
ARTICLE

Multisite phosphorylation drives phenotypic
variation in (p)ppGpp synthetase-dependent
antibiotic tolerance
Elizabeth A. Libby 1,2,3, Shlomi Reuveni2,4,5,6 & Jonathan Dworkin1*

Isogenic populations of cells exhibit phenotypic variability that has specific physiological

consequences. Individual bacteria within a population can differ in antibiotic tolerance, but

whether this variability can be regulated or is generally an unavoidable consequence of

stochastic fluctuations is unclear. Here we report that a gene encoding a bacterial (p)ppGpp

synthetase in Bacillus subtilis, sasA, exhibits high levels of extrinsic noise in expression. We

find that sasA is regulated by multisite phosphorylation of the transcription factor WalR,

mediated by a Ser/Thr kinase-phosphatase pair PrkC/PrpC, and a Histidine kinase WalK of a

two-component system. This regulatory intersection is crucial for controlling the appearance

of outliers; rare cells with unusually high levels of sasA expression, having increased antibiotic

tolerance. We create a predictive model demonstrating that the probability of a given cell

surviving antibiotic treatment increases with sasA expression. Therefore, multisite phos-

phorylation can be used to strongly regulate variability in antibiotic tolerance.
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Many bacterial phenotypes, including antibiotic tolerance
and virulence, often reflect the phenotype of a subset of
the population rather than the average behavior1,2.

Subpopulations of bacteria can arise through purely stochastic
processes, as well as by regulatory and signaling pathways3.
Theoretically, one way to create phenotypic diversity via a signaling
pathway is multisite phosphorylation, in which each successive
phosphorylation changes the activity of a protein4,5. However, it
has not been experimentally shown in bacterial populations that
multisite phosphorylation regulates variation in gene expression
between cells, and subsequently, the emergence of phenotypic
diversity. Recently, multisite phosphorylation of transcription
factors have been observed in pathways involved in antibiotic
tolerance and virulence6, suggesting that dynamics of multisite
phosphorylation could have particular physiological relevance.

Bacterial signaling is often characterized in the context of two-
component signal transduction systems (TCS) that generally
consist of a histidine kinase that phosphorylates a response reg-
ulator on a single residue, which then acts as a transcription
factor7. The stimulus-dependent response of this type of signaling
system architecture has been analyzed theoretically8,9 and
experimentally10,11, with little cell-to-cell variability observed (as
quantified by CV), regardless of inducer level. This suggests that
extensive cell-to-cell variability is not a general feature of bacterial
TCS. However, some notable exceptions have been found for two-
component systems with more complex architectures, such as the
broad distribution of gene expression in the E. coli TorS/TorR
regulon12 which has recently been shown to be an important
factor for cell survival during oxygen depletion13. The network
architecture of bacterial signal transduction systems may there-
fore play an underappreciated role in the dynamics and survival
of bacterial populations.

In addition to TCS, bacteria also have eukaryotic-like (also
called Hank’s type) Ser/Thr kinase – phosphatase pairs with
homology to eukaryotic systems that perform reversible phos-
phorylation on Ser and Thr residues14. One particular subfamily
of these systems appears to be universally conserved across
Gram-positive bacteria and plays key roles in growth and viru-
lence for many clinically important pathogens including the
streptococci, S. aureus, M. tuberculosis, E. faecalis, and others6,15.
Genetic and proteomic studies indicate that these Ser/Thr kinases
can perform transcriptional regulation of key cellular processes
involved in antibiotic tolerance and persistence through multisite
phosphorylation of transcription factors. However, to date, the
consequences of multisite phosphorylation for gene regulation at
the single-cell-level has not been quantified. In this context the
model gram-positive bacterium B. subtilis presents a compara-
tively straightforward system to quantify the contribution of the
additional Ser/Thr phosphorylation in vivo: the homologous
kinase-phosphatase pair is PrkC/PrpC, and it has been verified to
regulate gene expression through additional phosphorylation of a
response regulator.

It has been apparent for over 60 years that bacterial populations
contain rare cells that display increased phenotypic resistance to
antibiotics16. These cells, presumed to be quiescent, have been
implicated in antibiotic treatment failure in genetically susceptible
bacterial infections17. To date, it remains unclear to what extent the
appearance of these rare cells is subject to regulation. Emerging
evidence strongly implicates elevated levels of the nucleotide second
messenger (p)ppGpp as a causative agent of quiescence in many
bacterial species18,19. (p)ppGpp downregulates essential cellular
processes such as transcription, translation, and DNA replication20.
Although the precise mechanism of (p)ppGpp synthesis and
its direct cellular targets vary between bacterial species, highly
elevated levels of (p)ppGpp confer a quiescent state to the bacterial
cell. As many antibiotics target active cellular processes, the

resulting quiescent cells exhibit increased antibiotic tolerance21,
suggesting that cell-to-cell variability in (p)ppGpp may be involved
in phenotypic resistance to antibiotics.

