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Abstract

Due to the huge number of neuronal cells in the brain and their complex circuit formation,

computer simulation of neuronal activity is indispensable to understanding whole brain

dynamics. Recently, various computational models have been developed based on whole-

brain calcium imaging data. However, these analyses monitor only the activity of neuronal

cell bodies and treat the cells as point unit. This point-neuron model is inexpensive in

computational costs, but the model is unrealistically simplistic at representing intact neural

activities in the brain. Here, we describe a novel three-unit Ordinary Differential Equation

(ODE) model based on the neuronal responses derived from a Caenorhabditis elegans salt-

sensing neuron. We recorded calcium responses in three regions of the ASER neuron using

a simple downstep of NaCl concentration. Our simple ODE model generated from a single

recording can adequately reproduce and predict the temporal responses of each part of the

neuron to various types of NaCl concentration changes. Our strategy which combines a sim-

ple recording data and an ODE mathematical model may be extended to realistically under-

stand whole brain dynamics by computational simulation.

Introduction

Mathematical simulation of neuronal activity in the brain helps to describe neuronal encoding

for certain animal behaviors and to estimate the circuit dynamics regulating those behaviors.

Generating a general theory of neural encoding is a fundamental approach to model the whole

brain circuit in silico. Simulation of whole brain dynamics can also systematically increase the

understanding of the mechanism of neural coding of the sensorimotor integration system in

animals [1]. Using calcium imaging methods, observations of neural activities in living animal

brains has been performed. This approach enables us to analyze circuit dynamics for percep-

tion, memory formation, and decision making dependent on sensory inputs [2–4].
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The nematode Caenorhabditis elegans has a simple nervous system consisting of only 302

neurons. The patterns of synaptic connectivity in these neuronal cells have been identified by

anatomical studies [5, 6]. Real-time calcium imaging from a single-cell level to the whole-brain

level can be applied in living worms [7–9], and this can illuminate dynamic responses of indi-

vidual neurons [10]. This simple, well-characterized nervous system, which is also suitable for

imaging analyses, should be quite useful for analyses of neural coding by integrating actual

neuronal activity from in vivo imaging and computational modeling based on that data. Kato

et al. successfully applied the integration method and demonstrated a close relationship

between sensory-neuronal dynamics and sensory-driven behaviors [11]. However, because

this research only treats the activity of cells as a point-unit, it is not clear whether the morphol-

ogy of the neuronal cells affects to these integration analyses of whole brain activity or not. To

handle intrinsic neuronal activities in the brain for computational simulation, a simple model

with a smaller number of parameters that can reproduce the various characteristics of neuro-

nal activity is preferable. One of the simple models is Izhikevich’s spiking neuron model which

uses only four parameters and can reproduce the spiking and bursting patterns of cortical neu-

rons [12]. Hence, Izhikevich’s model is suitable for exhaustive simulation of neural informa-

tion processing with a low computational burden [13]. C. elegans neurons also show various

patterns of responses to several external stimuli [14], however, Izhikevich’s spiking neuron

model cannot be applied directly to C. elegans neurons since voltage-sensitive sodium channels

have not been identified in the C. elegans genome [15, 16]. On the other hand, to simplify the

analytical method of neural information processing in the worm, a point-neuron model for

neuronal activity has been described [11, 17–22]. The point-neuron model neglects the spatial

structure of the cell(s) to decrease numerical costs for simulations. To address phenomenologi-

cal analysis in neural circuit dynamics in the animal, however, each neuronal activity should

be analyzed based on its temporal and spatial resolution. Recent studies also indicate that com-

partmentalized activities at distinct regions of the neurites exist [23–25], suggesting that C. ele-
gans neurons should be handled as a multi-unit to build a reliable simulation model. As for a

detailed multi-unit model, partial differential equations (PDE) are known to well represent the

spatio-temporal activity of single neuron [26]. However, PDE models are numerically or com-

putationally prohibitive for a large neural circuit like a whole brain [27]. Thus, generating a

multi-unit model which involves the native morphology and the activity of a C. elegans neuron

should be quite helpful for simulating whole-brain circuit activity underlying certain behaviors

in this animal.

In this study, we first characterized the spatio-temporal calcium activity of a salt-sensing

neuron ASER in C. elegans with a simple step-down stimulus of NaCl concentration. To build

a better mathematical model for intact nervous systems, temporal calcium responses from the

dendrite, soma, and axon were observed, and the responses from all parts of the ASER neuron

showed similar dynamics. These temporal responses were simple: they peaked within several

seconds and decayed slowly until the concentration was increased to a higher one. Based on

these actual neuronal-calcium-responses, we constructed a three-unit Ordinary Differential

Equation (ODE) model which can predict the spatio-temporal responses of the ASER neuron

to various types of NaCl concentration stimuli.

