakly 
correlated, more consistent with a desynchronized regime. At first 
glance, these studies seem to contradict our hypothesis here of a 
low-dimensional critical subspace with large, correlated fluctua-
tions; why might these studies have missed the critical subspace? A 
likely answer to this question comes from a comprehensive com-
parison of all attempts to seek evidence for criticality based on re-
cordings with single neuron resolution in awake animals [23 cases 
in all including the 13 negative cases in references (30–35), a com-
plete list to our knowledge at the time of writing this paper; table S1]. 
A distinguishing feature of the 10 cases that reported positive evi-
dence for criticality was that they focused on relatively long times-
cale fluctuations; they considered coarse-grained spike counts in 
time bins larger than about 10 ms. In some cases, this temporal 
coarse-graining was a deliberate choice in the data analysis (34, 36, 
37) but, more commonly, was due to the limited time resolution of 
experimental measurements, which is typical for calcium imaging 
(35, 38–43). The most strongly negative reports were based on anal-
yses at the millisecond timescale, with less temporal coarse-graining. 
On the basis of this small meta-analysis of previous work and theo-
retical support for the importance of temporal coarse-graining 
(more on this in the results below), we refine our hypothesis. We 
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hypothesize that desynchronized and critical subspaces coexist, but 
that the critical subspace is not apparent without temporal coarse-
graining. To test this hypothesis, we recorded spike activity from the 
motor cortex of awake mice and compared our measurements to a 
ground-truth theoretical model of critical dynamics.

RESULTS
We performed extracellular spike recordings of up to 247 units in 
the motor cortex of awake, behaving mice (4 mice, 19 recordings, 
n  =  104  ±  43 single units, 44  ±  18 multi-units per recording, 
44 ± 9 min recording duration; Fig. 1A; more details in Materials 

and Methods). Our analysis of each recording begins with generat-
ing an N × M spike count matrix (Fig. 1B), where N is the number 
of neurons and M is the number of time bins (M = recording dura-
tion divided by time bin duration ΔT). The entry in the ith row and 
jth column is the number of spikes fired by the ith unit during the 
jth time bin. We performed PCA on each spike count matrix and 
found that the activity is high-dimensional but much less than N-
dimensional; 45 ± 0.05% of PCs were needed to explain 95% of the 
variance (Fig. 1C).

Next, we performed avalanche analysis following previously es-
tablished methods (38, 44–46). We first created a one-dimensional 
time series by summing spike counts across all N neurons. Then, we 
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Fig. 1. Low-dimensional critical subspace. (A) Mice were head-fixed and placed on top of a wheel, free to run, rest, groom, etc. High-density recordings were performed 
in the motor cortex, using a Neuropixels 1.0 probe. (B) Example spike count raster plot with 208 units. (C) Cumulative variance of original activity explained by increasing 
number of PCs. Dashed lines mark the number of PCs needed to explain 95% of the variance. (D) Spike count time series for the entire population (purple), for the sub-
space defined by PCs 1 to 5 (orange), and for the subspace defined by PCs 6 to 208 (gray). The dashed line represents the avalanche threshold. The shaded suprathreshold 
excursion represents one avalanche. (E) Distributions of avalanche size (S) for the original data (purple), reconstructed data using the first five PCs (orange), and after re-
moving the first five components (gray). Distributions are shifted vertically for comparison. (F) Same as in (E), but for avalanche durations (T). (G) Avalanche sizes and 
durations follow the predicted scaling law for original data. (H) Raster and population sum for reconstructed data based on the first five PCs (orange). (I) Scaling laws 
obeyed for PC1 to PC5 reconstructed data. (J) The power-law range for avalanche size distributions as a function of PCs removed in ascending/descending order (blue/
red). Dimension of the critical subspace is defined as the number of PCs removed before the power-law range drops below 1.5 decades (dashed line). (K) Histogram of 
critical subspace dimension for all 19 recording sessions. The analyses in all panels were done with ΔT = 50 ms and an 8% threshold.
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defined an avalanche as a period when this summed population 
activity exceeds a threshold (Fig. 1D; see Materials and Methods). 
According to theory (46–48), if the neural system operates near 
criticality, then avalanches should be diverse, with sizes (S) and du-
rations (T) distributed according to power laws, P(S) ∼ S−τ and P(T) 
∼ T −τ

t. We found good agreement with this prediction; avalanche 
sizes and durations were power-law–distributed over a wide range 
of scales (Fig. 1, E and F, purple). In addition, theory predicts that 
the exponents, τ and τt, are not independent; they should be related 
to each other and to a third exponent (1/συz) according to the scal-
ing law 1/συz  =  (1 − τt)/(1 − τ) (46, 47), sometimes called the 
“crackling noise” scaling law. The third exponent, according to 
theory, relates avalanche sizes to duration as 〈S〉(T) ∼ T1/σνz. The 
avalanches we measured conformed well to all these predictions 
(Fig. 1G). Thus, we conclude that the awake spike activity we ob-
served here is in good agreement with predictions for a system 
operating at criticality. (As alluded to in Introduction, this finding 
depends on the choice of the timescale for the time bins ΔT, which 
was set to 50 ms here and we will investigate further below.)

Critical subspace is spanned by the first few 
principal components
Traditional avalanche analysis (Fig. 1, D to G, purple) is based on 
the one-dimensional population-summed activity, which, by defini-
tion, precludes insight into how the dynamics may be distributed 
across the multiple dimensions revealed by PCA (Fig. 1C). Do the 
scale-free avalanche dynamics exist in a subspace of the high-
dimensional population dynamics? If so, then the results of ava-
lanche analysis should be robust to the removal of PCs that are not 
in the avalanche subspace. We tested this possibility first with an 
example case (Fig. 1, orange). We generated another N × M activity 
matrix, reconstructed using only the first five PCs, excluding the 
other 203 dimensions (see Materials and Methods). The population-
summed time series based on the reconstructed data was very 
similar to the original (Fig. 1, D and H). Moreover, the avalanche 
statistics for this five-dimensional reconstruction remained in good 
agreement with predictions for criticality (Fig. 1, E, F, and I, orange). 
In contrast, if we reconstructed the data using PCs 6 to 208, then 
the avalanche sizes and durations were not power-law–distributed 
(Fig. 1, E and F, gray). Thus, for this example, we conclude that 
the critical dynamics are primarily contained within the subspace 
spanned by the first five PCs.

