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Wound healing and tissue regeneration is an intricate biological process that involves

repair of cellular damage and maintenance of tissue integrity. Cascades involved in

wound healing and tissue regeneration highly overlap with cancer causing pathways.

Usually, subsequent tissue damage events include release of a number of cytokines to

accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately

produced to initiate immune response against several tissue impairments. IL-22 is

a fundamental mediator in inflammation, mucous production, protective role against

pathogens, wound healing, and tissue regeneration. However, accumulating evidence

suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory

and tissue repairing activity. In this review, we summarize how healing effects of IL-22,

when executed in an uncontrollable fashion can lead to carcinogenesis.

Keywords: IL22-producing cells, wound healing—physiopathology, tissue regeneration, carcinogenesis and

metastasis, innate immune response and inflammation

INTRODUCTION

IL-22 is a key signaling molecule that plays a significant role in number of essential physiological
processes ranging from innate immune responses to tissue regeneration. Up-regulation and
down-regulation of IL-22 generate several consequences that define its biological and pathological
activities (1, 2). Owing to pivotal role of IL-22 in normal biological functions, any impairment in
its activity can lead to chronic inflammatory diseases, disturbed wound healing, infections, and
cancers (3, 4). This dual role highlights the therapeutic prospective of modulating the cytokine
network to achieve tumor prevention and treatment.

AIMS AND OBJECTIVES

IL-22 is implicated in a large variety of functions in the body, given its involvement in signaling
pathways. IL-22 has been shown to be a critical signaling molecule in regenerative processes and on
the other hand, certain pathological conditions in several organs depending on its environmental
factors, cytokine milieu and context. Because of its extensive involvement in regeneration, host
defense and pathological conditions, IL-22 has become an important target for clinical and
therapeutic development. Therefore, it is imperative to understand the detailed pathways of IL-22
that can convert a normal physiological process into a pathological environment.
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In this review, we have, in detail, discussed the present state of
knowledge about the biology of IL-22, its sources and targets, and
its role in regeneration that could, in uncontrolled conditions,
lead to tissue pathology or carcinogenesis.

IL-22 BIOCHEMICAL PROPERTIES

IL-22, a novel protein, was discovered for the first time by
Dumoutier et al. in the year 2000 (5). Initially, IL-22 was called
Interleukin-10-related T cell-derived inducible factor due to its
significant structural resemblance (homology of 22%) to mouse
interleukin-10 (5). Further characterization and cloning of IL-
22 revealed the structure of this cytokine to be alpha helical,
comprising of 179 amino acids containing six α-helices which
are usually known as A to F helices. A monomeric bundle like
conformation is formed by these helices, which bind together in
an anti-parallel fashion (6–8). IL-22 is a class II cytokine and
has been categorized in the IL-10 family of cytokines due to
its biochemical and functional characteristics, along with other
interleukins including IL-10, IL-28, IL-26, IL-29, IL-24, and IL-20
(9). In humans, chromosome 12 contains the gene responsible for
encoding IL-22. It is present upstream of the genetic loci for IFN-
γ (interferon gamma) and IL-26 (10). The secreted form of IL-22
generally consists of 146 amino acids (5, 8, 11). Characteristically,
the functional form of IL-22 exists as amonomer, but on the other
hand, it also has the ability to form dimers and tetramers, which
serve as non-functional storage forms (12).

IL-22 Receptors
For elicitation of its downstream effector functions, IL-22
employs its receptor complex which functions as a heterodimeric
complex and is composed of two receptors; IL-22R1 and IL-10R2
(6, 13, 14). This receptor complex is able to further activate a
multitude of downstream signaling cascades (14). IL-22R1 and
IL-10R2 have been categorized in the class II cytokine receptor
family (13). The gene for IL-22R1 is present on chromosome
1p36.11 in close proximity to the IL-28RA gene, and the gene
responsible for encoding IL-10R2 is found on the chromosome
21q22.11, close to the IFNARA, IFNARB, and IFNGRB genes (15,
16). A very high binding affinity has been reported between IL-22
and IL-22R1, whereas it has been observed that IL-22 shows a low
affinity for IL-10R2 (17, 18). When IL-22 encounters IL-22R1, it
binds to the receptor owing to its high binding affinity, which in-
turn results in the occurrence of a conformational modification
of the cytokine. This modification causes an increase in the
affinity of IL-22 to bind to IL-10R2 thereby allowing IL-22 and
IL-22R1 complex to bind to IL-10R2 (7, 19). IL-22 receptor
complex is transmembrane complex associated with Janus kinase
(JAK) and Tyrosine Kinases (TYK). When IL-22 binds with
its receptor complex, it triggers a number of downstream
cascades including JAK, TYK2 phosphorylation which further
phosphorylates and activates STAT-3 (signal transducer and
activator of transcription 3) which is responsible for a wide
array of downstream effects. Some other molecules including
p38, ERK (extracellular signal-regulated kinases), JNK (c-Jun N-
terminal kinases), PI3K (phosphoinositide 3-kinases) are also

activated downstream of IL-22 binding, thereby mediating IL-22
in eliciting its effector functions (1, 20, 21).