Materials and Methods

Strains

The strain used for calcium imaging was taEx138 [Pgcy-5:: G-GECO1.2]. Worms were culti-

vated on standard NGM agar plates seeded with E. coli strain OP50 at room temperature

(* 22˚C).
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Molecular biology and transgenic animals

The Pgcy-5:: G-GECO1.2 DNA construct for the ASER calcium imaging was generated by first

inserting the G-GECO1.2 [28] sequence between the AgeI and EcoRI site of the pPD95.79 vec-

tor (kind gift from Andy Fire). Then, a 3.0 kb gcy-5 promoter region was inserted between the

SphI and SmaI site of the pPD95.79/G-GECO1.2 plasmid. The resulting plasmid was injected

into Bristol (N2) animals at a concentration of 50 ng/μl with the Plin-44:: mCherry injection

marker using a standard microinjection method [29].

Calcium imaging

One or two day old adult transgenic worms were used for imaging. Worms were immobi-

lized in a microfluidic device fabricated from polydimethylsiloxane (PDMS) [30]. The

microfluidic device was set on an inverted fluorescent microscope (Olympus IX71), and

time-lapse images were performed using an ORCA-Flash 4.0 CCD camera (Hamamatsu

Photonics) controlled by HCImage software (Hamamatsu Photonics). Recordings were

started within 3 minutes after removal from food, and images were captured at the rate of 10

frames/sec. The following compositions of buffers for calcium imaging were used: (in mM) 5

KPO4 (pH 6.0), 1 CaCl2, 1 MgSO4, and 0-50 mM NaCl for the stimulation. All the buffers

were adjusted to be 350 mOsmol/L H2O with glycerol [31]. The patterns of salt stimulation

were automated by using the Perfusion Valve Controller System VC-6M (Warner Instru-

ments) and Arduino microcontroller to control solenoid valves (Arduino SRL) with a pre-

generated sequence. A pseudorandom pattern of 50 mM/0 mM NaCl concentration change

was generated by Mersenne Twister [32]. We used both ΔF/Fmax and ΔF/F0 for values of fluo-

rescence intensity change. For analysis of temporal dynamics of each region in the cell, the

ΔF/Fmax value was linearly scaled from 0 to 1 with formula (F − Fmin)/(Fmax − Fmin). Fmax is

the maximum value of the fluorescence intensity, whereas Fmin is the minimum value of the

fluorescence intensity. The ΔF/F0 value was used to compare the neuronal activity to the

NaCl concentration changes. F0 was defined as the average fluorescence in a 5 s window

before stimulation. After background subtraction, the total fluorescence intensity was mea-

sured from individual regions of interest (ROIs) in the ASER neuron. Photo-bleaching was

corrected by fitting a single exponential before and after stimulation and removing the latter

by fitted curve.

A computational model for the spatio-temporal activity in a single neuron

Our three-unit ODE model to quantitatively describe spatio-temporal dynamics of a C. elegans
neuron was formulated as follows:

Dendrite td
dxd
dt
¼ � xd þ yd þ DðWdxs � xdÞ þ IðtÞ; ð1Þ

Soma ts
dxs
dt
¼ � xs þ Ysys þ Dðxd þ xa � xsÞ; ð2Þ

Axon ta
dxa
dt
¼ � xa þ Yaya þ DðWaxs � xaÞ; ð3Þ

where xd, xs, and xa are intracellular calcium dynamics in each region and represent neuronal

activities. Time constants are given as τd = 1.4 s, τs = 3.7 s, τa = 1.2 s from the calculation of
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imaging data (Fig 1). The variable yi is:

dyi
dt
¼ � Axi ði ¼ d; s; aÞ: ð4Þ

yi represents a inactivation variable and provides negative feedback to xi. yi describes the slow

delayed-decay during the decrease of NaCl concentration in Fig 1B. A classic leaky integrate-

and-fire model, which does not have an inactivation variable y, cannot reproduce well this

delayed-decay response, because neuronal response converges to a peak response during pulse

input [11]. We thus hypothesized that temporal dynamics of this delayed-decay is represented

by the inactivation variable which is formulated by the first order differential equation

Fig 1. Characteristics of the spatio-temporal response in the ASER chemosensory neuron to step changes in NaCl

concentration stimuli. (A) Schematic of the experimental set-up to measure calcium response in the ASER neuron. (B) Normalized

calcium dynamics in the dendrite, soma, and axon of the ASER neuron. Gray shading denotes the 60-sec downstep to 0 mM NaCl

concentration from 50 mM NaCl (t = 10 − 70 s). Solid lines represent average data, and the lightly colored region around each line

shows SEM. (C) Time constant to achieve peak response during downstepping of the NaCl concentration. (D) Decay time from peak

response to just before the upstep of the NaCl concentration. (E) Decay time back to baseline after the upstep of NaCl concentration.

Error bars represent SEM. n = 10, *p < 0.05, **p < 0.01, and ***p < 0.001 by Games Howell test.

doi:10.1371/journal.pone.0168415.g001
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dependent on the self-activity. In addition, we also hypothesized that yi is zero before and after

the stimulus presentation. Without this assumption, the simulated trace shows a hyperpolar-

ized response by negative feedback to xi. However, our imaging results showed that the ASER

response was not hyperpolarized after stimulation (Fig 1B). For simplicity, in our model, the yi
works only during the presentation of the input stimulus. The parameter A describes the time-

scale of the inactivation variable yi. Smaller value results in slower inactivation. The parameters

Ys and Ya describe the magnitude of the inactivation variable yi to express decay process during

the downstep of NaCl stimulation in soma and axon respectively. The magnitudes of decay

response during the 0 mM NaCl presentation were different in each unit (Fig 1B). We thus

decided to use different parameters for the magnitudes of the inactivation variable in each

unit.