This example raises interesting questions. Is the dimensionality 
of this “critical subspace” exactly 5; is it higher or lower? Is the criti-
cal subspace always spanned by the first several PCs? To address 
these questions, we repeated the avalanche analysis using dimen-
sionally reduced reconstructed data, but systematically varying the 
cutoff dimension dc from 1 to N (dc = 5 in the example above). For 
each cutoff dimension, we performed avalanche analysis on two da-
tasets; one was reconstructed using PCs 1 through dc, and the other 
was reconstructed using PCs dc + 1 through N. For each case, we 
quantified the range of the avalanche size distribution that was well-
fit by a power law. When reconstructed using PCs 1 through dc, the 
power-law range remained high, largely independent of dc (Fig. 1J, 
red). Consistent with the dc = 5 example above, this suggests that the 
avalanche statistics are not affected by the activity in the dimensions 
defined by the high PCs. When we reconstructed the data using PCs 
dc through N, the power-law range markedly dropped when dc 
exceeded a relatively small number (Fig. 1J, blue). Thus, the critical 

subspace is strongly dependent on the first few PCs. This observa-
tion suggests a convenient quantitative definition for the dimen-
sionality of the critical subspace—the number of PCs that can be 
removed (starting from PC1) before the power-law range drops 
below 1.5 decades. Using this definition, we found that the critical 
subspace rarely had a dimensionality larger than 3 (13 at most; 
Fig. 1K). Thus, we conclude that the critical subspace is always low-
dimensional and is always spanned by the first few PCs.

Critical subspace is stable and distributed across 
the population
Next, we sought to test the robustness of the critical subspace, ac-
counting for two potentially important limitations of our experi-
mental measurements. First, there could be slow non-stationarities 
on timescales comparable to our recording durations (40 to 50 min). 
Second, the recorded neurons are a tiny fraction of the full popula-
tion. These facts raise the possibility that the critical subspace might 
not be stable in time and/or might be sensitive to the particular sub-
set of neurons that was measured.

As a direct test of the temporal stability of the critical subspace, 
we performed a cross-validation analysis to quantify how similar 
the critical subspace is in the first half versus the second half of each 
recording (fig. S1). First, we performed PCA in the first half obtain-
ing one set of PCs. Then, we performed PCA in the second half, 
obtaining a different set of PCs. If the critical subspace is stable, then 
we should be able to reconstruct activity equally well using PCs 1 
through dc from either the first or second half. To test this, we recon-
structed the second-half activity in two ways: First, we used the PCs 
and scores from the second half; second, we used the PCs from the 
first half and scores obtained by projecting the second-half data 
onto the first-half PCs. Last, we quantified the similarity of these 
two reconstructions by creating a population-summed activity time 
series for each reconstruction and computing the Pearson’s correla-
tion of these two time series. We found that this correlation was 
above 0.9 for nearly every recording (fig.  S1). Thus, we conclude 
that, despite the fact that animals can exhibit substantial changes in 
behavior and cortical state on long timescales, the critical subspace 
is stable over ~30 min timescales.

This stability of the critical subspace could be because the corti-
cal state is not changing much in our mice or it could be because the 
critical subspace is stable despite a changing cortical state. To sort 
out these possibilities, we quantified the temporal stability of two 
established indicators of cortical state: the coefficient of variation of 
population-summed spike counts [CVSC; e.g., (49)] and the coeffi-
cient of variation of interspike intervals for the whole population 
[CVISI; e.g., (50)]. Strongly synchronized states (like in anesthesia or 
deep sleep) result in large CVSC (around 2) and large CVISI (around 
2.5). We assessed CVSC (using ΔT = 50 ms) in a sliding 10-s window 
throughout each of our recordings. We found that the range of CVSC 
was only 0.35 to 0.55 (min-max), which indicates that our mice did 
not exhibit synchronized states, and is much smaller than previous 
studies that considered how avalanche statistics depend on cortical 
state [e.g., Fontenele et al. (49) studied a CVSC range of 0.3 to 2.3 due 
to changes in the cortical state under urethane anesthesia]. We 
found that CVISI, again in a sliding 10-s window, also had a small 
range, only 1.05 to 1.25 (min-max), which is small compared to pre-
vious studies considering how avalanches depend on state [ e.g., 
Hahn et al. (50) studied a range of CVISI from 1.1 to 2.6 due to 
changes in arousal, sleep, and anesthesia]. Our observations of small 
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CV values that did not vary greatly over the recording duration 
indicate that the mice in our experiments remained in a stable alert 
state consistently throughout our recordings.

Another type of non-stationarity that could affect our results 
comes from changes in behavior. Our mice were free to run or rest 
on the wheel. In some of our recordings, the mice chose to run most 
of the time, while in other recordings, the mice ran very little 
(fig. S2). Previous studies suggest that running behavior can result 
in higher firing rates and less synchronized neural activity com-
pared to resting (51–53). Such changes could alter the statistics of 
avalanches in the critical subspace or, alternatively, the critical sub-
space could be stable despite behavioral state changes between run-
ning and rest. To distinguish these possibilities, for each recording, 
we compared the fraction of time spent running to the power-law 
ranges and exponents for both avalanche sizes and durations. We 
found that these avalanche statistics were unrelated to time spent 
running (fig. S2), indicating that the critical subspace dynamics per-
sist whether the mice are running or quiescent. This result is remi-
niscent of an observation in a previous study of monkeys performing 
a visuomotor task involving reaching arm movements (54). It was 
shown that avalanche statistics were mostly unchanged across pre-
task and task periods despite an increase in body motion.