IL-22 Binding Protein
Another receptor for IL-22, namely IL-22 binding protein (IL-
22BP) exists in the form of a soluble receptor. It has been
reported that IL-22 has a very high affinity for binding to IL-
22BP (22, 23). IL-22BP acts as a natural antagonist of IL-22 since
it binds to IL-22 at specific sites that are also utilized by IL-
22R1, thereby blocking the binding of IL-22 to its membrane
bound receptor (24). Owing to a stable association with IL-22,
IL-22BP sequesters IL-22 away from IL-22R1 thereby precluding
its downstream signaling activation (25). IL-22BP has been
reported to be expressed in numerous tissues of the body,
including lungs, skin, lymphatic tissue, placental tissue, breast,
and gastrointestinal tract. Dendritic cells play an important role
in producing IL-22BP, along with epithelial cells, macrophages,
and eosinophils (26).

IL-22 SOURCES AND TARGETS

T lymphocytes specifically CD4+ T cells or T helper (Th) cells act
as the primary sources of IL-22 production (27). A unidirectional
flow of cytokine signaling can be seen in the case of IL-22, as
immune cells act as the main source of secretion for IL-22, while
its main targets include non-hematopoietic epithelial cells. For
this reason, IL-22 is considered as an essential factor of immune-
epithelial cross talk. Th1 and Th17 cells are major producers of
IL-22 [Figure 1; (28–30)]. IL-22 production by CD4+ cells is
mainlymediated by cytokines like IL-23, IL-21, IL-12, IL-1β, IL-7,
IL-6, TNF-α (Tumor Necrosis Factor) and some other molecules
like Notch, RORyt and aryl hydrocarbon receptor ligand like
FICZ [6-formylindolo[3,2-b] carbazole (31, 32)]. In Th17 cells,
TGFβ (transforming growth factor beta), in the presence or
absence of IL-6, plays an important role in the production of
both IL-17 as well as IL-22 (9). Furthermore, in peripheral blood,
another major source of IL-22 production is the Th22 cells. In the
presence of TNF-α and IL-6, naïve T cells can be differentiated
into Th22 cells and produce IL-22 (33, 34), which play an
important role in tissue remodeling (35, 36). Notch receptor
family and AhR androgen ligands mediate Th22 cells to produce
IL-22 (37, 38). Transcription factor HIF-1a has also been reported
to stimulate CD4+ cells to produce IL-22 (39). Furthermore,
IL-22 Is also secreted by natural killer T cells, γδT cells, and
CD8+ T cells when they are activated, particularly when IL-23
is present (40). Innate lymphoid cells are another key producer
of IL-22 which include LTi cells (lymphoid tissue inducer cells),
NCR (natural cytotoxicity triggering receptor) positive cells and
NK cells (41–43). Non-hematopoietic cells, macrophages, and
monocytes do not produce IL-22 in humans (28).

Although ubiquitous expression of IL-10R2 is found
throughout the body, the defining factor for the cellular
sensitivity of IL-22 is expression of IL-22R1 (44). It is now
well-recognized that T cells, B cells, Natural Killer cells, and
other immune cells are not targeted by IL-22 (28). Instead,
IL-22R1 expression is seen in tissue cell types that primarily
construct epithelial barriers like bronchial epithelial cells (45),
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FIGURE 1 | Sources of IL-22 and downstream signaling pathways: IL-22 is mainly secreted by immune cells. JAK1 (Janus kinase 1) and TYK2 (Tyrosine kinase 2)

molecules are associated with the cytoplasmic region of IL-22 receptor. When the IL-22 receptor is activated (due to a complex formation between its two

heterodimeric receptors), JAK1 and TYK2 are phosphorylated, which further phosphorylate STAT (signal transducer and activator of transcription) molecules thus

resulting in dimerization and consequent translocation of STATs to the nucleus. Usually STAT3 molecules play key role, but STAT1 and STAT5 may also be involved.

Other than JAK/STAT activation and downstream signaling, IL-22 also activates PI3K/AKT (phosphoinositide 3-kinases/protein kinase B) and MAPK

(mitogen-activated protein kinase) pathways through JAK and TYK2 molecules.

intestinal epithelial and subepithelial myofibroblast (46), skin
keratinocytes and fibroblast (47), and thymic epithelial cells (48).
Other than that IL-22 receptors are also expressed in hepatocytes
(10), pancreatic acinar cells (49) and islet β-cells (50), kidney
epithelial cells (51), and specific tissue resident stem cells (52).
Varied levels of IL-22 has been observed depending upon the
tissues and extracellular environment. A significantly reduced
expression of IL-22 has been noticed in intestinal mucosa of
ulcerative colitis patients due to increased concentration of

TGF-β as compared to healthy colon tissues (53). On the other
hand, over expression of Hes1 enhanced the Il-22 transcription
in Intestinal Epithelial Tissue via STAT3 phosphorylation (54).