The parameter D describes a coupling constant in each unit through calcium diffusion. The

variables Wd and Wa describe weights in each unit through calcium diffusion from soma. In

our model, we hypothesized that calcium can diffuse from soma to both dendrite and axon,

and that the diffusion effect from soma depends on the state of dendritic- and axonal-activity.

If the dendrite has a high-activity, Wd is smaller than Wa. On the other hand, if the axon has a

high-activity, Wd is bigger than Wa. Details for Wd and Wa setting are shown in Table 1.

In our model, xi and yi are dimensionless variables, and D, Ys, Ya, and A are dimensionless

free parameters, where t is the time. The initial condition of xi and yi is zero. The free parame-

ters were optimized from calcium responses to a simple pulse-like stimulation (Fig 1B) by

using optimization methods (Table 2). I(t) is the input stimulus to the downstep in NaCl con-

centration. For a simple step-like simulation in Fig 2, I(t) is defined as 1.0 or 0.0, respectively,

when the worm is exposed to 0 mM or 50 mM NaCl. For the flickering- or randomized-stimu-

lation in Figs 3 and 4, the ASER neuron was stimulated with I(t) = 1.5 or 1.0 as the downstep

in NaCl concentration, and with I(t) = 1.0 or 0.5 as an upstep in NaCl concentration to repro-

duce better performance of simulation.

Environment of computer simulation

The computational model was implemented using C on a UNIX workstation in which the

fourth-order Runge-Kutta method with adaptive time steps was included [33].

Table 1. Variables Wd and Wa.

xa > 0 xa < 0 xa = 0

xd > 0 Wd = |xa|/(|xd| + |xa|)

Wa = |xd|/(|xd| + |xa|)

Wd = 0

Wa = 1

Wd = |xa|/(|xd| + |xa|)

Wa = |xd|/(|xd| + |xa|)

xd < 0 Wd = 1

Wa = 0

Wd = |xd|/(|xd| + |xa|)

Wa = |xa|/(|xd| + |xa|)

Wd = 1

Wa = 0

xd = 0 Wd = 0

Wa = 1

Wd = 0

Wa = 1

Wd = 0

Wa = 0

doi:10.1371/journal.pone.0168415.t001

Table 2. Averaged parameters used in our model.

Parameters BF (best) BF (worst) GA

D 7.300000 ± 0.180348 0.500000 ± 0.000000 7.1 ± 0.2

Ys −0.224000 ± 0.00668 −0.14200 ± 0.08181 0.3 ± 0.0

Ya −0.047000 ± 0.012099 −0.246000 ± 0.086753 −0.2 ± 0.0

A 0.105200 ± 0.00244 0.280700 ± 0.000987 0.03 ± 0.0

doi:10.1371/journal.pone.0168415.t002

A Computational Model for a C. elegans Sensory Neuron

PLOS ONE | DOI:10.1371/journal.pone.0168415 January 10, 2017 5 / 19



Fig 2. Modeling of spatio-temporal dynamics in the ASER neuron. (A) Experimental flow for modeling of ASER activity. (B) Simulated

neuronal activities by two parameter search methods. A 60-second input stimulus was applied to the dendrite. Gray shading denotes the

period of input stimulus. Colored lines represent responses estimated by the Genetic Algorithm (GA) method; dark-gray lines represent

Brute-Force (BF) method. Magnification is normalized from 0 (baseline) to 1 (peak value). (C) Average fitness from each parameter search,

BF or GA. Fitness (error) is a summation of the differences between actual neuronal responses and simulation responses. Small values of
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Optimization of free parameters

For modeling, the combination of free parameters D, Ys, Ya, and A was defined using two

methods. We first determined the range of each free parameter that reproduces the

fitness indicate that a model reproduces neuronal activity close to the actual response. The best 100 and worst 100 fitness values were

calculated in the BF search. In GA search, combinations of free parameters evolved over 500 generations. (D) Evolution process of fitness

in GA search. The black line indicates average fitness, and gray lines indicate the individual fitness of eighteen runs. (E) Comparison of the

t1/2 to the peak responses in the dendrite, soma and axon to the input stimulus. ‘Actual’ means the imaging data in Fig 1. (F) Decay times

from peak response to the end of input stimulus. (G) Decay times to baseline after removal of input stimulus. (H) Evaluation of simulated

responses by VAF index.

doi:10.1371/journal.pone.0168415.g002

Fig 3. Actual and simulated responses in the ASER neuron to a fast-flickering stimulus. (A) Gray line indicates the

actual neuronal response in the soma to a flickering change of 50 mM/0 mM NaCl concentration. The green line shows the

simulation of neuronal responses in the soma to a flickering input stimuli. The sequence stimulus input is shown in black. (B)