The mechanistic origin of cell-to-cell variability in (p)ppGpp
levels across bacterial populations remains a major open question.
To date, this has been best studied in E. coli, in the context of the
RelA (p)ppGpp synthetase and the SpoT hydrolase22. In contrast,
other bacterial species often possess dedicated (p)ppGpp syn-
thetases, termed small alarmone synthetases (SAS), in addition to
bi-functional synthetase-hydrolases23. These SAS proteins can be
activated transcriptionally20, suggesting that cell-to-cell variability
in (p)ppGpp levels could originate in the transcriptional regula-
tion of the synthetases themselves. In the Gram-positive
bacterium B. subtilis, three distinct proteins, RelA, SasA, and
SasB synthesize (p)ppGpp24. B. subtilis RelA is a bi-functional
(p)ppGpp synthetase-hydrolase, and both SasA and SasB are
dedicated synthetases. Although relA and sasB transcripts are
both readily detectable during log phase growth, sasA (formerly
ywaC) transcripts are found at considerably lower levels. How-
ever, sasA is inducible by certain classes of cell-wall-active
antibiotics25,26, and its induction by alkaline shock increases the
cellular levels of ppGpp24. Since sasA expression stops growth27,
SasA-mediated (p)ppGpp synthesis provides a mechanism to
induce cellular quiescence in response to environmental stresses.
To date, SasA is only known to be regulated transcriptionally, so
significant cell-to-cell variability in sasA expression could produce
physiologically relevant cell-to-cell variability in (p)ppGpp levels.
The pre-existing distribution of sasA expression may therefore be
critical in predicting the relative survival of cells under conditions
that do not specifically induce sasA.

In this work, we demonstrate that sasA expression displays
physiologically relevant amounts of extrinsic noise, although the
average level of sasA expression is very low during growth under
non-inducing conditions. Furthermore, we find that both the
distribution of sasA expression and the frequency of outliers are
strongly regulated by the activity of a highly conserved
eukaryotic-like Ser/Thr kinase system and its subsequent multi-
site phosphorylation of a transcription factor. Using quantitative
analysis of the full distributions of sasA expression, we find that
multisite phosphorylation is responsible for exponentially reg-
ulating the abundance of cells with a given level of SasA, and we
generate a predictive model for sasA-expression-dependent anti-
biotic tolerance.

Results
sasA expression exhibits high levels of extrinsic noise. While the
population average level of sasA expression during growth
is extremely low25, the average behavior may mask important
phenotypic variation between cells. We therefore generated a
transcriptional reporter for sasA (PsasA-yfp) to study the population
at the single-cell level. Surprisingly, there was considerable cell-to-
cell variability in PsasA-yfp (coefficient of variation, CV ~ 4.95 ±
0.42, mean ± SEM), with most cells having very low expression,
and rare cells showing significantly higher levels of expression
(Fig. 1a). Quantification of YFP fluorescence revealed that a small
fraction of the population had much higher (>~10×) levels of
fluorescence than the mean, and rare cells had ~100×. Note that
a typical bacterial gene has a CV in the range 0.1–128–30.
Consistently, we measured the B. subtilis gene veg to have a CV of
0.4 ± 0.02 (mean ± SEM, Supplementary Fig. 1).

The high levels of cell-to-cell variability in sasA expression
could be caused by intrinsic noise from the promoter itself, or by
extrinsic noise originating in an upstream process31. To
differentiate between these mechanisms, we used a strain with
dual fluorescent reporters, PsasA-yfp and PsasA-mcherry (Fig. 1b).
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Expression of the dual reporters in individual cells was highly
correlated (Pearson’s correlation coefficient, r ~ 0.90 ± 0.08, mean
± SEM; Spearman’s correlation coefficient ~ 0.78 ± 0.06, mean ±
SEM), demonstrating that the noise was largely extrinsic to the
promoter (Fig. 1c, d).

Some variability in PsasA is expected to originate in natural
variability in protein expression and accumulation between cells in
a population32. Therefore, we compared the variability observed in
PsasA-yfp to a presumably unrelated promoter known to be
constitutively active during log phase growth, Pveg-mcherry33

(Supplementary Fig. 1). We found that YFP and mCherry levels
were not highly correlated, suggesting that the high levels of
variability in sasA expression are largely caused by a sasA-specific
pathway.

We then tested a previously characterized sasA regulator, the
sigma factor σM (SigM)34, that is required for sasA expression26

(Supplementary Fig. 2A). sigM expression levels were generally
detectable at low levels across the population (Supplementary
Fig. 2B). We also found that sasA expression did not correlate
strongly with sigM expression (Supplementary Fig. 2C, D)
demonstrating that SigM levels alone do not predict variability in
sasA expression. To our surprise, we also found that the relatively
rare outliers in sigM expression were not predictive of the outliers
we observed in sasA. Since the outliers in sasA expression would
likely exhibit the strongest sasA-dependent physiological effects on
the cell, we sought to determine the regulatory factors responsible
for regulating their frequency in the population.