IL-22 BIOLOGICAL EFFECTS

IL-22 carries out a number of biological effects including innate
immune response, protective role against pathogens, and tissue
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FIGURE 2 | Role of IL-22 in normal vs. cancer cell. As IL-22 attaches to its receptor, a number of downstream signaling pathways are activated that further result in

the upregulation of many genes. This causes an enhancement of biological functions including innate immune response (MUC1, IL-6, TNF-a, CXCL, IL-8, AAPs),

protections against infections (S100A7, S100A8, S100A9, REGIIIy, REGIIIb, BD-2), and tissue regeneration (Bcl-2 family, VEGF, MMPs). The up-regulation of these

genes is caused by multiple signaling pathways (JAK/STAT3, P38/MAPK, AKT). However, in the case of increased IL-22 or IL-22R, there is persistent activation of

such signaling pathways which results in over-production of cell survival, angiogenic and metastatic genes [CXCL, chemokine (C-X-C motif) ligand 1; MUC1, Mucin1;

AAP, Amyloid Precursor Protein; S100A7/8/9, S100 calcium-binding protein A7/8/9; REG, regenerating islet-derived protein 3; BD-2, beta-defensin 2; VEGF, vascular

endothelial growth factor; MMPs, matrix metalloproteinases].

regeneration. However, over generation of such responses can
gradually lead to carcinogenesis (Figure 2).

Innate Immune Response
Like other cytokines, IL-22 plays pivotal role in generating innate
immune response against various infections. These responses
involve in maintaining homeostasis at epithelial surface,
recruitment of other immune cells by provoking inflammation
and mucus production against pathogens (Figure 2).

Inflammation

IL-22 exhibits many pro-inflammatory effects in order to
generate an immune response. In Colo205, a colon epithelial cell
line, IL-22 effectively generates an acute phase response by up-
regulating expression of serum amyloid protein, α-chymotrypsin,
and haptoglobin (55). In response to any tissue damage or
invasion, IL-22 is known to recruit neutrophils toward the site
of infection as an inflammatory response. IL-22 attained it by

persuading the production of certain chemokines like CXCL1,
CXCL2, and CXCL5 in primary human keratinocytes (56). It
has been observed both in mice and humans that in order to
orchestrate inflammatory response, IL-22 affects the production
of other pro-inflammatory cytokines which include IL-6, IL-
8, and TNF-α. Such cascade reactions have been reported in
hepatic stellate cells, myofibroblasts, and keratinocytes (57, 58).
In cell line like human keratinocyte cell line HaCaT, IL-22
enhances NLRP3 inflammasome which yields IL-1β (59). This
further insinuates IL-22 provoked oxidative signaling, achieved
by Nicotinamide Adenine Dinucleotide Phosphate (NADPH)
oxidase mediated STAT3 activation. This might synergize with
IFN-γ to generate nitric oxide species (60). Pro-inflammatory
activity performed by IL-22 has also been associated with several
inflammatory diseases such as psoriasis and atopic dermatitis
(61, 62). Furthermore, IL-22 mediated airway inflammation
promotes atopic march which usually proceeds to asthma
(63). However, the modulation of IL-22 expression done by
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IL-22BP lessens the damaging effect of inflammation in murine
model (64).

On the other hand, in conditions like hepatitis, asthma,
inflammatory bowel disease and cholangitis, anti-inflammatory
response of IL-22, to counteract the disparaging effect of immune
response, has also been observed (65–68).

Deficiency of IL-22, as observed in patients and Reconstituted
Human Epidermis (RHE) tissues, leading to chronic
inflammatory acne inversa points toward its anti-inflammatory
role in homeostatic condition (69). It allows us to conclude that
IL-22 is capable to perform both pro- and anti-inflammatory
responses, depending upon tissue microenvironment including
cytokine milieu (70).

Mucus Production

Mucus layer in certain epithelial cells serves as innate mechanism
against both bacterial as well as viral infections and also
for other toxins released by parasites (71). IL-22 serves to
up-regulate a number of mucus associated genes, such as
MUC1, MUC3, MUC10, and MUC13 in colonic and tracheal
epithelial cells (46, 72). IL-22 along with another cytokine IL-
17A upholds production of pulmonarymucus as a control against
Gram negative pathogens like Klebsiella pneumonia (72). STAT3
activation via IL-22 gene delivery within colonic epithelial cells
restitutes mucus-producing goblet cells. It rapidly ameliorates
local intestinal inflammation in acute colitis murine model (46).
Decline in IL-22 production is known to play role in HIV
associated immunopathogenesis (73). It is suggested that IL-22
may persuade resistance against HIV infection in people who are
exposed to virus several times by enhancing mucus production
(74). As IL-22 enhances and maintains mucosal barrier integrity,
its transient inhibition is also suggested for mucosal vaccines to
increase T cell response (75).

Protective Role Against Infections
The well-documented role of IL-22 is prevention and defense
against bacterial and other parasitic infections in various organs.
It also protects against viral infections by reducing the follow-up
infections and assisting in tissue retrieval (Figure 2).