Next, we tested whether the critical subspace was sensitive to 
which neurons were recorded, i.e., sensitivity to subsampling. This 
point is particularly important considering the low dimensionality 
of the critical subspace. Low dimensionality could indicate that a 
small number of neurons are involved (e.g., a four-dimensional sub-
space could simply reflect the activity of four highly active neurons). 
Alternatively, the critical subspace could be distributed across many 
neurons, with the low dimensionality reflecting shared variability 
across many neurons. To distinguish these possibilities, we com-
pared the critical subspace based on the full recorded population to 
that based on smaller populations. The smaller populations were 
generated in two ways. First, to directly determine whether a small 
set of influential neurons is responsible for the critical subspace, we 
excluded the most important neurons (top 2% loadings) for each PC 
that was part of the critical subspace. Second, we randomly selected 
a fraction (0.2, 0.5, or 0.8) of the recorded neurons to be excluded 
from the analysis. We then ran PCA again on these smaller popula-
tions and created a population-summed time series based on a di-
mensionally reduced reconstruction with the same dimension as the 
original critical subspace. We found that discarding 20% of neurons 
caused very little change in the critical subspace (the correlation be-
tween the original and subsampled activity was >0.9 for 18 out of 19 
recordings). Even discarding half of the recorded neurons resulted 
in a correlation above 0.8, on average. Similarly, when we excluded 
the most important neurons based on loadings, the correlation was 
also above 0.8, on average. These results (fig. S3) demonstrate that 
the critical subspace is distributed across a large population of neu-
rons and is insensitive to subsampling the population.

Temporal coarse-graining is required to reveal 
critical subspace
The activity in the critical subspace manifests as large amplitude 
fluctuations, coordinated across many neurons. Previous studies 
suggest that the spatiotemporal structure of such population activity 
can depend on the timescale of observation (34, 55–57). Moreover, 
the theory of critical phenomena suggests that temporal coarse-
graining, i.e., excluding details at short timescales, may be required 

to reveal universal properties of critical dynamics (58). The theory 
also suggests that systems with true critical dynamics have promi-
nent fluctuations at slow timescales, a concept referred to as “critical 
slowing down” (58–60). Therefore, we next sought to determine 
how the critical subspace depends on the timescale of observation 
ΔT (for the results in Fig. 1, ΔT = 50 ms). In many previous studies 
of neuronal avalanches based on spike recordings (31, 33, 34, 50), a 
common approach has been to set ΔT to the average interspike 
interval 〈ISI〉 for the entire population of recorded neurons, follow-
ing the approach pioneered by (61). We note, however, that this 
approach was originally developed for local field potential (LFP) 
peak events, not spikes. For our recordings here, the average single-
neuron spike rate was about 3 Hz. Thus, for a typical recording of 
200 neurons, the 〈ISI〉 was about 1.5 ms. Obviously, the population 
〈ISI〉 will be even smaller in experiments with more recorded neu-
rons. Here, we systematically investigated a range of ΔT between 1 
and 500 ms.

We first quantified how the importance of the first five PCs de-
pends on ΔT. We found that the variance explained by the first five 
PCs is relatively small for small ΔT but rises sharply around 
ΔT ~ 10 ms (Fig. 2A). Next, we asked how many neurons are in-
volved in the low dimensional subspace defined by the first dc PCs. 
We measured the number of neurons engaged with (Pearson’s cor-
relation, >0.2) the population sum, reconstructed using only the 
subspace defined by PC1 to PCdc. We found that the number of neu-
rons engaged with this low-dimensional subspace is very small 
when ΔT is small but grows to a substantial fraction of the popula-
tion for larger ΔT (Fig. 2B). Thus, the importance of the first few 
PCs is hidden for small timescales and emerges only after temporal 
coarse-graining. In our initial example with ΔT =  50 ms, we saw 
that the activity of the full population was very similar to that recon-
structed from PCs 1 to 5 (Fig. 1D). Next, we asked how the correla-
tion between these two signals depends on ΔT. We found that they 
were not strongly correlated for small ΔT; this correlation sharply 
increased around ΔT ~ 10 ms (Fig. 2C).

Next, we determined how ΔT affects evidence for criticality 
based on avalanche analysis. We addressed this question for the full 
population-summed activity (Fig. 2D and fig. S4) and for the popu-
lation sum reconstructed from the subspace defined by the first dc 
PCs (Fig. 2, D to I) and found nearly identical results. We quantified 
the range of good power-law fit (number of decades; see Materials 
and Methods) for the avalanche size distribution; we interpret a 
larger power-law range as better evidence for criticality. For both the 
full population and the PC1 to PCdc subspace (Fig. 2D), we found 
that, at small timescales, the power-law range is small and the 
avalanche distribution is better fit by an exponential distribution 
(fig. S5). The power-law range rises around ΔT ~ 10 ms. If we con-
sider avalanches based on the PC dc-N subspace, the power-law 
range is small for all ΔT (Fig. 2D, gray). We note that the emergence 
of a large power-law range at larger ΔT also depends on the thresh-
old used for defining avalanches. Some previous studies have used a 
median threshold (27, 38), some have used the 35th percentile (35, 
36), and many have used a zero threshold (30–34, 49, 50). Here, we 
found that if the threshold is set to zero, then the emergence of 
robust power-law statistics at larger ΔT will be missed (fig. S4). Set-
ting the threshold to zero does not make sense for reconstructed 
activity in the critical subspace because that reconstructed activity 
never reaches zero. This is why the top row of the heat maps in Figs. 
2 (E and H) is black. Last, we examined the exponents of the power 
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laws and found that for ΔT < 10 ms, the exponents did not agree 
with the crackling noise scaling laws predicted at criticality and 
varied markedly as ΔT changes (Fig. 2, G and J). For larger ΔT, the 
exponents were robust, less dependent on ΔT, and were in good 
agreement with crackling noise scaling laws (Fig. 2, G and J). Con-
sistent with these observations, we further note that the long-term 
stability of the critical subspace discussed above is apparent only for 
sufficiently large ΔT (fig. S1). Together, the results in Fig. 2 show 
that evidence for criticality is robust in the critical subspace but will 
be missed if spike data are not sufficiently coarse-grained in time. In 
our experiments, the critical subspace emerges for timescales above 
about 10 ms, but, as we show in the next section, a more general 
criterion may be that ΔT is greater than about 10〈ISI〉.