The magnified view around the 30-40 sec interval in (A). Gray shading represents downsteps of NaCl concentration for

actual imaging (dark-gray) or simulation (green). (C) The magnified view around the 190-200 sec interval in (A). Gray

shading represents downsteps of NaCl concentration for actual imaging (dark-gray) or simulation (green). (D) Evaluation of

simulation by VAF index. The response patterns in the dendrite and axon are shown in S2 Fig.

doi:10.1371/journal.pone.0168415.g003
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corresponding in vivo calcium response data (Fig 1B) based on the results of pilot simulations

(Table 3). In this pilot simulation, we simulated all the combinations of free parameters

(8,000,000) for adequate search ranges of free parameters (see S1 Fig). Next, we applied the

Genetic Algorithm (GA) to determine the optimal combination of free parameters in the neu-

ronal models. GA is an evolutionary method used in a heuristic parameter search [34]. An ini-

tial population of 100 individuals eight binary character lengths was generated by random

selection in each parameter range. Crossover was set to generate the next individuals (off-

spring) using two randomly-selected current individuals (parents). We defined that a cross-

over will occur at any randomly-selected points with probability 0.6. The first offspring was

generated by combining with the former part of male parent and the latter part of female par-

ent, and vice versa for the second offspring. Bit lengths from male or female parent were

dependent on the point of crossover. Randomly-selected bits of individuals were inverted by

mutation of the bit strings with mutation probability 0.01. The fitness of all individuals was

evaluated by comparing their simulation results (neuronal responses) with the in vivo imaging

data of the downstep of NaCl concentration for 60 seconds. The fitness function (Euclidean

distance between two neuronal activities related to the downstep of NaCl concentration for 60

seconds) was defined as follows:

dL ¼
X120

t¼0

jfdðtÞ � x̂dðtÞj þ jfsðtÞ � x̂sðtÞj þ jfaðtÞ � x̂aðtÞjð Þ; ð5Þ

where fi(t) is the calcium responses from actual imaging in each region (Fig 1B). x̂ iðtÞ is the

Fig 4. Neuronal responses to a pseudorandom stimulus. (A) Dark-gray line indicates the actual responses in the soma to

pseudorandom changes of 50 mM/0 mM NaCl concentration. The green line indicates the result of simulation in the soma to a

pseudorandom input stimulus. Gray shading represents the downstep period of NaCl concentration for actual imaging (dark-gray) or

simulation (green). (B) Evaluation of simulation by VAF index. The response patterns in the dendrite and axon are shown in S3 Fig.

doi:10.1371/journal.pone.0168415.g004

Table 3. Ranges of free parameters for BF and GA.

Parameters Range Step size

D [0, 10] 0.1

Ys [−1, +1] 0.1

Ya [−1, +1] 0.1

A [0, 0.3] 0.01

doi:10.1371/journal.pone.0168415.t003
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simulated responses in each region. The actual- and simulated-responses are linear scaled

from 0 to 1. dL is the summation of differences between |fi(t)| and jx̂ iðtÞj for 120 s with interval

0.1 s in all the regions. Smaller values of dL indicate better fitness. The populations of parame-

ter sets evolved up to 500 generations. Optimization of parameter set was repeated 18 times

using the initial population with different random seeds in GA. Pseudorandom numbers were

generated for GA by Mersenne Twister. In addition to GA, we also used the Brute Force (BF)

approach to identify a parameter set expected to fit well to the imaging data in Fig 1B. All com-

binations of free parameters (approximately 1,200,000) were simulated by the BF approach,

and their fitnesses were compared to the GA approach. This dL was calculated only for the

optimization of free parameters from calcium responses to a simple pulse-like stimulation.

Evaluation of the model performance

The output responses from the model were evaluated by analyzing the variance accounted for

(VAF) values as follows:

VAF ¼ 100 � 1 �
varðx � �xÞ

varðxÞ

� �

: ð6Þ

This VAF index was proposed for the evaluation of model performance as scales relative to the

variance of the simulated trace [11, 35]. A model is evaluated as showing good performance

when a high VAF is derived from the model. A lower value, however, indicates that the result-

ing response does not fit the actual imaging data.

Results

Characteristics of the ASER calcium response to the NaCl concentration

step change

Calcium imaging techniques are suited for evaluating neuronal activities in C. elegans as

endogenous voltage-sensitive sodium channels have not been identified in the C. elegans
genome [15, 16]. Instead of the sodium-based classical action potential, C. elegans neurons

likely to use calcium-based signal amplification for generating currents as in the large nema-

tode Ascaris [36–38].