Bacterial Infections

Production of antibacterial proteins is one of the main steps
of IL-22 mediated immune responses in murine model (76).
Commonly IL-22 elevates antimicrobial defense by up-regulating
expression of certain antibacterial genes like psoriasin (S100A7),
calgranulin-A (S100A8), calgranulin-B (S100A9), and Beta-
defensin 2 (BD-2) independently or in combination with IL-17A
of IL-17F as per studied in primary human keratinocytes as well
as in patients’ skin biopsies and blood plasma (29, 77). However,
various studies on murine model demonstrated that IL-22
induced STAT3 controls bacterial growth in intestinal epithelial
cells by enhancing expression of proteins specifically RegIIIγ
(regenerating islet-derived protein 3) and RegIIIβ (78). When
present at mucosal surfaces, RegIII proteins serve to exhibit
antimicrobial action against gram-positive bacteria by binding
to the peptidoglycan moieties of bacteria and induce damage to
the bacterial cell wall and separate microbiota from intestinal

epithelial cells to maintain a symbiotic host-bacterial relationship
(79, 80). Similarly, recombinant porcine IL-22 activates STAT3
signaling to protect against Escherichia coli infection (81).

IL-22 plays crucial role in protecting the skin, gastrointestinal
and respiratory tract from both pathogenic and commensal
bacterial infections. Its activity is critical for regulation of gut
microbiota. Depletion of IL-22 producing innate lymphoid cells
causes peripheral diffusion of intestinal commensal bacteria
Alcaligenes. This dissemination is sufficient to induce systemic
inflammation which has potential to facilitate Crohn’s disease
and progressive hepatitis C viral infection (82). Similarly, upon
respiratory infection with Streptococcus pneumonia, type 3
lymphoid cells (ILC3) accumulate in lung tissue. In murine
model, this amassing of ILC3 is followed by production of IL-
22 that defends against lethal infection (83). Knocking out of
IL-22 binding protein (IL-22BP), which reduces IL-22 activity,
is found to decrease pneumococcal murine lung infection
(84). Natural killer cells are reported to provide immunity
against Mycobacterium tuberculosis (Mtb) by releasing IL-22
in infected patients, which constrains intracellular bacterial
growth by accelerating phagolysosomal activity (85). IL-22 also
provides immunity against rapidly emerging Mtb HN878 strain
in mice (86). Mechanism underlying this inhibition involves IL-
22 dependent up-regulation of calgranulin A, an intracellular
signaling molecule that induces phagolysosomal fusion (87).
IL-23 dependent IL-22 production is shown to protect against
Salmonella enterica, which is known to cause diseases ranging
from minor gastroenteritis to serious systemic infections. In
absence of IL-22, murine model developed liver necrosis
upon Salmonella infection (88). In case of chronic Salmonella
gastroenteritis model, antibody mediated IL-22 neutralization
disrupted the epithelial barrier of intestine and increased the
production of pro-inflammatory cytokines in porcine intestinal
epithelial cells (81). IL-22 mediated anti-bacterial activity against
Salmonella is carried out by phagolysosomal fusion in intestinal
epithelial cells (89). That’s why prompt up-regulation of IL-
22 by dendritic cells is seen at site of Salmonella infection to
cause resistance against salmonellosis (90). Furthermore, relative
deficiency of IL-22 is seen in Acne Inversa patients which occurs
due to chronic inflammation caused by persistence cutaneous
bacterial infection (69).

However, contrary to IL-22 protective role against bacterial
infections, one study done on BALB/c mice, implied its
dispensable role in immunity against opportunistic pathogens
likeMycobacterium avium andMycobacterium tuberculosis (91).
Interestingly, IL-22 up-regulation after Listeria monocytogenes
infection was seen in murine model, though, no clear effects on
both primary and secondary bacterial infection were observed
(92). Its pro-inflammatory activity is also connected with
bacterial spread leading to organ failure in septic peritonitis
observed inmurinemodels (93). Elevated level of IL-22 in plasma
has also been related with psoriasis, which markedly reduced
after anti-psoriatic therapy. In this case, IL-22 mediated over-
expressions of antibacterial proteins become the cause of disease
severity (77).

Ample data elucidate how IL-22 exhibits antibacterial activity
by inducing various innate defense mechanisms in epithelia.
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However, in some cases its production is inferred to play roles
other than clearance of bacterial infection, which may also lead
to pathogenicity.

Fungal Infections

IL-22 contribution to protect against fungal infection was first
suggested by a study conducted on mice. Aspergillus fumigatus
infection in lungs was reported to be limited by IL-22 mediated
immunity (94). Acute A. fumigatus exposure instigates IL-7
and IL-21 which further regulate the IL-22 production to carry
out anti-fungal effects (95). IL-22 along with IL-17F is a vital
natural defender against Chronic Mucocutaneous Candidiasis
(CMC). IL-22 provides first line of defense against Candida
albicans as observed in humans and murine models, which
comprises monitoring of fungal growth. And it is required to
seize dissemination of intragastric infection of C. albicans to
other organs like stomach and kidney (96, 97). In addition, IL-
22 exhibit mild role in protecting against cutaneous candidiasis
in mice (98). Likewise, mice deficient in IL-22 were slightly
susceptible to oropharyngeal candidiasis, indicating a role of
IL-22 against oral candidiasis (99). Contrary to given data, IL-
7 mediated IL-22 production orchestrates immunopathogenic
reactions in fungal asthmatic patients (100, 101).