Theory of critical dynamics confirms experimental results
Does the necessity of temporal coarse-graining to find the critical 
subspace agree with the theory? Could the temporal coarse-graining 

we use mislead us, producing apparent critical dynamics from a sys-
tem that is not actually at criticality? Here, we address these ques-
tions showing that our results agree with a simple model—the 
multivariate Hawkes process (62, 63)—but only if the model is 
tuned close to criticality. Our model is similar to branching pro-
cesses and random walks (46, 58, 64), providing an established theo-
retical case of critical dynamics, but unlike many of these classic 
models, the Hawkes process treats time continuously. This is helpful 
for our goals here of studying how the dynamics depend on the tim-
escale ΔT. Discrete-time models often have 〈ISI〉 well below the du-
ration of one time step, which precludes quantitative comparison to 
previous studies which often set ΔT = 〈ISI〉.

We set up our model with N = 104 units with fixed, random con-
nectivity. In a multivariate Hawkes process, each unit’s spikes are 
drawn from an inhomogeneous Poisson process. At time t, the ith 
unit fires with rate λi(t) which depends on the recent history of 
spikes from other connected units
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Fig. 2. Temporal coarse-graining reveals critical subspace. (A) Total explained variance for the first five PCs is sensitive to temporal coarse-graining, sharply rising for 
ΔT > 10 ms, indicating the emergence of a low-dimensional subspace. (B) The number of neurons engaged with the subspace defined by the first dc PCs (correlation >0.2) 
increases with ΔT. (C) The correlation between the original summed population activity and that reconstructed using the first five PCs increases with ΔT. (D) The power-
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ing showing how the power-law range in the subspace defined by the first 1 to dc PCs depends on ΔT and the threshold used for defining avalanches. (F) Summary of how 
avalanche size power-law range depends on the threshold and ΔT for all recordings. (G) For the 8% threshold, the measured exponent τ (solid lines) of the size distribution 
power law decreases as ΔT increases for ΔT < 10 ms but is relatively steady and close to τ = 1.5 for ΔT > 10 ms. Only for ΔT > 10 ms does the measured τ agree with that 
predicted by the crackling noise scaling law (dashed). Inset shows how τ depends on ΔT and avalanche threshold for the example in (E). The dashed line marks the region 
with a large power-law range. (H to J) Same as (E) to (G), but for avalanche duration statistics. For all panels, solid lines represent the mean across all recordings and 
shaded areas represent standard error. For (E) to (J), all analyses were done using the subspace defined by PCs 1 through dc, which is the critical subspace when ΔT is large 
enough. Figure S4 recapitulates (E) to (J), based on the full population-summed activity instead of the critical subspace.
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where C is the connectivity matrix. The parameter μ determines a 
baseline rate of noisy or spontaneous firing, independent of interac-
tions among units. The second sum accounts for the spikes fired by 
the jth unit (at times tj) before time t and with a weight that decays 
exponentially ϕ(t) = e−t. We show numerically (Fig.  3C) that the 
magnitude of the largest eigenvalue of C, called Λ here, determines 
whether the system operates at criticality. To construct C, we first set 
Cij = 1 with probability 0.1 (otherwise Cij = 0) and then multiply C 

by a constant to obtain a particular Λ. For Λ well below 1, the units 
fire asynchronously, the model is subcritical. As Λ approaches 1, 
firing rates and fluctuations become large and correlated and the 
autocorrelation time diverges (Fig. 3, B and C); Λ = 1 at criticality.

We performed avalanche analysis on the model population activ-
ity, as we did for the experiments. We analyzed the dynamics of a 
subset of only 200 units, neglecting the rest, to account for subsam-
pling effects that are certainly present in our experiments and may 
be important for assessing critical dynamics (65–67). We note that 
our primary results are robust to different degrees of subsampling 
(fig. S6). When the model was near criticality (Λ = 0.99), the dy-
namics closely matched our experimental results. Avalanche sizes 

λi(t) = μ +

N
∑

j=1

Cij

∑

tj < t

ϕ (t − tj)

0.85 0.9 0.95 1.0
0

20

40

60

80

Fi
rin
g 
ra
te
 (t
im
es
te
ps
)

0

200

400

A
utocorrelation tim

e (tim
esteps)

Max eigenvalue 

C
riticality

All PCs

PC1 excluded

A

G H I

B C1500 ISI

100 T

0

5

0

5

0 5
0

5

Cutoff dimension

100

100

10–6

104S

P
(S
)

 = 0.99
 = 0.9

Exp

1000.51000.5

A
va
la
nc
he
 s
iz
e,
 S

100

104

103100 Avalanche duration, T

S
iz
e 
P
L 
ra
ng
e 
(d
ec
)

D
ur
at
io
n 
P
L 
ra
ng
e 
(d
ec
)

S
iz
e 
P
L 
ra
ng
e 
(d
ec
)

T (factor of  ISI ) T (factor of  ISI )

D E FT = 15  ISI 
T = 1  ISI 

10–610–7

100100

103100104100 Avalanche duration, TAvalanche size, S

0.9 0.99

ModelExp

P
ro
ba
bi
lit
y 
P
r(
T
)

P
ro
ba
bi
lit
y 
P
r(
S
)