The Ser/Thr kinase PrkC represses sasA expression through
WalR. Another potential regulator of sasA is the WalR
transcription factor observed to bind the sasA promoter in a

genome-wide screen35. WalR is the response regulator of the
essential WalRK two-component system and is activated by
phosphorylation of Asp-53 by WalK36. Once phosphorylated,
WalR can activate and/or repress genes in its regulon. A rever-
sible second phosphorylation on WalR Thr-101 by the
eukaryotic-like Ser/Thr kinase-phosphatase pair PrkC/PrpC37

further increases WalR activity at both activating and repressing
sites38. In rich media (LB), the multisite phosphorylation of WalR
affects gene expression (e.g., enhanced activation of yocH) spe-
cifically in post-log phase38. However, in the commonly used
defined minimal media S7-glucose, there is a consistent PrkC-
dependent effect on the population average level of yocH
expression throughout log phase (Supplementary Fig. 3).

sasA is known to be activated by antibiotics such as
bacitracin25 through σM activation. We first tested whether the
PrkC/PrpC–WalR system regulates sasA at the population level to
determine if WalR activates or represses sasA. We found that
PrkC activity represses sasA expression through WalR Thr101~P
during bacitracin treatment (Supplementary Fig. 4). Based on
these bulk measurements, we developed a model for sasA
regulation (Fig. 2a) in which PrkC activity further potentiates
WalR-repressing activity at sasA through a second phosphoryla-
tion of WalR at Thr-101. However, it remained unclear to what
extent multisite phosphorylation of WalR affects pre-existing cell-
to-cell variability and physiologically relevant outliers in sasA
expression under non-inducing conditions.

PrkC regulates noise in sasA through WalR Thr-101 phos-
phorylation. Cell-to-cell variability in gene expression can be tuned
by changing repressor-binding affinities39,40, suggesting that mul-
tisite phosphorylation of WalR may play a critical role in setting the
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Fig. 1 sasA exhibits cell-to-cell variability in expression. a PsasA-yfp expression in log phase culture. Left: YFP image. Color scale indicates the fold change
relative to the population average. Right: Phase contrast. Scale bar indicates 10 µm. b Schematic of the dual-color transcriptional reporter strain used to
characterize the noise in sasA expression. Two copies of the sasA promoter driving different reporters (PsasA-yfp, PsasA-mcherry) are inserted at separate
ectopic loci. c Evidence for extrinsic noise in sasA expression. Images of single cells from the dual reporter strain with significant fluorescence shown in
mCherry (Left), YFP (Center), and phase contrast (Right) channels. Scale bar indicates 5 µm. d Quantification of cellular fluorescence intensities for single
cells in the experiment described in b, c. Values were normalized relative to the population mean value for each channel. Data shown was measured on
~580 cells with detectable fluorescence in both channels. The fluorescence of the two reporters have a Pearson’s correlation coefficient of r ~ 0.90 ± 0.08
(mean ± SEM, 4 experiments). For each reporter, the CV ~ 4.95 ± 0.42 (mean ± SEM, 4 experiments)
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observed distribution of sasA expression across the population. To
test this, we measured the distribution of sasA expression in wild
type (WT) cells and compared it to genetic backgrounds that alter
the phosphorylation state of WalR: ΔprpC (no phosphatase, high
levels of T101~P), and ΔprkC (no kinase, no detectable T101~P)
(Fig. 2b, Supplementary Fig. 5). Qualitatively, in the ΔprpC back-
ground, the frequency of cells with high levels of sasA expression
was strongly reduced, whereas it was strongly increased in the
ΔprkC background. The PrpC-dependent effect on sasA expression
requires PrkC, since the distribution of sasA expression in a strain
lacking both the kinase and phosphatase (Δ(prpC-prkC)) is very
similar to a strain lacking just the kinase.

We first sought to quantify the effect of WalR multisite
phosphorylation on the frequency of “outliers”: cells with a level
of sasA expression above a fixed threshold in each population. We
therefore compared independent measurements of the distribution
of sasA expression in WT, ΔprpC, and Δ(prpC-prkC) backgrounds
(Fig. 2c, left) and found that PrkC significantly affects the mean
frequency of outliers >8 fold by this measure (walRWT, ΔprpC vs.
Δ(prpC-prkC): **p-value ~ 0.004, Kolmogorov-Smirnov test). We
repeated the measurements in a walRT101A background (Fig. 2c,
right) and found that PrkC no longer has a significant effect on
the mean frequency of outliers in the phosphosite mutant
background (walRT101A, ΔprpC vs. Δ(prpC-prkC): p-value ~ 0.56,
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Fig. 2 The Ser/Thr kinase PrkC and phosphatase PrpC regulate cell-to-cell variability in sasA. aModel for PrkC-dependent regulation of sasA. WalR binding
to the sasA promoter represses sasA expression. WalR activity is primarily controlled by phosphorylation on Asp-53 by its cognate histidine kinase WalK,
and secondarily by phosphorylation on Thr-101 by the Ser/Thr kinase PrkC. WalR Thr-101~P can be dephosphorylated by the phosphatase PrpC. Thr-101~P
further enhances the repressing activity of WalR Asp-53~P, resulting in lower expression of sasA under conditions with high Thr-101~P (e.g., ΔprpC). Under
conditions lacking Thr-101~P (e.g., ΔprkC), the increased repression of sasA is relieved. b Histograms demonstrating PrkC-dependent cell-to-cell variability
in sasA. Top: PsasA-yfp reporter activity was quantified by flow cytometry in wild type (WT, gray), ΔprpC (orange), ΔprkC (green), and Δ(prpC-prkC) (blue)
backgrounds. Shaded region of each plot indicates the range of cellular autofluorescence observed. Each histogram was computed from data on ~3.0 × 104