Viral Infections

According to previous studies, IL-22 was known to be incapable
of having direct antiviral response, though its profound role
in post-viral infection tissue repair is well-described. However,
recently IL-22 is identified to exhibit a novel role in regulating
antiviral T cell response in non-lymphoid and lymphoid organs
in the course of acute and persistent viral infections (102). Upon
influenza viral infection, Dendritic Cells (DCs), and activated
Natural Killer T Cells (NKT cells) are ultimate source of IL-
22 (103). This rapid production of IL-22, in murine model is
implied to retain beneficial role in preserving bronchoalveolar,
tracheal, and lung epithelial integrity (104), and post-infection
tissue restoration (105). IL-22 production in sublethal H3N2
influenza virus infection is known to limit lung inflammation and
specifically subsequent secondary bacterial infections (106, 107).
Human immunodeficiency virus (HIV) and other similar viruses
like Simian immunodeficiency virus (SIV) spread via multifocal
injury of gastrointestinal epithelial barrier. Perturbance in
mucosal immunity on onset of SIV infection is known to
be correlated with loss of IL-17 and IL-22 expression (108).
Similarly, impairment in IL-22 production due to Th22 depletion
in mucosal gut is a significant factor in HIV mediated mucosal
immunopathogenesis (73). Anti-HIV candidate Abx464 reduces
intestinal inflammation by stimulating activated macrophages to
produce more IL-22 in mice model (109). Inoculation of IL-22
along with IL-18 to murine model reiterated the capability of
flagellin to inhibit or eradicate Rotavirus (RV) infection (110).
In addition, IL-22 and Interferon lambda (IFN- λ) both retain
the integrity of intestinal epithelial cells to curtail RV replication
(111). Kaposi’s sarcoma-associated herpesvirus (KSHV) latency
depends upon viral mediated IL-22 down-regulation to suppress
antiviral response (112). However, in another study performed

on mice pathogenic role of IL-22 is explicated where IL-
22 signaling is reported to exacerbate lethal West Nile Virus
(WNV) encephalitis prospectively due to WNV neuroinvasion
(113). Correspondingly, IL-22 deficient mice upon Zika Virus
inoculation revealed lessened weight loss, systemic inflammation,
neurological disorders and mortality (114).

IL-22 up-regulation is reported multiple times in liver patients
with chronic Hepatitis B Virus (HBV) or Hepatitis C Virus
(HCV) infection (115–117). IL-22 can manifest a protective as
well as pathogenic role in the liver, by impediment of apoptosis
and stimulation of stem cells. Both outcomes can employ their
protective tasks by increasing number of hepatocytes or can
exhibit their pathological effects by enhancing production of
chemokines, matrix metalloproteinases (MMPs), and neutrophil
recruitment toward the liver in humans and mice (118, 119).
IL-22 pro-inflammatory response following HBV recognition by
liver T cells might play beneficial role in infection (120). IL-22,
mainly manufactured by hepatic γδ T cells is shown to attenuate
liver injury in case of adenovirus-infected murine model (121).
In contrast with IL-22 beneficiary effect, its association with
prognosis in chronic liver inflammation, fibrosis and Hepatitis
B virus-related acute-on-chronic liver failure (HBV-ACLF) have
also been studied (122–124). HCV induced IL-22 up-regulation
in liver cells does not itself regulate antiviral proteins and HCV
replication in cell lines (125). Though, protection against liver
fibrosis and cirrhosis caused due to HCV infection is seen which
can be varied due to genetic alteration in IL-22 gene (4, 126).