2

1

E
xponent

Fig. 3. Low-dimensional model of critical dynamics agrees well with experiments. (A) We study a multivariate Hawkes process with random connectivity (noise 
parameter μ = 6). (B) When the model is near criticality (Λ = 0.99), the model generates population activity with large fluctuations (purple), which are abolished if the first 
PC is projected out (gray). (C) As Λ approaches 1 (criticality), the firing rate and the timescales of fluctuations diverge. (D) Near criticality and with sufficient temporal 
coarse-graining, the model avalanche sizes were power-law–distributed (ΔT = 15〈ISI〉, purple points), but the power law was obscured for insufficient temporal coarse-
graining (ΔT = 1〈ISI〉, green points). Subcritical model dynamics were not power-law–distributed, with or without temporal coarse-graining (dashed lines). Experiments 
(light-colored lines) agree well with the model. The number of avalanches simulated in the model was matched to the average number observed experimentally, specifi-
cally for each ΔT/〈ISI〉. (E) Same as (D), but for avalanche duration. (F) With ΔT = 15〈ISI〉, the model agrees with the crackling noise scaling law. Inset: The experimentally 
observed scaling exponents (box plots) match well those from the model with Λ = 0.99 (orange). (G and H) At criticality, the power-law range becomes large only for large 
ΔT. The subcritical model never exhibits more than two decades of power-law range for all ΔT. Individual experiments (gray) and mean across experiments (black) agree 
best with a model with Λ = 0.99. (I) The model critical subspace is one-dimensional; the power-law range collapses to less than 1.5 decades after excluding PC1. The inset 
shows size distributions with (purple) and without (gray) PC1.
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and durations were well approximated by a power-law distribu-
tion and obeyed the crackling noise scaling law (Fig. 3, D to F), 
but only after sufficient temporal coarse-graining (approximately 
ΔT > 10〈ISI〉; Fig. 3, D, E, G, and H, and fig. S5). The power-law 
scaling exponents from the model matched well with our experi-
ments (Fig. 3F, inset) and are consistent with previous experimental 
reports (49, 68). When the model was subcritical (Λ  =  0.9), the 
model dynamics were not power-law–distributed for any ΔT, dem-
onstrating that temporal coarse-graining does not produce evidence 
for criticality unless the system is near criticality (Fig. 3, D, E, G, and 
H, and fig. S5). We note that when we coarse-grained our experi-
mental data using a ΔT set to a specified factor of 〈ISI〉 (instead of a 
specified number of milliseconds), the results of different experi-
ments were more consistent with each other and in good quantita-
tive agreement with the model (light colored lines in Fig. 3, D, E, 
G, and H).

Like the experiments, critical dynamics in the model are con-
fined to a low-dimensional subspace. The model is essentially one-
dimensional. Removing the first PC fully removes the collective 
fluctuations in firing rates (Fig. 3B). Moreover, removing the first 
PC completely abolishes the power-law statistics of avalanches 
(Fig. 3I). In fig. S7, we show that the model can generate higher di-
mensional dynamics if we implement spatially dependent local con-
nectivity. This may be similar to critical phenomena in other systems 
with spatial translational invariance (69). However, the neurons re-
corded from one high-density shank electrode like in our experi-
ments are all within a few hundred micrometers from each other 
and, thus, are expected to have more spatially independent connec-
tivity. Thus, we conclude that our experimental measurements are 
well-explained by the theory of low-dimensional critical dynamics.

Desynchronized subspace coexists with the critical subspace
As discussed in Introduction, the standard point of view is that crit-
icality is not compatible with desynchronized dynamical regimes; it 
is thought that the cortex must “choose” between criticality and a 
desynchronized regime. However, the fact that the critical subspace 
is low-dimensional raises an interesting possibility that challenges 
the standard view. Could there be a desynchronized dynamical re-
gime that coexists with the critical subspace, in the same neural cir-
cuit, but in a different subspace?

As demonstrated in Fig. 1 (C, J, and K), the number of dimen-
sions needed to explain a substantial fraction of the total variance is 
much greater than the dimension of the critical subspace. This sug-
gests that the additional dimensions beyond the critical subspace are 
“important,” in the sense that they are needed to explain much of the 
measured variance. What type of dynamics is contained in these 
additional dimensions? The basic mathematical facts of PCA re-
quire that these dimensions outside the critical subspace must have 
smaller fluctuations because the critical subspace spans the first few 
PCs. However, PCA does not tell us whether the dynamics in these 
dimensions have the characteristic features of a desynchronized 
regime: weak correlations among units, short autocorrelation times-
cales, and Gaussian distributed population activity. To answer these 
questions, we reconstructed our measured spike count dynamics in 
a low-dimensional subspace (PCs dc + 1 through 2dc) just beyond 
the cutoff dimension dc of the critical subspace, as defined in Fig. 1 
(J and K). Figure 4A shows an example recording where each sub-
space is six-dimensional (i.e., dc = 6).

First, we summed the reconstructed dynamics across units to ob-
tain a single population-summed activity for each subspace (Fig. 4A). 
As expected, the reconstructed population activity fluctuated with 
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Fig. 4. Desynchronized subspace coexists with critical subspace. (A) Wheel speed (black), and population-summed activity and rasters reconstructed from the critical 
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much larger amplitude (larger variance; Fig. 4, C and D) in the criti-
cal subspace compared to the desynchronized subspace. In addition, 
we found that the distribution of population activity in the desyn-
chronized subspace was close to Gaussian (low skewness), while the 
critical subspace had heavy-tailed, skewed distributions (Fig.  4D). 
Another defining feature of desynchronized regimes is a lack of long-
range temporal correlations. We compared autocorrelation functions 
for the population activity in the two subspaces and found that the 
critical subspace had much greater correlations at long timescales 
(Fig. 4E). Last, we assessed pairwise correlations among units, using 
the reconstructed spike count rasters (Fig. 4A). Here, some caution is 
needed; the dimensionality of the subspace affects the basic nature 
of pairwise correlations for such reconstructed activity. Nonetheless, 
defining the dimensionality of the two subspaces to be equal allows 
for meaningful relative comparisons and we found that the critical 
subspace always had much higher pairwise correlations than the de-
synchronized subspace. Thus, we conclude that the dynamics in this 
subspace with the greatest variance, after removing the critical sub-
space, manifested all the defining features of desynchronized re-
gimes: weak pairwise correlations, short-range temporal correlations, 
and Gaussian distributed population activity (9, 70).