events. Bottom: Smoothed, overlaid histograms of the data shown above for comparison. c Percentage of outliers in each genetic background. At least
4 independent experiments, similar to and including the representative one shown in b, were performed in walRWT (Left) and walRT101A (Right)
backgrounds. Each experiment was normalized to a control and outliers were defined as cells above a fixed threshold level of normalized fluorescence
(~1250 A.U.). Dots represent the percentage of each population that is above the threshold; bars and lines represent the mean and SEM, respectively.
d Summary of each genotype, its effect on the maximal occupancy of the two known WalR phosphosites, and the expected effect on WalR activity relative
to WT. For each genotype the mean percentage of outliers in sasA expression (shown in c) is also summarized. Note that in the ΔprpC background, the
Thr-101 phosphorylation is stabilized (denoted as T101*)
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ns, Kolmogorov-Smirnov test). These results are consistent with
increased WalR activity by Thr-101 phosphorylation causing
increased repression of sasA, and thereby regulating the frequency
of sasA outliers (Fig. 2d). Furthermore, heterologous expression of
PrkC was sufficient to reduce the frequency of outliers observed in
the ΔprkC background (Supplementary Fig. 6A). Heterologous
expression of PrkC was also able to further reduce the variability to
below that observed in the ΔprpC background, approaching the
level of cellular autofluorescence (Supplementary Fig. 6B). This
suggests that at least some of the remaining variability in the ΔprpC
background arises due to incomplete saturation of WalR T101~P.

This definition of outliers, however, relies on the definition of a
cutoff threshold and therefore does not fully address how
multisite phosphorylation affects the distribution of sasA
expression across the entire population. To quantify the effect
of PrkC on the distribution of cell-to-cell variability in sasA
expression, we deconvolved the measured data from the cellular
autofluorescence (see Methods section). This resulted in
autofluorescence-free distributions of sasA expression, allowing
better quantitative comparison of expression between genetic
backgrounds (Fig. 3a). This deconvolution method uses only the
first two moments (i.e., the mean and variance) of the observed
distributions of fluorescence. As such, the auto-fluorescence free
distributions are relatively insensitive to the observed “outliers” in
each distribution, but makes a statistical prediction for those
frequencies. To verify the accuracy of the predictions, these
calculated distributions were re-convolved with the cellular

autofluorescence and the reconstructed data set compared to
the original data (Supplementary Fig. 7). Calculation of the
relative enrichment of cells with a given level of sasA in each
genetic background revealed that maximal T101~P (ΔprpC)
results in exponential changes in the relative abundance of cells at
a given level of sasA compared to the absence of T101~P (ΔprkC)
(Fig. 3b).

Together, the model and the outlier analysis in Fig. 2 suggest
that PrkC-dependent regulation of the distribution of sasA
expression requires the second WalR phosphosite at Thr-101. To
test this, we repeated the deconvolution procedure for a strain
expressing a WalR mutant that lacks the Thr-101 phosphosite,
WalR T101A, and found that the PrkC-dependent effect on sasA
expression is indeed WalR Thr-101-dependent (Fig. 3c, Supple-
mentary Fig. 8A). Thus, multisite phosphorylation is responsible
for the exponential depletion of cells with medium to high levels
of sasA expression in the ΔprpC background (Fig. 3b). We note
that exponential depletion has a strong effect on the frequency of
outliers with high levels of sasA expression, and only modestly
effects the first two moments of the distribution (mean and
variance). Consistently, we found that although the effect on the
frequency of outliers is large, the CV of the distributions
measured by flow cytometry changes by only ~30% (For the
data shown in Fig. 3b: WT ~ 2.87, ΔprpC ~ 2.2, ΔprkC ~ 2.61,
Δ(prpC-prkC) ~ 2.65).

We then measured how intermediate levels of multisite
phosphorylation regulate the distribution of sasA expression
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using the kinase inhibitor staurosporine to progressively inhibit
PrkC activity41 (Supplementary Fig. 8B; 9). The distributions of
sasA expression were again deconvolved (Supplementary Fig. 8C),
and we calculated the relative enrichment of cells with a given
level of sasA fluorescence at increasing concentrations of
staurosporine (Fig. 3d). Titration of PrkC activity resulted in
exponential enrichment of cells with a given level of sasA.
Therefore, even small changes in PrkC activity result in large
changes in the abundance of “outliers”, cells with unusually high
levels of sasA.

sasA expression level continuously predicts antibiotic toler-
ance. Cell-to-cell variability in (p)ppGpp production has been
proposed to result in cell-to-cell variability in antibiotic survi-
val42–45. However, a direct and quantitative relationship between
the expression of a transcriptionally regulated (p)ppGpp syn-
thetase and the probability of survival for an individual cell has
not been demonstrated. We therefore sought to determine if cells
with pre-existing high levels of sasA preferentially survive anti-
biotic exposure, and if so, to provide a model for how the level of
sasA expression influences the probability of survival for a
given cell.