Wound Healing and Tissue Regeneration
IL-22 binding with its receptor complex stimulates downstream
signaling pathways that activate cell survival genes. Up-
regulation of cell proliferation genes supports tissue
redevelopment and wound healing [Figure 2; (127)]. IL-22
mediated myofibroblast differentiation and production carry
out skin wound healing process in mice (128). Upon skin
inflammation, increase in IL-22 expression aids keratinocyte
proliferation and migration toward site of injury. Meanwhile,
during the process of wound healing, keratinocyte differentiation
is repressed by IL-22 (127, 129, 130). Deficiency of IL-22 in
injury has shown compromised granulation, ECM production
and formation of tissue and wound contraction. Primary
dermal fibroblast bears IL-22R1 which, when bind with IL-
22, stimulates downstream JAK/STAT pathway. Following
dimerization and translocation of STAT molecules into nucleus,
results in enhanced production of ECM, fibronectin, and
collagen. Therefore, in IL-22 deficient murine model, faulty
wound contraction, and ECM production are observed (131).
Likewise, in another study, absence of IL-22 resulted in
defective recovery from DSS-caused intestinal injury in mice.
Alternatively, a gene delivery system increasing the IL-22
expression in intestinal mucosa enhanced intestinal repair (78).
A separate study elucidates that IL-22 deficiency can also alter
the intestinal microbiota thus worsening disease severity. This
study also signifies the importance of IL-22 in maintaining
the balance between microbiota of the intestine and intestinal
immunity (132).
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IL-22 is also recognized to play key role in tissue regeneration
after an injury. Hepatocyte proliferation serves as a requisite
process in order to undergo tissue regeneration following
hepatectomy. In that scenario, post-surgery IL-22 activation
helps in orchestrating cell survival and proliferation genes
(133, 134). Accumulating evidence through studies on mice
suggest that IL-22 mediated liver regeneration is carried out
in collaboration with IL-6 and TGF-α signaling cascades
(135). Similarly, IL-22 induced STAT3 triggering activates
intestinal stem cells to regenerate epithelium (136, 137). Up-
regulated IL-22 expression during thymic recovery allows for
the renewal and regeneration of thymus (48). In case of
allogeneic hematopoietic cell transplant, donor T-cell derived
IL-22 not only regenerates insulted thymus, but also reduces
chronic graft-versus-host disease (GVHD) likelihood. It is
achieved by IL-22 directed enhanced expression of Aire, an
autoimmune regulator in murine model (138). Upon influenza
virus infection, tracheal epithelial cells underwent proliferation
and regeneration in response to IL-22 expressed in wild-
type mice (104). Though a regenerative potential of IL-22 in
renal tubular injury is well-defined, however, in glomerular
disease, redundancy in IL-22 expression was observed (139). In
addition, IL-22 has been shown to stimulate β-cells expression
of Reg proteins in pancreas. Reg proteins are believed to
participate in regenerating islets (140). However, regenerative
cell survival signaling of IL-22 has a profound potential to shift
toward tumor formation, when over-activated in uncontrolled
manner. It was also observed that IL-22R deficient mice
had a delay in wound healing. IL-22, along with IL-20 and
IL-24 enhances wound healing in type II db/db diabetic
mice by inducing genes involved in re-epithelialization, tissue
remodeling and innate host defense mechanisms from injured
skin (141).

Cellular sources of IL-22 has been observed to vary in different
tissues. As per studies, Th-22 cells represent the major source
of IL-22 in skin (34). Whereas, NK cells contribute as releasing
factor of IL-22 in gut cells at time of inflammation in patients like
ankylosing spondylitis (142). Moreover, STAT-3 mediated IL-22
signaling is associated with mucosal wound healing in epithelial
cells of intestine (78). Similarly, Lymphoid tissue inducer (LTi)
is known to be a source of IL-22 in fetal lymph nodes and
spleen for its regenerative functions (143). Higher levels of IL-
22 in keloid scars have also been observed, however, its exact
role whether as healing or pathological factor is still needed to be
explored (144).

IL-22 IN CANCERS

Despite the well-documented involvement of IL-22 in
inflammatory responses leading to wound healing and tissue
regeneration, in certain circumstances, where there is a
disturbance in the intricate balance between repair and damage,
IL-22 can serve in the direction of carcinogenesis. This is due
to the participation of pathways favoring cellular proliferation
and survival that are common in both wound healing and
carcinogenesis. Consequently, IL-22 has the potential of

promoting carcinogenesis in organs that are responsive to IL-22
due to the presence of its receptor (Figure 2).

Colorectal Cancer
Chronic intestinal inflammation and prolonged tissue damage
are two of the main factors that predispose the colon mucosa
to carcinogenesis. This can be attributed to the underlying
mechanisms involved in wound healing and their potential to
lead toward carcinogenesis in case of a disrupted balance. This
can be based on the fact that signaling pathways driving the
processes of tissue repair and cancer development share many
similarities and several common factors. Therefore, in order to
evade the development of cancer, tight control should be in place
to balance the factors mediating tissue repair in case of tissue
damage. A long term tissue healing response is required in the
presence of persistent tissue damage or chronic inflammation.
However, it can ultimately result in fibrosis and carcinogenesis.
Therefore, development of cancer can be deemed as an outcome
of excess and abnormal healing occurring due to failed regulation
of signaling (Figure 3).

Increasing evidence shows an involvement of IL-22 in
progression of colorectal carcinogenesis. Key cellular sources
responsible for producing IL-22 in the setting of colon cancer
include ILCs and Th22 cells. IL-22 producing CD4+ T cells
have been shown to enhance the stemness of colorectal cancer
(145). Colonic dendritic cells, irrespective of their maturation
level are responsible for secreting high IL-22 levels (146). In
murine models, boosted levels of IL-22 reveal an indispensable
role of this cytokine in the enhancement of tumor burden
and decline in survival rate (147). Furthermore, by augmenting
cellular proliferation and up-regulating inflammation, ILCs have
proven to be essential in transitioning intestinal inflammation
into colorectal cancer (148, 149).