To build a temporal- and spatial-reconstitution model for neuronal activity in C. elegans,
we analyzed calcium responses in each part of the ASER neuron and tried to understand how

salt information is propagated in the dendrite, soma, and axon of this neuron (Fig 1A). The

ASER neuron is activated by the decrease in NaCl concentration [39] and mediates chemotaxis

behaviors by controlling reorientation movements in response to salt gradients [40–44]. We

applied downstep changes in NaCl concentration from 50 mM to 0 mM to transgenic animals

expressing G-GECO1.2 protein [28] specifically in the ASER neuron. The duration of 0 mM

portion was ranged from 3 s to 60 s, and responses in each part of the neuron were compared

(Fig 1B and data not shown). Calcium responses in all the regions of the ASER neuron showed

similar patterns of activity; they rose slowly after the downstep of NaCl concentration, and

ΔF/Fmax value reached its peak position several seconds after changing to 0 mM NaCl (Fig 1B

and data not shown). After reaching peak response, the calcium response gradually decayed

during the downstep to 0 mM NaCl concentration. This decay process during the downstep to

0 mM NaCl concentration lasted until the NaCl concentration was restored to 50 mM (Fig

1B). After the NaCl concentration reached 50 mM (upstep), the ASER activity rapidly returned

to the basal, steady state activity. These features of calcium responses which take a few seconds

to a peak response and decay slowly during the 0 mM NaCl presentation, were consistent with

A Computational Model for a C. elegans Sensory Neuron
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previous studies [31, 39, 43]. Using the responses to the 60-second downstep stimulation, we

quantitatively analyzed their temporal activity (Fig 1C–1E). Response to the peak was fastest in

the axon compared to other regions (Fig 1C). The decay responses during the downstep to 0

mM and at the upstep to 50 mM in the axon were also faster than that of soma or dendrite (Fig

1D and 1E). These results indicate that all regions of the ASER neuron are rapidly activated

upon the decrease in NaCl concentration, suggesting that signals detected by the cilia rapidly

propagate into the dendrite and spread to both soma and axon.

Modeling of spatio-temporal dynamics in the ASER neuron

Based on the calcium imaging as indices of neuronal activity, we constructed a mathematical

model that describes the temporal dynamics of the dendrite, soma, and axon in the ASER neu-

ron (Fig 2A). In our simulation process, the free parameters (D, Ys, Ya, and A) were optimized

by two methods, Brute Force (BF) search and genetic algorithm (GA) (Table 2), and the result-

ing responses were compared with actual imaging data (Fig 2B–2H). Both parameter-search

methods gave quite similar response curves in all unit of the neuron (Fig 2B), and showed low

error if best 100 parameter combinations were used in BF (Fig 2C). However, the BF parame-

ter-search using worst 100 data showed quite high error (Fig 2C). Considering the number of

trial in parameter search (about 50,000 patterns in GA vs. 1.2 million patterns in BF), GA was

more effective than BF when the number of generations increased. Although several discrep-

ancies were observed between actual imaging data and simulation data such as the t1/2 decay to

the 50 mM upstep in the dendrite (Fig 2G), most temporal parameters from simulation seem

to be quite similar to those of actual imaging data. This is also confirmed by calculating VAF

values in each unit: all the percent VAFs were more than 90%. These results suggest that our

three-unit ODE model in combination with the GA parameter optimization can effectively

reproduce the spatio-temporal activity of the actual ASER neuron in response to the step

change in NaCl concentration.

Neuronal and computational responses to rapidly-flickering stimuli

Our model was developed by using a single stimulation: downstep to 0 mM from 50 mM NaCl

concentration change for 60 seconds. We asked whether our model could predict neuronal

responses triggered by other types of stimulations such as weak concentration changes, short-

period continuous concentration change, and so on. First, we applied a rapidly-flickering con-

centration change of NaCl which may be a more realistic model stimulation for naturally-liv-

ing worms. The worms move their head in 1 s period during for their sinusoidal motion [8].

We changed the concentration at 0.5 Hz, the average rate of worm’s head swing during for-

ward movement. At the onset of the flickering stimulus, gross neuronal activity was observed

and this gross activity gradually decreased during the input stimulus (Fig 3A). Similar to the

simple one-downstep stimulation, it took several seconds to reach the peak response, and the

response decayed slowly until the concentration returned to the basal 50 mM level. At high

magnification, we found that calcium concentration in ASER rapidly increased and decreased

following the NaCl concentration change (Fig 3B and 3C). This indicates that water-soluble

chemosensory neurons can respond to such quickly-repeated stimuli. These quick responses

were observed in all unit of the neuron (S2 Fig). The same frequency of input-output stimula-

tion was applied to our ODE simulation model, and we found that the response was quite sim-

ilar to that of calcium imaging data. The VAF value in the dendrite was relatively low, but in

the soma and axon matched to the living cell responses. Thus, our model can predict the neu-

ronal response corresponding to a fast-flickering stimulation.

A Computational Model for a C. elegans Sensory Neuron
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Prediction of neuronal responses to unfixed, randomized changes of

stimulus

Animals may remain in one field with a fixed environment but walk randomly around to find

better conditions. This random movement presents a random change of stimulation to sensory

neurons. So we simulated the temporal activity of ASER with a pseudorandom pattern of

input stimuli applied (Materials and Methods). The response from our ODE simulation

showed a quite similar pattern of activity to the imaging response (Fig 4A). Similar to the

quick flickering stimulation, the VAF value in the dendrite was relatively low compared to

other unit of the neuron, but the soma and axon responded with almost the same time resolu-

tion. We also found that during a long stimulation, the amplitude of neuronal response in the

simulation was maintained, but that of actual response gradually decreased (Fig 4 and S3 Fig).

These data suggest that our ODE model can effectively predict in silico the patterns of neuronal

activity mimicking natural behaviors despite the fact that the modeling was constructed using

the ASER response to a simple downstep concentration change.