We used ciprofloxacin, a DNA gyrase inhibitor that does not
significantly increase the population average level of sasA
expression25. We measured (Supplementary Fig. 10) and
deconvolved (Fig. 4a, b) the distributions of sasA expression
(PsasA-yfp) both pre-ciprofloxacin and post-ciprofloxacin treat-
ment that results in ~99% killing in both WT and ΔsasA
backgrounds when measured at the bulk population level
(Supplementary Fig. 11). We note that, importantly, the starting

distributions of PsasA-yfp are very similar in both genetic
backgrounds, allowing a direct comparison. Using these distribu-
tions, we calculated the relative enrichment of cells with a given
level of sasA following antibiotic treatment (Fig. 4c), yielding a
simple model for the effect of antibiotic treatment on the
distribution of sasA expression (see Methods section). Because
survival after antibiotic treatment can be affected by many
processes, we separated out the size of the sasA-dependent effect
by using a ΔsasAmutant as a control. WT populations exhibited a
significant increase in the fraction of cells with elevated levels of
sasA (Fig. 4c). This effect is strongly reduced in the ΔsasA
background, demonstrating that sasA has a significant contribu-
tion to survival after ciprofloxacin treatment. We repeated this
analysis on Δ(prpC-prkC) and Δ(prpC-prkC) ΔsasA strains to
determine if a similar effect holds for the phosphorylation mutant
that generates an increased frequency of cells with high levels of
sasA expression (Supplementary Fig. 12). We found that Δ(prpC-
prkC) populations have a ~50% increase in cells with high levels
of sasA both pre-ciprofloxacin and post ciprofloxacin treatment.
Consistent with the results on WT populations, the effect is
partially sasA-mediated. This suggests that rare, pre-existing cells
with increased probability of survival are more abundant in
Δ(prpC-prkC) than in WT populations.

We then sought to determine whether our enrichment model
reflects the probability of survival for cells as a function of sasA
expression. Since SasA is a (p)ppGpp synthetase, the sasA-
dependent enrichment we observe post-ciprofloxacin treatment
could be due to an expression-dependent probability of surviving
antibiotic treatment. Alternately, since the measured increase in
mean fluorescence was relatively small (~2 fold), ciprofloxacin
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Fig. 4 Cells with elevated sasA expression preferentially survive antibiotic treatment. a Autofluorescence-free distributions of sasA expression before
(dark gray) and after (light gray) ciprofloxacin treatment in an otherwise WT background based on the data shown in Supplementary Fig. 10A.
b Autofluorescence-free distributions of sasA expression before (dark red) and after (light red) ciprofloxacin treatment in a ΔsasA background based on the
data shown in Supplementary Fig. 10B. c Enrichment plot following antibiotic treatment for WT and ΔsasA populations. For each genotype in a, b the
frequency of cells with a given level of PsasA-yfp after antibiotic treatment was normalized against the corresponding frequency prior to antibiotic treatment.
Dashed lines and dots indicate the average values used in d, e. d Histograms of PsasA-yfp fluorescence in WT (black) and ΔsasA (red) backgrounds
measured by flow cytometry prior to sorting into “low” (4.1 ± 1.8) or “high” (779.5 ± 134.9) expression groups (relative mean ± SEM, 3 experiments). Each
histogram is comprised of data obtained from ~3.0*104 events and is from a representative experiment used in e. e Relative survival of the “high” and “low”
expression populations in d after treatment with ciprofloxacin for ~3.5 h as in a, b. Bars indicate the mean survival ratio of the “high” to “low” expressing
populations, lines indicate the SEM. The data shown represents 3 independent experiments (paired t-test, p-value ~ 0.009, **). The red dashed line
indicates a survival ratio of 1, indicating no advantage

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13127-z

6 NATURE COMMUNICATIONS |         (2019) 10:5133 | https://doi.org/10.1038/s41467-019-13127-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


could act in a complex, expression-dependent, manner to
generate the observed post-treatment distribution of sasA
expression without affecting survival. To differentiate between
these hypotheses, we used FACS to sort bacteria prior to
ciprofloxacin treatment from both WT and ΔsasA populations
into “high” (upper ~ 1%) and “low” (~average) PsasA-yfp
expression groups (Fig. 4d). Importantly, sorting cells by sasA
expression level prior to ciprofloxacin treatment allows more
sensitive measurements of the survival advantage conferred by
SasA than traditional bulk population level CFU measurements.
In addition, cells were measured and sorted prior to antibiotic
treatment and assayed by CFUs to avoid confounding survival
measurements with changes in cell physiology, fluorescent
protein expression, or lysis in response to ciprofloxacin.
Following ciprofloxacin treatment (as in Fig. 4a, b, Supplemen-
tary Fig. 10), the relative survival of “high” and “low” expression
cells, or the survival ratio, was assayed by plating for CFUs
(Fig. 4e). We observed that cells with high levels of sasA
expression had a survival advantage of 9.5 ± 0.6 for WT, but only
1.8 ± 0.7 in ΔsasA background, demonstrating that cells with high
levels of sasA expression prior to antibiotic treatment preferen-
tially survive.

The average fluorescence cutoff values used in the FACS
experiments, low: 4.1 ± 1.8 and high: 779.5 ± 134.9 (mean ±
SEM, 3 experiments), were then used as inputs for a model
where the enrichment of cells with increased levels of sasA
(Fig. 4c) is caused by increased survival (see Methods section).
The model yielded good agreement with the results of the FACS
experiments: it predicted relative survival ratios of ~9 for wild-
type, and ~2 for ΔsasA, respectively, compared to the measured
values of ~9.5 ± 0.6 (WT) and 1.8 ± 0.7 (ΔsasA) (Fig. 4e). We
found that relaxing the experimental cutoff for the “high”
threshold to ~60% of the value in Fig. 4d resulted in a strong
reduction of the survival advantage for WT: 2.3 ± 0.7 fold
relative survival for WT, and 0.9 ± 0.4 fold for ΔsasA (mean ±
range, 2 experiments) (Supplementary Fig. 13). This is in
reasonably good agreement with a model prediction of 3.7 and
2.0-fold, respectively. Therefore, the enrichment of cells with
elevated levels of sasA post-ciprofloxacin treatment can be
largely attributed to the increased survival probability of pre-
existing cells in the population with elevated sasA expression.