Last, we asked how the critical subspace and the desynchronized 
subspace relate to the behavior of the mice. As the mice voluntarily 
moved their bodies (e.g., spontaneously running or resting), we 
measured the speed of the wheel that the mice were standing upon 
(Fig. 1A). We computed the Pearson’s correlation of the wheel speed 
and the summed activity of each subspace (Fig. 4A). We found that 
the critical subspace was correlated with wheel speed while the 
desynchronized subspace was not (Fig. 4G). This observation is in 
line with previous reports that neuronal avalanches are correlated 
with body movements (38) and the first few PCs of cortical popula-
tion activity are correlated with body movements (1).

DISCUSSION
We have shown that population spiking activity in the awake mouse 
motor cortex can be partitioned into different subspaces, each con-
taining fundamentally different kinds of coordinated dynamics. The 
most prominent subspace—defined by the first few PCs—is home to 
critical dynamics with long-range temporal correlations, heavy-
tailed distributions of activity, and multifaceted agreement with 
scaling laws predicted at criticality. This critical subspace is hidden 
if temporal coarse-graining is insufficient. The next most prominent 
dimensions contain desynchronized dynamics with weak spatio-
temporal correlations and Gaussian distributed population activity.

These observations open several interesting questions and offer 
answers to several long-standing questions about the fundamental 
operating regime of cortical neuronal networks. One such long-
standing question asks whether cortical circuits operate near criti-
cality or not in the awake cortex. Many previous experiments with 
strong agreement with criticality theory were based on techniques 
that measure collective brain signals, like LFP (33, 54, 61, 68, 71, 72), 
wide field imaging (26, 73), and human brain imaging (71, 74). 
These collective signals represent an aggregate of the underlying 
spike activity of many individual neurons. However, when spikes 
recorded in awake animals have been analyzed directly, results have 
been less clear—some studies report support for criticality (34, 36, 
38–42, 49, 75) while others do not (30–35). Considering that spikes 
are the fundamental information carriers underlying brain function, 

the equivocal support for criticality at the level of spike measure-
ments has created skepticism and confusion surrounding the hy-
pothesis (32, 33). Why is evidence for criticality clear in collective 
signals, but unclear in spike data? As we showed here, one important 
factor explaining discrepancies among previous spike recordings is 
that the existence of the critical subspace is clear only at larger 
timescales, beyond about 10〈ISI〉. Our results suggest that the studies 
based on spikes with negative reports about criticality missed the 
evidence for criticality because they did not sufficiently coarse-grain 
in time (table S1). What about collective signals like LFP? One pos-
sibility is that collective signals, by their nature, may carry some de-
gree of overlapping signals (LFP at two nearby locations can reflect 
signals from the same source neurons), which results in spurious 
correlations that could be mistaken for criticality (76). Considering 
our results here, another possibility is that the coordinated activity 
in the critical subspace is apparent in measurements of collective 
signals like LFP, but the desynchronized subspace is hidden from 
collective signals because it is weakly coordinated. Thus, measuring 
collective signals may effectively filter out the desynchronized sub-
space, leaving only the critical subspace signals.

What about previous studies of avalanches based on spikes in 
non-awake animals? One study showed that using ΔT = 〈ISI〉 (i.e., 
no coarse-graining), anesthetized rats can show strong evidence for 
criticality (49). Another study also used ΔT = 〈ISI〉 and concluded 
that sleeping and anesthetized animals were closer to criticality than 
awake animals (50). Our results here suggest that these previous 
studies may have found stronger evidence for criticality in the awake 
state if they used more substantial temporal coarse-graining.

Several recent studies have proposed that critical phenomena in 
neural systems might be fundamentally high-dimensional (77–81). 
Do these studies contradict our work here? Several of these previous 
studies focused on edge-of-chaos (EOC) criticality, which, unlike 
our results here, is thought to occur without large fluctuations at the 
population level (77, 80, 81). In other words, EOC criticality would 
manifest with no avalanches using our definition of avalanches here. 
In this basic sense, our experimental results are inconsistent with 
EOC criticality—we observe prominent large amplitude fluctua-
tions and power-law–distributed avalanches. In other studies (69, 
77–79), criticality was hypothesized to be high-dimensional based 
on data analysis and concepts adapted from traditional renormal-
ization groups in systems with spatial translational invariance (sim-
ilar to the Ising model, for example). Our experimental results do 
not directly confirm or deny this hypothesis, but our model shows a 
clear case of low-dimensional criticality; thus, criticality in neural 
systems is not required to be high-dimensional. We further clarify 
this point in fig. S7; we show how a transition from low-dimensional 
to high-dimensional criticality can result from tuning the model 
connectivity from global to local and introducing approximate spa-
tial translational invariance. (We note that the autocorrelation func-
tions reported in Fig. 4 can also depend on whether connectivity is 
local or global (82).) These theoretical considerations suggest that 
we observed a low-dimensional critical subspace in our experiments 
because we measured neurons from a local patch of cortex (approx-
imately one cortical column) using a single shank Neuropixels 
probe. Within this small, local population of recorded neurons con-
nectivity is approximately global. Thus, we might expect to find a 
higher dimensional critical subspace based on more spatially wide-
spread recordings, as found in recent functional magnetic resonance 
imaging measurements, for example (69).
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As discussed in Introduction, another controversy that our re-
sults may help resolve is the question of cortical state: Are cortical 
population dynamics weakly or strongly correlated? Our results 
show that this question may be a false dichotomy; we show that 
weakly correlated dynamics can coexist with relatively strongly 
coordinated dynamics by separating them into different subspaces. 
Do these two different subspaces perform different brain functions? 
While many studies have associated specific functions with specific 
subspaces (83–87), they typically have not tested whether the 
dynamics in these subspaces house critical dynamics or more de-
synchronized dynamics. Our results here suggest that the critical 
subspace is related to spontaneous, voluntary body movements, 
while the desynchronized subspace is unrelated to these movements 
(Fig.  4, A and G). More support for this possibility comes from 
considering two studies (1, 38). Stringer et al. (1) showed that visual 
input is encoded in one subspace with relatively small fluctuations 
(similar to our desynchronized subspace), while some body move-
ments (e.g., running and whisking) are encoded in a different sub-
space defined by the first few PCs (similar to our critical subspace). 
Moreover, Jones et al. (38) reanalyzed the data from Stringer et al. 
(1) and found that subsets of neurons (a subset is a type of subspace) 
with the strongest correlations to body movements also exhibited 
power-law avalanche dynamics as we observed in our critical 
subspace here. Together, these results suggest that sensory input 
might be encoded in the desynchronized subspace we found here, 
while motor output may be encoded in the critical subspace. This 
idea is also in line with a previous study that showed that certain 
“stiff ” dimensions (perhaps like our critical subspace) are respon-
sible for changes in cortical state, while other “sloppy” dimen-
sions (perhaps like our desynchronized subspace) encode sensory 
responses (88).