Neuronal responses to various NaCl concentration changes

The concentration change of NaCl between 50 mM and 0 mM is much larger than the NaCl

gradients encountered by moving worms under living (physiological) environments. We

applied various patterns of NaCl concentration change, and validated whether our model

could predict neuronal responses to any NaCl concentration changes (Fig 5, S4 and S5 Figs).

As shown in Fig 5A, somatic responses to NaCl concentration changes were observed from a 1

mM change to the 30 mM change. The response curves for over 10 mM concentration changes

were similar to that of 30 mM change; it takes a few seconds to reach peak response, and the

response decays slowly until the next upstep of NaCl concentration is presented to the worms.

However, the peak responses were significantly reduced when the NaCl concentration changes

smaller than 10 mM change were applied to worms. Although decay process after the peak

response in the simulation was slower compared to the actual calcium imaging data, our simu-

lation model also showed the same response curves as the experimental responses. In fact, the

VAF values were decreased when the concentration change was less than 10 mM change, sug-

gesting that this model may not be suitable to predict the response to slight concentration

changes (Fig 5C). As with somatic responses, we also observed that the dendritic and axonal

responses were dependent on the difference in NaCl concentration (S4 and S5 Figs). Accord-

ing to imaging analyses, the simulation model can predict neuronal responses well when the

salt concentrations gradients are higher than 10 mM change.

In these analyses, the peak calcium responses were not proportional to the concentration

differences in NaCl but were sigmoidal (soma in Fig 5D, dendrite in S4(D) Fig, axon in S5(D)

Fig). In simulation, we set the input stimulus to be proportional to the difference of NaCl con-

centration. The peak responses were proportional to the input stimuli, and those responses did

not correspond to the actual responses (Fig 5E, S4(E) and S5(E) Figs). However, the peak tran-

sition pattern to the input stimulus seemed to be similar to that of actual neuronal response if

a sigmoidal transfer function was applied to the peak neuronal activity x(t) (Fig 5F, S4(F) and

S5(F) Figs). Thus, actual imaging analysis suggests that the relationship between the ASER

neuronal activity and NaCl concentration changes is not proportional but sigmoidal.

Discussion

This study used a calcium imaging method to characterize the spatio-temporal activity in the

salt-sensing ASER chemosensory neuron in response to various patterns of NaCl stimulation.

A Computational Model for a C. elegans Sensory Neuron
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By adopting the actual neuronal responses by this calcium imaging, we constructed a novel

mathematical model named the three-unit ODE model. Surprisingly, this model successfully

reproduced the spatio-temporal activity of this neuron to not only a simple downstep-concen-

tration change but also to the various types of stimuli such as randomized concentration

changes (Figs 2, 3 and 4), despite our model was constructed based on calcium responses to a

simple sensory stimulation. This finding implies that a computational model in C. elegans can

be developed relatively easy from the neuronal response to a simple pulse-like stimulation.

The temporal responses of the ASER neuron to the NaCl concentration changes have been

well characterized. Our calcium imaging data also showed the simple temporal responses to

the 50-0 mM downstep of concentration: a relatively fast activation and slow decay followed

Fig 5. Characteristics of neuronal response to various stimulus changes. (A) Average calcium dynamics in neuronal response

(soma) to concentration steps of various sizes from baseline (50 mM NaCl). The ΔF/F0 value is indicated to compare the neuronal

activity to the NaCl concentration changes. n = 20 (n = 10 in 50 mM change). (B) The simulated responses in the soma activity with our

model to input stimuli of various magnitudes. (C) Evaluation of simulation performance are shown in VAF. ‘img. (mM change)’ means the

size of NaCl downstep in mM, and ‘sim’ indicates the input stimulus in simulation. (D) The relationship between the size of NaCl

downstep and triggered actual peak response in the soma. Error bars represent SEM. n = 20 (n = 10 in 50 mM change). (E) The

relationship between the input stimulus (I(t)) and simulated peak response in the soma. (F) The simulated peak response in the soma are

plotted after application of sigmoidal transfer function.

doi:10.1371/journal.pone.0168415.g005
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by peak response during the downstep of NaCl concentration. Although differences of time

constants were observed among three regions, all the responses showed similar temporal

dynamics to various types of NaCl stimuli. In addition, compartmentalized activity was not

observed in both neurites of this neuron as reported in other C. elegans neurons [23–25].

These results suggest that the signal can be rapidly transmitted from the cilia to the axon termi-

nal of this cell. We have also shown that in our imaging analysis, calcium goes up and down

faster in the axon (also up faster in the dendrite) than in the soma (Fig 1). What factor does

influence the time constant of calcium dynamics in each region? The simple answer may be

the volume of regions. In the large space of soma, calcium influx or diffusion into the soma

may be slow down, and calcium binding to the G-GECO protein can be slow even if the similar

concentration of the reporter molecule exists. Alternatively, the number of voltage-sensitive

Ca2+ channels on the plasma membrane may not be uniform among these regions. For exam-

ple, UNC-2, a calcium channel alpha subunit similar to the human P/Q-type calcium channel,

has been shown to localize as puncta on the axon of the AWC chemosensory neurons [45].