Taken together, our results demonstrate that an important
consequence of PrkC-dependent multisite phosphorylation of
WalR is the regulation of cell-to-cell variability, or noise, in the
WalR regulon gene sasA. By comparing the full distributions of
gene expression, we demonstrate that this effect is not just
confined to the regulation of outliers in gene expression above
an arbitrary threshold, but has an exponential effect on the
relative abundance of cells with a given level of expression in the
population. By analyzing the full distributions of expression, we
are also able to demonstrate that sasA expression continuously
affects the antibiotic tolerance of individual cells: specifically,
the survival probability during a fixed course antibiotic
treatment. This model (see Methods section) is consistent with
cell sorting experiments that explicitly demonstrate that the
observed distributions are a consequence of differential survival
probabilities.

Discussion
Antibiotic tolerance is believed to be an important factor in the
failure of antibiotic treatments and a key step toward the devel-
opment of antibiotic resistance46. Noise in expression of genes
that regulate cellular quiescence are hypothesized to play an
important role in cell-to-cell variability in tolerance. We therefore
sought to trace the origin of the cell-to-cell variability in

expression of the (p)ppGpp synthetase sasA and determine if it
can be regulated by genetic or chemical means. Noise in gene
expression can be conceptually separated into intrinsic and
extrinsic noise. Although it is difficult to design strategies to
specifically target events generated by intrinsic noise, extrinsic
noise may have upstream regulatory pathways that can be
modulated. Therefore, it is significant that the cell-to-cell varia-
bility in sasA was dominated by extrinsic noise at high levels of
expression (Fig. 1) that have the strongest effect on antibiotic
tolerance (Fig. 4). Furthermore, since multisite phosphorylation is
responsible for setting the observed distribution of cell-to-cell
variability (Figs. 2, 3), this regulatory pathway could be a novel
antibiotic target.

Multisite phosphorylation can expand the range of a protein’s
function, generating both switch-like47,48, and graded49,50 chan-
ges in average activity. In contrast, here we observed only mini-
mal changes in the average levels of sasA expression as a function
of PrkC activity, but measured up to a ~100-fold effect on the
frequency of “outliers”, cells with particularly high levels of
expression (Fig. 3b). This response was shown to be graded,
rather than switch-like, likely arising as a consequence of the
integration of signals from two distinct signaling systems. A
single phosphorylation at WalR Asp-53 strongly, but imperfectly,
represses the sasA promoter. The addition of the second phos-
phorylation at Thr-101 by a distinct signaling system then acts as
a second input to further regulate WalR. Interestingly, even small
changes in activity of the second system result in marked changes
in the frequency of outliers. Heterologous expression of PrkC is
capable of reducing the variability observed to nearly cellular
autofluorescence, but does not eliminate it completely. This
remaining variability in sasA may be due to PrkC overexpression
still being unable to completely saturate WalR phosphorylation,
intrinsic noise at the promoter, or as yet unidentified sources.
This demonstrates that PrkC activity is likely heterogeneous in
our culture condition, but does not pinpoint the cause or origin of
the variability. For example, from this study we cannot rule out
that cells with high levels of sasA expression originate in a PrkC-
dependent manner from the colony itself.

Transcriptional regulation of outliers in eukaryotes has been
shown to be predictive of which cancer cells survive drug treat-
ment51. Here, we found that transcriptional regulation by mul-
tisite phosphorylation is also critical for setting the pre-existing
distribution of survival probabilities for cells within a bacterial
population. Distinct from bacterial persistence, which is char-
acterized by bi-phasic killing, these survival probabilities reflect
antibiotic tolerance or the killing kinetics during a relatively short,
fixed time-course, antibiotic treatment52. In the ΔsasA back-
ground, we observed a much weaker dependence of antibiotic
tolerance on sasA expression. This residual dependence is con-
sistent with previous results that have implicated many global
processes in antibiotic tolerance including heterogeneity in
growth state53–55 and enhanced expression of drug efflux
pumps56–58. This is also consistent with the relatively weak cor-
relation in expression between sasA and the constitutive promoter
veg (Supplementary Fig. 2). Indeed, it remains to be seen precisely
how cellular physiology changes in a sasA-expression dependent
manner. SasA has been shown to be important for ribosome
dimerization in B. subtilis27 and for survival during envelope
stress in S. aureus59. More generally, various cellular processes are
known to be directly and indirectly affected by rising (p)ppGpp
levels including inhibition of DNA primase activity60, and
reduction in intracellular GTP pools61 thereby downregulating
rRNA transcription62. As our results show that antibiotic survival
increases continuously with sasA expression, they suggest that
SasA exerts a continuous effect proportional to its level on phy-
siological processes that effect ciprofloxacin killing. Therefore,
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multisite phosphorylation may provide a “bet-hedging” strategy
to regulate the phenotypic diversity of a bacterial population,
serving as a broadly useful mechanism to tune the frequency of
rare phenotypes that facilitate survival under adverse conditions.