A direct association has been reported between stagings of
colorectal cancer with IL-22. IL-22 administration results in the
acquisition of chemoresistance in human colorectal cancer cell
lines (150). In a murine model of colitis mediated carcinoma,
deficit in IL-22 ensured the development of fewer tumors. At
the molecular level, IL-22 promotes carcinogenesis of colon
cancer cells by activating STAT3, AKT, MAPK, and NFκβ.
The enhancement of tumor cell proliferation also occurs as
a result of modification of p16 and p21 promoters which
are cell cycle checkpoint genes, thus resulting in heightened
carcinogenicity (151, 152). IL-22 demonstrates a dual nature
in facilitating carcinogenesis. The reduced expression of this
cytokine outcomes in hampered tissue repair thus prolonging the
process of inflammation and ultimately results in carcinogenesis.
On the other hand, enhanced IL-22 expression can extend tissue
regeneration process and also stimulate the development of colon
cancer (25). In conformity with studies, the removal of ILCs in
murine model of inflammation mediated carcinogenesis of colon
cells shows a decrease in tumor formation. Similarly, anti-IL-22
antibody administration restored the symptoms associated with
colitis along with the reduction of cancer burden (52). Based
on these findings, it is concluded that a tight regulation and
controlled release of IL-22 is required for effective wound healing
that does not progress to carcinogenesis.
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FIGURE 3 | Role of IL-22 in the intestinal microenvironment: Under normal circumstances, IL-22 plays a very important role in providing protection against infections

by increasing the production of AMPs (antimicrobial peptides) (including REGIII) thus enhancing antibacterial competence. IL-22 also increases mucus secretion by

producing mucins (MUC) in order to ensure protection of epithelial layer and maintenance of epithelial barrier. Furthermore, IL-22 also directly acts on epithelial stem

cells to enhance cellular proliferation. IL-22 in conjunction with other cytokines maintains the overall environment for protection against infections and inflammations.

However, in case of prolonged or uncontrollable expression (as in colitis), IL-22 can result in progression of tumor formation.

Gastric Cancer
IL-22 has been revealed to act as a pro-tumor cytokine in the
cancers associated with gastrointestinal tract. The infiltration of
cellular sources of IL-22 including Th22 and CD4+ T cells in
the intratumoral tissue increases, corresponding to the stage of
tumor (153–155). Patients with gastric tumors have also been
shown to have increased levels of circulating T cells secreting
IL-22 as well as IL-17, thus showing a positive association
with tumor progression (154). In gastric cancer patients,
IL-22R1 expression is augmented that indicates a positive
correspondence with the stage of cancer and lymphatic invasion
(156). Chromosomal mutations including single nucleotide
polymorphisms and chromosomal gains have also been reported
in gastric cancers. A SNP was found in the IL22 locus which
was linked to an increase of about 2.5-folds in the risk of
development of gastric tumors (157). Chromosomal gains at the
IL22RA1 locus 1p36.11 are also observed which suggests that
gastric cancer cells show increased responsiveness to IL-22 due to

a high copy number of IL-22R1 (158). IL-22 gene polymorphisms
were found to increase the susceptibility of developing gastric
cancer in a study that was conducted on Asian population (159).
Furthermore, IL-22 has also been described to aid metastasis
of gastric tumor cells via increasing the expression of matrix
metallopeptidases. Elevated levels of matrix metallopeptidases
enhance the invasiveness of tumors (160). Various studies have
shown boosted levels of IL-22 in chemotherapy resistance
patients to FOLFOX4 adjuvant chemotherapy. Moreover, IL-
22 mediated drug resistance has also been observed in 5-
Fluorouracil and Oxaliplatin treated colon cancer cell lines (150).

Pancreatic Cancer
In humans, the highest expression of IL-22R occurs in the
pancreatic acinar cells, therefore pancreatic cells are one of
the main targets of IL-22 (49, 50). Many studies reveal that
in pancreatic inflammation, IL-22 elicits a protective role (161,
162). This is achieved through up-regulation of anti-apoptotic
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genes including RegIII, thus ensuring the survival of cells
and stimulating tissue repair. Mice deficient in IL-22 exhibit
a worsening of tissue damage in case of pancreatitis. And
this results in an increase in fibrosis (77). However, in the
instance of persistently increased IL-22 expression and signaling
dysregulation, this protective role can be easily manipulated
into a carcinogenic one (163). In pancreatic cancer cell lines,
production and release of various tumor enhancing factors
including VEGFα, Interleukin 10 and TGF-β are stimulated by
IL-22. IL-22 mediated ductal adenocarcinomas of the pancreas
expresses elevated level of IL-22 and IL-22R1, concomitant with
enhanced MMP production and invasion of lymph nodes. This
illustrates the pro-tumor functions of IL-22 [Figure 4; (164,
165)]. Elated expression of systemic IL-22 positively correlates to
poor prognosis of patients undergoing resection for pancreatic
ductal adenocarcinomas. Therefore, the increased intra-tumoral
infiltration of cellular sources of IL-22 including CD4+ cells
and Th22 cells elevated IL-22 levels entail a poor patient
survival outcome (119). IL-22 has been shown to increase the
tumorigenicity and stemness of pancreatic cancer cells, through
JAK/STAT3 signaling (166). IL-22 increases the expression of
VEGF, anti-apoptotic gene Bcl-X and some immunosuppressive
cytokines (167). Likewise, through STAT-3 dependent up-
regulation of MMP9, in vitro IL-22 has been shown to enhance
the metastatic potential of pancreatic cancer cell lines (168).