The coexistence of a critical subspace and a desynchronized sub-
space is also consistent with previous studies of population coupling 
(89, 90). Our Fig. 2C shows that the first few PCs (i.e., the critical 
subspace) are very strongly correlated with the total population-
summed activity. Thus, neurons with strong population coupling 
(“chorister neurons”) should be interpreted as strongly coupled to 
the critical subspace. In addition, the soloist neurons (those weakly 
coupled to the population) are likely to be coupled to the desynchro-
nized subspace. The diversity of population coupling shown by 
Okun et al. (89) is in line with our Fig. 2B, which shows that a sub-
stantial fraction of our measured neurons are choristers and implies 
that many other neurons are soloists, but this observation will be 
obscured without sufficient temporal coarse-graining.

A line of previous studies of attention and “on-off ” dynamics 
is likely to be related to the critical subspace we identified here 
(91–93). In these studies, large amplitude fluctuations, coordi-
nated across layers and cortical regions, were observed in the 
monkey visual cortex. These fluctuations are qualitatively similar 
to the scale-free dynamics that we observed here in the critical 
subspace. These studies showed that the degree of coordination 
depended on visual attention and that the monkey’s performance 
on attention-related tasks varied in time, depending on the peaks 
and troughs of individual fluctuations. If the “on” periods in 
these studies are like the avalanches we studied here, then this 
suggests a previously unappreciated role for critical dynamics 
and avalanches in attention-related brain function. Moreover, it 
suggests that such “on-off ” dynamics in these studies might co-
exist with a desynchronized subspace, raising questions about 

how attention-related functions might be split between these 
subspaces.

More generally, our results raise many interesting questions 
about how a neural system might implement the segregation of 
functions in different subspaces. How do different subspaces inter-
act? How do the subspaces, identified based on measured activity 
(e.g. using PCA), relate to the anatomical connections among local 
neurons and/or inputs from distant neurons? How might a neuron 
selectively interact with the critical subspace rather than the desyn-
chronized subspace? Partial answers to these questions come from 
considering the nature of synapses and dendrites. Consider a neu-
ron that is downstream from the population we measured in our 
experiments. Many axons from the measured population might ter-
minate on the dendritic tree of this downstream neuron. Each syn-
apse has a different “strength”; thus, the effective input is a linear 
combination, weighted according to synaptic strengths. Such a 
weighted linear combination is nothing more than a projection onto 
a subspace; with the right combination of synaptic weights, the 
downstream neuron could selectively sample from the critical 
subspace. Moreover, the coarse-graining timescale ΔT considered 
throughout our paper can be directly related to the timescale of 
synaptic integration, which is around 10 to 50 ms. Ultimately, the 
dendritic tree sums up these weighted inputs conveying a one-
dimensional signal to the soma, quite similar to the population-
summed activity we study here. Thus, the biophysics of synaptic 
integration effectively executes an operation that is quite like the 
data analysis we performed here: coarse grain temporally, project 
onto a subspace, and sum over the population in that subspace. This 
reasoning loosely sketches some aspects of how neurons might use 
subspaces, but further studies will be needed to understand more 
fully the interesting possible functional implications and implemen-
tation mechanics of critical and desynchronized subspaces.

MATERIALS AND METHODS
Animals
All procedures followed the Guide for the Care and Use of Labora-
tory Animals of the National Institutes of Health and were approved 
by University of Arkansas Institutional Animal Care and Use Com-
mittee (protocol 21022). We studied adult male C57BL6/6J mice 
(The Jackson Laboratory). After acclimatization to handling, a small 
aluminum plate (0.5 g) was attached to the skull with dental cement. 
Then, mice were trained for head fixation for 20 sessions, gradually 
increasing in duration. At the time of recordings, the mice weighed 
≈ 28 g and were 21 to 23 weeks old. One to 2 days before the first 
recording for each mouse, a craniotomy (2-mm diameter) was per-
formed over the right motor cortex (anterior-posterior  =  0 mm, 
medial-lateral  =  1 mm). Each recording day began with a brief 
period of isoflurane anesthesia to expose the craniotomy and head 
fix the mouse. The mice were free to run, sit, groom, and walk for 
the entire duration (45 min) of each recording. During recordings, 
after inserting the electrode array, the craniotomy was covered with 
gel-foam pieces soaked in a sterile phosphate buffer solution.

Electrophysiology
The extracellular voltage was recorded using Neuropixels probes 
(version 1.0, IMEC) consisting of an electrode shank (width: 70 μm, 
length: 10 mm, thickness: 100 μm) of 960 total sites laid out in a 
checkerboard pattern with contacts (18-μm site-to-site separation), 
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enabling up to 384 recording channels. On the recording day, follow-
ing head fixation, the Neuropixels probe was inserted to a tip depth 
of approximately 1.2 mm, ensuring that the active recording sites 
spanned all cortical layers. An Ag/AgCl pellet was used as ground 
and placed in the saline-soaked gel foam covering the craniotomy. 
The ground pellet wire was soldered to the Neuropixel midway along 
the ribbon cable. Electrophysiological data were collected (30 kHz) 
using SpikeGLX software. Spike sorting was performed using Kilo-
sort 3.0 (https://github.com/MouseLand/Kilosort) and then manu-
ally curated using phy (https://github.com/cortex-lab/phy) (94).