Methods
Strain construction. For a listing of strains used in figures, see Supplementary
Table 1. All strains are derivatives of B. subtilis 168 trpC2 unless otherwise noted.
For additional details of strain and plasmid construction, see Supplementary Data 1
and 2, respectively. For a table of oligos used in this study, see
Supplementary Table 2.

Media and culture conditions. B. subtilis cultures were grown in the chemically
defined minimal medium S760, modified from63, supplemented with trace ele-
ments64 and L-tryptophan to early log phase. In each experiment, strains were
streaked out from frozen stocks on LB Lennox and grown overnight (~15 h) at
37 °C. Single colonies were used to inoculate 3 ml liquid cultures in S7 (supple-
mented with inducers as indicated) and cultures were grown to early log phase
(OD600 ~ 0.1–0.2). Dilutions for OD600 matching, if required, were no more
than 1:3.

Microscopy and image analysis. Microscopy was performed on live cells
immobilized on 1% agarose pads prepared with S7 media. Imaging was performed
using a Nikon 90i or a TE2000 microscope with a Phase contrast objective (CFI
Plan Apo Lambda DM ×100 Oil, NA 1.45), an X-Cite light source, a Hamamatsu
Orca ER-AG, and the following filter cubes: YFP (ET Sputter 500/20×, Dm515,
535/30 m), and mCherry (ET Sputter Ex560/40 Dm585 Em630/75). To generate
representative fields of log phase cultures, cultures were concentrated ~20–100×
immediately prior to imaging. Images were processed using Fiji65.

Quantitative measurement of gene expression was performed similarly to ref. 66.
Briefly, phase contrast and fluorescence images (e.g., YFP, mCherry) were acquired
of well separated bacterial cells immobilized on agarose pads. The resulting image
stacks were segmented based on the phase contrast image, and the corresponding
average florescence per pixel within each cell was calculated for each fluorescence
channel using Matlab. A non-fluorescent control strain, treated with antibiotics as
needed, was used as a control to subtract background and autofluorescence in each
channel.

Luminescence assays. Luminescence assays were performed similarly to as
described38. Briefly, the cultures were initially grown to early log phase in a roller
drum at 37 °C. 150 μl of each culture was then loaded into 96 well plates and
100 µg/ml bacitracin added as indicated. Measurements were performed in a Tecan
Infinite 200 plate reader. Luminescence and OD600 were measured at 5 min
intervals with continuous shaking and the values of all samples at a defined time
point after the luminescence reached ~steady state, about 1 h post-treatment, are
reported.

Flow cytometry and cell sorting. Cultures were grown to early log phase and
diluted 2–4 fold with additional S7 media to obtain the optimal density for flow
cytometry. The resulting samples were vortexed vigorously prior to measurement
to disrupt aggregates. Flow cytometry and sorting were performed on a BD
Biosciences FACS Aria II-SORP or a Miltenyi MACSquant VYB (Supplementary
Figures 6 and 12 only). YFP was detected using a blue laser (488 nm) with a 525/50
dichroic, and a 505 long pass filter for both flow cytometers. mCherry was detected
using a yellow/green laser (561 nm) with a 582/15 dichroic, and a 570 long pass
filter (BD Aria only). Fluorescence values were quantitatively compared between
experiments by rescaling each experiment by the mean fluorescence of a control
sample. Sorting was performed with a 70 nm nozzle at 70 PSI. Detection voltages
were set such that the non-fluorescent control had a median value of ~100. Unless
otherwise noted, flow cytometry data shown is representative of at least 3 biological
replicates.

The sorting thresholds were chosen such that the “high” expression gate
corresponds to approximately 1% of the starting population and can be sorted in
~10 min. Higher thresholds than this result in very long sort times due to decreases
in overall sorting efficiency, and also appeared to introduce unwanted variability in
cell physiology. Lower thresholds (e.g., as in Supplementary Fig. 13), resulted in a
strong reduction of the size of the effect.

Survival assays. ~1.5 × 104 cells were sorted by fluorescence and dispensed into
equal volumes of chemically defined growth media (S7). Cultures were incubated in
a roller drum at 37 °C for 10 min, then treated with 500 ng/ml ciprofloxacin for
3.5 h. Serial dilutions of each population were plated for colony forming units
(CFUs) on LB and grown overnight at 30 °C and survival ratios were calculated by
comparing the CFU values between the high and low fluorescence groups. In each
experiment, wild-type and mutant strains were tested in parallel.

Autofluorescence deconvolution method and validation. For each flow cyto-
metry experiment, data from both sasA reporter strains and a nonfluorescent
control were measured. As nonfluorescent controls for each genotype were verified
to have similar autofluorescence, typically a single control measurement was per-
formed for each experiment. Raw measurements of fluorescence intensities from
transcriptional reporter strains have two contributions: (i) the transcriptional
reporter for sasA expression (e.g., PsasA-yfp), the signal of interest; and (ii) back-
ground fluorescence originating from other sources. Measuring the statistics of the
background fluorescence using a non-fluorescent control allowed extraction
(deconvolution) of the sasA transcriptional reporter signal from the total raw
measurement consisting of the sum of this signal and background fluorescence67.