This kind of heterogenous localization of Ca2+ channels has been shown to localize predomi-

nantly at neurites, not at soma. On the other hand, upstepping to 50 mM NaCl concentration

rapidly inactivated the ASER, meaning calcium exclusion or sequestration from the cytosol by

as yet unidentified mechanisms. This fast activation and inactivation mechanism are probably

required for proper response of the ASER neuron to a continuous rapidly-flickering concen-

tration change, as we have first shown in this study. Not only ASER, but other chemosensory

neurons AWC and ASH are known to respond temporally to a rapidly-flickering stimulus

faster than 1.0 Hz, the timescale of one head swing [11]. Those data suggest that most C. ele-
gans sensory neurons may potentially respond to fast input stimuli according to worm

movement.

Our novel neuronal model is based on data from a simple step-down stimulus applied for

60 seconds, and this model can represent the spatio-temporal activity of the single neuron

when the same stimulus was applied (Fig 2). In addition, the simulation also fit well with the

actual neuronal response to a short flickering stimulus pattern (Fig 3A and 3B). However, the

simulated response did not correspond to real neuronal activity in the peak response magni-

tude; magnitude of the peak height in the simulation was remained relatively constant during

stimulation, but in live animals, it gradually decreased over the one-min stimulation (Fig 3C).

This feature was also observed when a pseudorandomized concentration change was used for

a stimulation pattern (Fig 4). Similar adaptive responses to fluctuating stimuli in the AWC and

ASH neurons are seen in the C. elegans chemosensory system [11]. Thus, it is probably true

that C. elegans sensory neurons have sensory adaptation mechanisms. To improve our ODE

model, these adaptive responses should be included by adding several parameters. In addition,

our model cannot reproduce quantitative neuronal activity to the temporal responses of each

unit for large or tiny changes of NaCl concentrations. The actual imaging data suggests that

the response of ASER neuron is not linear to the step changes of NaCl concentration but

seems to be sigmoidal (Fig 5D). However, our simulations showed that the relationship

between the peak of the neuronal response and I(t) are a linear to from 0.0 to 30.0 (Fig 5E). In

addition, the responses to smaller concentration changes showed weak discrepancies with live

imaging responses. Thus, a sigmoidal transfer function to the simulated responses was

required to fit simulated peak responses to actual neuronal responses observed in various step

changes in NaCl concentration (Fig 5F). This sigmoidal shape of stimulus/response relation-

ship indicates a threshold range in ASER sensitivity, as seen in other C. elegans sensory neu-

rons [46, 47]. By examining the threshold range to NaCl concentration change in the ASER

neuron or that of other sensory neurons, we will improve our model to quantitatively estimate

neuronal responses to various ranges of external stimuli. In addition, this sigmoidal transfer
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allows to predict the peak responses of ASER neuron caused by various input stimuli. It is also

possible to estimate a NaCl-concentration environments from actual neuronal activity, by

using our model with sigmoidal transfer.

Several functions in the proposed our neuronal response model should be issued to support

the interpretation biophysically. The first issue is the inactivation variable yi in the eq (4). This

variable represents slow delayed-decay during a stimulation (decrease in NaCl concentration).

A classic leaky integrate-and-fire model cannot reproduce well this delayed-decay response,

because neuronal activity converges to a peak response level during pulse input [11]. There-

fore, we supposed that temporal dynamics of this delayed-decay in the ASER neuron might be

represented adding an inactivation variable which is formulated by first order differential

equation dependent on the self-activity. As expected, the simulated responses were well fit to

actual imaging data (Fig 2). A short-period of stimulation such as the 3-second stepdown to 0

mM from 50 mM NaCl concentration does not require this variable, but several C. elegans neu-

rons show similar kinds of decay response [11, 24]. Considering the fact that our inactivation

variable yi does not affect to represent the response patterns to short-period stimulations (data

not shown), this variable can support to simulate neuronal responses to any types of stimula-

tion. The second issue is on the coupling constant D, which is the third term in the eqs (1)–(3).

This parameter was set to represent calcium diffusion in each unit of the ASER neuron and

works for uniform activities in each unit. Although our model is not represented as a term of

calcium influx through voltage-sensitive channels on the soma and axon, calcium responses in

each unit are reproduced well. Therefore, the calcium dynamics in the ASER neuron may be

largely dependent on calcium diffusion more than calcium influx through voltage-sensitive

channel, which may influence on the several parameters of the response curve such as the time

constant to the peak response.

Our final goal is to develop a whole brain, neural computation model which is based on in
vivo imaging of the C. elegans nervous system. Although we did not found large differences in

neuronal responses of three regions, C. elegans neurons should be handled as a multi-unit to

establish a reliable simulation for network modeling. The point-unit model is well suited for

simulation of circuit analysis, but this model bypasses the morphology of each neuron in the

circuit. On the other hand, a detailed multi-unit model, which involves complicated morphol-

ogy of each neuronal cell, is computationally expensive for large-scale network simulations. In

consideration of these restrictions, we constructed a three-unit ODE model for addressing

both disadvantages. The single neuron is divided into three units based on its basic morphol-

ogy, and each unit in our model depends only on time. Our three-unit model is more physio-

logically reliable than a point-unit model and is easier to handle analytically and numerically

than other multi-unit models. Not only three major regions of the ASER neuron, furthermore,

we can also apply our three-unit model to reproduce compartmentalized calcium dynamics on

neurites, which are reported in several C. elegans neurons [23–25]. Although several modifica-

tions will be required in the term of diffusion of our equations, we believe extensibility of our

modeling to several types of neuronal activity in vivo. We also propose GA for the parameter

estimation of a large-scale network modeling. In the present study, selected parameters from

GA showed compatible responses to those from the best BF samples.