Data analysis
PCA
We performed PCA in Python using the function ‘decomposition.
PCA’ from the package ‘sklearn’. Let Z be a spike count matrix with 
M rows (number of time bins) and N columns (number of neurons). 
Then, PCA generates V which contains the PCs, i.e., the eigenvec-
tors of the covariance matrix of ZV has N rows and N columns (one 
column for each eigenvector, i.e., one column for each PC). We cal-
culated the % variance explained by a set of PCs as the sum of their 
corresponding eigenvalues of V (reported in Figs. 1C and 2A). To 
reconstruct data based on a subset of PCs (e.g., PCs 1 to K), we first 
define the M × K projection matrix B by , where  is N × K, including 
the first K columns of V. Then, the reconstructed activity is =BT = ZT

Avalanche analysis
The first step in avalanche analysis was to create a spike count matrix 
Z, where Ztj is the number of spikes fired by unit j during time bin 
t. Next, the population-summed spike count time series X was 
created by summing spike counts over all neurons at each time bin, 
Xt =

∑

jZtj . The threshold ϴ used for avalanche detection was 

defined as some percentile of X. By definition, an avalanche begins 
when X exceeds the threshold and ends when X returns below the 
threshold. The size S of an avalanche is defined as S =

∑tf
ti
(Xt − Θ) , 

where the start and end times of the avalanche are ti and tf, respec-
tively. Avalanche duration is defined as T = tf − ti.

To assess whether avalanche sizes and durations were distributed 
according to a power law and to obtain power-law exponents and 
ranges, we built on previously developed maximum likelihood 
methods (38, 68, 95, 96). Briefly, the fitting algorithm identifies 
the best fit truncated power law that meets a predefined goodness-
of-fit criterion. There are three fitting parameters: the minimum 
avalanche size xm, the maximum avalanche size xM, and the power-
law exponent τ. The following steps summarize the algorithm. First, 
events with a size/duration less than xm or larger than xM were 
excluded. Second, the maximum likelihood power-law exponent 
was calculated. Third, we assessed the goodness of fit. We repeated 
these four steps for all the possible pairs of xm and xM values, in 
the end, identifying the largest power-law range that passed the 
goodness-of-fit criterion. We define power-law range as the number 
of decades of power-law scaling log10(xM/xm). We note that this 
algorithm is independent of any choice of bins used to create the 
PDF plots in the paper.

The primary improvement we made compared to our most re-
cently published methods (38) was to make our goodness-of-fit 
criterion less sensitive to sample size (number of avalanches) and 
more computationally efficient. For a given xm, xM, and τ, good-
ness of fit was quantified as follows. First, we created a cumulative 
distribution function (CDF) of the real data (excluding samples outside 

the range xm to xM). Second, we define a theoretical CDF for a trun-
cated power law with the same range and exponent. Third, we define 
a region delimited by upper and lower bounds defined as the theo-
retical CDF +0.03 and −0.03, respectively. Fourth, we resample the 
real CDF at 10 logarithmically spaced values per decade. Fifth, we 
calculated the fraction F of resampled points in the CDF of the real 
data that fell within ±0.03 bounds of the theoretical CDF. F is our 
goodness-of-fit measure. F  =  1 means that the entire range of 
the real data varies less than 3% from a perfect power law. We sought 
the fit with the largest power-law range that meets the goodness-of-
fit criterion F ≥ 0.8.
Crackling noise scaling law
In Fig. 2 (G and J), we reported measured exponents τ and τt for 
avalanche size and duration distributions, respectively. We also re-
ported a predicted exponent based on the crackling noise scaling 
law, which states 〈S〉(T) ∼ T1/σνz, where 1/συz = (1 − τt)/(1 − τ) (46, 
47). To calculate the predicted exponents we first measured 1/συz 
directly from the data, using a linear best fit to log(S) versus log(T) 
plot (like those in Fig. 1, G and I). The linear fit to measure 1/συz 
was limited to the range of avalanche durations identified by the 
power-law fitting algorithm. Then, we used the empirically deter-
mined size exponent, τ, to obtain a predicted duration exponent 
τt,pred = 1 −

1−τ

σνz
 , and we used the empirically determined duration 

exponent, τt, to obtain a predicted size exponent τpred = 1 − σνz(1 − τt).
Decorrelated subspace
The analysis presented in Fig. 4, began with making a spike count 
matrix with time bin size ΔT = 50 ms. Next, the activity was recon-
structed using different dimensions as described above. The third 
step was to perform a band pass filter including 0.1 to 100 Hz on the 
reconstructed activity time series for each unit. Last, the activity 
distributions, activity variance and skewness, autocorrelation func-
tions, and pairwise correlations were analyzed. The correlation time 
for the autocorrelation functions was calculated as the lag beyond 
which the correlation drops below 0.1. The use of a filter with a low-
er cutoff frequency avoids potential non-stationarities at long times-
cales in the experiments. However, close to criticality, there may be 
relevant timescales slower than 0.1 Hz. Thus, the autocorrelation 
timescales reported in Fig. 4 for the critical subspace should be in-
terpreted as an approximate lower bound.

Computational model
The numerical implementation of the multivariate Hawkes process 
described in Fig. 3 and the corresponding text was carried out using 
the algorithm developed by Dassios and Zhao (97). Briefly, this algo-
rithm exactly generates a Hawkes process by sampling interspike in-
tervals directly via the underlying analytic distribution functions. Our 
code for simulating the Hawkes process is freely available for down-
load on Figshare: https://doi.org/10.6084/m9.figshare.24530434.v1.
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