We note that on our data sets, brute force deconvolution in absence of any prior
knowledge of the signal statistics is quite noisy and error prone. However, in
bacteria, the statistics of protein copy numbers is known to be well described by the
Gamma distribution, which is a great advantage as this distribution is fully
specified in terms of its mean and variance. Given the measured mean and variance
of the raw fluorescence intensity and of the autofluorescence, the mean and
variance of the signal can be estimated by assuming that the signal from the sasA
transcriptional reporter is not correlated with background fluorescence. (This
assumption is supported by fluorescence microscopy experiments showing that cell
size was not well correlated with sasA expression, and by computationally verifying
that simple forms of dependency are inconsistent with the observed data.) The
mean and variance of fluorescence from the sasA transcriptional reporter could
then be uniquely determined, as described in more detail in the mathematical
details of the deconvolution procedure.

As mentioned above, we used a Gamma distribution to model the distribution
of the fluorescence signal for a given mean and variance (we separately verified that
other distribution choices, such as lognormal, did not capture the data as well). The
Gamma distribution is routinely applied to fit gene expression data,30 but here we
additionally verified that it closely mimics the underlying signal coming from the
reporter by an in-silico re-convolution of the Gamma-distribution-fitted
autofluorescence-free signal with measured background fluorescence. This was
done by drawing two random fluorescence intensities: one from the estimated
Gamma distribution for the clean (autofluorescence-free) signal and one from the
measured autofluorescence distribution. Adding these two random contributions
gave a single, re-convolved, data point. Repeating this procedure for a number of
times equaling the size of the measured data set yielded the full re-convolved data
set. The empirical distributions of the measured and re-convolved data sets were
then compared (Supplementary Fig. 7) and found to be almost indistinguishable
from those that were originally measured (Supplementary Fig. 3). No smoothing
was applied.

Mathematical details of deconvolution procedure. The raw fluorescence
intensity (R) measured from transcriptional reporter strains were assumed to have
two statistically independent contributions. One coming from the signal of interest
(S), and one coming from other sources, collectively treated here as noise (N). One
then has

R ¼ Sþ N ð1Þ
for every measurement taken, and averaging over all measurements immediately
gives the following relation

<R> ¼ <S>þ <N> ð2Þ
between the mean fluorescence values of the raw fluorescence intensity, the signal
of interest, and the noise. Statistical independence then asserts that the variance in
the fluorescence intensity could also be decomposed in a similar way

VarðRÞ ¼ VarðSÞ þ VarðNÞ: ð3Þ
These relations, and the fact <R>, <N>, Var (R), Var (N) could all be directly

computed from measured data allowed us to estimate the mean, <S>, and variance,
Var (S), of the signal of interest. The full distribution of the signal of interest was
then assumed to be well described by a Gamma distribution, since this has
previously been shown to correctly describe gene expression data in bacteria30 and
we have moreover verified that this assumption is internally consistent with the
data (see Autofluorescence deconvolution method and validation). The probability
density function describing S was therefore modeled as

f sð Þ ¼ 1

ΓðkÞθk s
k�1e�s=θ ; ð4Þ

where Γ �ð Þ denotes the gamma function, and the parameters k and θ are uniquely
set by their relations to the mean

<S> ¼ kθ; ð5Þ
and variance

Var Sð Þ ¼ kθ2; ð6Þ
of the signal.
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Mathematical details of enrichment model. Deconvolved fluorescence intensities
of cells before, fb(s), and after, fa(s), ciprofloxacin treatment were modeled by the
Gamma distribution to test the hypothesis that they are related via

fa sð Þ ¼ C � fb sð Þ � p sð Þ; ð7Þ
where p(s) stands for the probability of a cell with fluorescence intensity s to survive
the prescribed treatment and C is a normalization constant assuring thatZ 1

0
fa sð Þds ¼

Z 1

0
C � fb sð Þ � p sð Þds ¼ 1: ð8Þ

Following treatment, we define the enrichment factor (in the probability density) of
cells with fluorescence level s as

EFðsÞ ¼ fa sð Þ=fb sð Þ: ð9Þ
One could then write the ratio between the survival probability of cells with
fluorescence s1 and s2 (Survival ratio) in the following way

Survival ratio ¼ p s1ð Þ
p s2ð Þ ¼

C � p s1ð Þ
C � p s2ð Þ ¼

fa s1ð Þ=fb s1ð Þ
fa s2ð Þ=fb s2ð Þ ð10Þ

This relation was then used to predict survival ratios and compare with data as
described in the main text.

Significance testing for % outlier data shown in Fig. 2. In Fig. 2c at least 4
independent experiments measuring sasA expression were performed in WT,
ΔprpC, and Δ(prpC-prkC) in otherwise walRWT and walRT101A backgrounds. For
each genotype, the % of cells above a fixed fluorescence threshold was measured
and is shown as black dots. To test if the % values obtained for each genotype are
statistically significant, we treated the independent measurements of %s as mem-
bers of a distribution and performed Kolmogorov-Smirnov testing to determine the
likelihood that the % outliers observed for a comparison genotype pair could be
drawn from the same distribution.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are provided in the paper itself and
associated source data files.
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