In this study, by integrating in vivo imaging and in silico simulations, we have successfully

constructed a simple phenomenological model for a C. elegans neuronal activity. We are also

trying to fuse our model with a synaptic integration model to understand the neural informa-

tion processing for salt-chemotaxis behavior. A graded synaptic transmission has modeled as a

sigmoidal function dependent on its presynaptic activity [21, 48, 49]. By simply assuming a

small coupling constant D in each synaptic region, our model with synaptic integration can

estimate the responses in each compartmentalized subcellular region. This may be, unlike
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other point-neuron models, a strong advantage for whole-brain modeling in C. elegans, and

also will be helpful to figure out mechanisms of sensorimotor integration in animals.

Supporting Information

S1 Fig. Adequacy evaluation of free parameters. All the combinations of free parameters

(8,000,000) were simulated by the eqs (1)–(4) using following ranges: D[0, 50]; A[0, 10]; Ys[-

10, 10]; Ya[-10, 10]. dL in the eq (5) was calculated from both simulation results and imaging

data (Fig 1). (A) All combinations were classified based on the dL value. Smaller dL indicates a

higher reproducibility. Over half combinations are included into the range over dL≧ 1300. (B)

Histgram of dL value less than 1,000. The number of combinations is decreased according to

smaller dL values. The combinations, whose dL was less than 800, were analyzed for the ade-

quacy evaluation of free parameters (gray-shading area). (C) Histgram of the D values. Selected

combinations in (B) were classified based on their D values. Gray shading denotes the range of

D used in our simulation. (D) Histgram of the A value. Same combinations in (C) were classi-

fied based on their A values. Gray shading denotes the range of A used in our simulation. (E)

Histgram of the Ys value. Same combinations in (C) were classified based on their Ys values.

Gray shading denotes the range of Ys used in our simulation. (D) Histgram of the Ya value.

Same combinations in (C) were classified based on their Ya values. Gray shading denotes the

range of Ya used in our simulation.

(TIFF)

S2 Fig. Temporal responses of the dendrite and axon to flickering stimuli with 0.5 s pulse.

The actual response (gray) and simulated responses (blue) of the dendrite (A), and the actual

response (gray) and simulated response (red) of the axon (B) are shown. Stimulus input

sequences are same as in Fig 3.

(TIFF)

S3 Fig. Temporal responses of the dendrite and axon to pseudorandom stimuli. The actual

response (dark-gray) and simulated responses (blue) of the dendrite (A), and the actual

response (dark-gray) and simulated response (red) of the axon (B) are shown. Gray shading

represents downsteps of NaCl concentration for actual imaging or simulation.

(TIFF)

S4 Fig. Characteristics of dendrite response to various stimulus changes. (A) Average cal-

cium dynamics in neuronal response (dendrite) to concentration steps of various sizes from

baseline (50 mM NaCl). The ΔF/F0 value is indicated to compare the neuronal activity to the

NaCl concentration changes. n = 20 (n = 10 in 50 mM change). (B) The simulated responses

in the dendrite activity with our model to input stimuli of various magnitudes. (C) Evaluation

of simulation performance are shown in VAF. ‘img. (mM change)’ means the size of NaCl

downstep in mM, and ‘sim’ indicates the input stimulus in simulation. (D) The relationship

between the size of NaCl downstep and triggered actual peak response in the dendrite. Error

bars represent SEM. n = 20 (n = 10 in 50 mM change). (E) The relationship between the input

stimulus (I(t)) and simulated peak response in the dendrite. (F) The simulated peak response

in the dendrite are plotted after application of sigmoidal transfer function.

(TIFF)

S5 Fig. Characteristics of axon response to various stimulus changes. (A) Average calcium

dynamics in neuronal response (axon) to concentration steps of various sizes from baseline

(50 mM NaCl). The ΔF/F0 value is indicated to compare the neuronal activity to the NaCl con-

centration changes. n = 20 (n = 10 in 50 mM). (B) The simulated responses in the axon activity
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with our model to input stimuli of various magnitudes. (C) Evaluation of simulation perfor-

mance are shown in VAF. ‘img. (mM change)’ means the size of NaCl downstep in mM, and

‘sim’ indicates the input stimulus in simulation. (D) The relationship between the size of NaCl

downstep and triggered actual peak response in the axon. Error bars represent SEM. n = 20

(n = 10 in 50 mM change). (E) The relationship between the input stimulus (I(t)) and simu-

lated peak response in the axon. (F) The simulated peak response in the axon are plotted after

application of sigmoidal transfer function.

(TIFF)
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