Skin, Lung, and Brain Cancer
In spite of the fact that IL-22 has a significant function
in autoimmunity and the inflammatory responses of skin,
involvement of IL-22 in skin cancer is rarely documented.
One study reports, an increased infiltration of cells secreting
IL-22 specifically Th22 cells in squamous cells carcinoma of
skin. This infiltration and recruiting of Th22 cells to the site
of cancer was partially due to MMP10 and S100A15 (169).
A higher number of these cells were also found in basal cell
carcinoma. IL-22 increased the proliferative as well as migratory
potential of both basal cell carcinoma as well as squamous cell
carcinoma of skin through STAT3 pathway and AKT (170).
CSA (Cyclosporin) is involved in increasing the Squamous
Cell Carcinoma (SCC) by favoring polarization of Th22 which
results in increased IL-22 production and thus the blockage of
IL22 by using anti-IL-22 antibody could potentially become a
viable therapeutic option (31). Keratinocyte’s response to IL22 is
increased by UVB resulting in skin inflammation (171). Another
in vitro study reveals that IL-22 and IL22R1 expression is
enhanced in tumorous and peri-tumorous tissues, where cellular
proliferation may be encouraged by IL-22 (172). It has also been
reported that IL-22 elevated in lung cancer and renders lung
cancer cells resistant to chemotherapy (173). In patients with
malignant pleural effusions in non-small lung cancer, increased
IL-22 levels have been associated with a poorer prognosis and
survival rate (173). IL-22 has also been shown to be increased in
non-functioning and prolactin-secreting macroadenomas of the
pituitary (174). Murine model of glioma illustrates that increased
IL-22 levels in brain can worsen the symptoms. This may occur
due to enhanced IL-6, TNF, and IL-1β production stimulated
by IL-22. Correspondingly, by using anti-IL-22 antibody or in

IL-22 knock-out mice, the decreased IL-22 expression exhibited
protective roles in the development of glioma (175).

Liver Cancer
IL-22 has an imperative role in liver regeneration and liver
tissue healing. IL-22 shows the ability to reverse the damages
caused to liver by activating wide range of healing agents
and signaling pathways (10, 67, 135, 176–179). However, in
the setting of chronic inflammation as in the case of chronic
HCV and HBV infections, persistently elevated levels of IL-22
seem to aid the process of carcinogenesis (180). Hepatocellular
carcinoma (HCC) tumor-infiltrating lymphocytes (TILs) are
reported to be enriched with IL-22 in consort with elevated
expression of IL-23 and IL-22BP in cancerous tissue. Enhanced
level of IL-22 has been positively correlated with formation
and staging of tumors (181). Reportedly, IL-22 stimulates
STAT3 phosphorylation which elevates the expression of proto-
oncogenes in HCC (168). A study showed that IL-22 liver
specific transgenic murine model was more prone to develop
diethylnitrosamine-induced tumorigenesis (124). In agreement
to this, when IL-22 expressing TILs derived from HCC patients
were introduced into lung cancer xenograft murine model, it
orchestrated oncogenic signaling pathways in the tissue (181).
Overall, IL-22 elevated levels in murine models and liver cancer
patients point toward its vital role in liver tumor development
and progression.

MANIPULATION OF IL-22 AXIS FOR
THERAPEUTIC PURPOSES

The IL-22—IL-22 subunit (IL-22R1) axis has shown a high
potential clinical relevance in inflammatory diseases like
psoriasis, ulcerative colitis, liver and pancreatic damage, graft-
versus-host disease, certain infections, and tumors.

A direct IL-22-neutralizing antibody, ILV-094, has completed
Phase I and II trials for psoriasis and rheumatoid arthritis,
respectively. Neutralization of IL-22may improve disease control
and quality of life for late stage disease patients by reducing
metastasis, chemoresistance and inflammation associated with
cancer (182). Single i.v. dose of recombinant IL-22 (3.5
µg per mouse) resulted in Attenuation of acetaminophen
(paracetamol)-induced liver damage (183). In liver, in vivo IL-
22 cDNA delivery resulted in protection from ConA-, carbon
tetrachloride-, and Fas-induced liver damage (184). These
approaches show great potential for future therapeutics aimed at
enhancing tissue repair or preventing cancer development.

CONCLUSION AND FUTURE DIRECTIONS

T helper cells (including Th1, Th17, and Th22) are the
primary producers of IL-22. Innate lymphoid cells are another
key producer. IL-22 is an inflammatory cytokine so it is
produced as a result of tissue injury and is clearly detectable
in plasma following local tissue inflammation. Therefore, in
inflammatory conditions, like in tissue injury, or infection, IL-22
level is significantly enhanced. Environmental factors, including
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FIGURE 4 | Role of IL-22 in pancreatic ductal adenocarcinoma: IL-22 mediated ductal adenocarcinomas of the pancreas expresses elevated levels of IL-22 and

IL-22R1. Dysregulated and persistently elevated levels of IL-22 stimulates the production and release of various tumor enhancing factors through activation of

JAK/STAT3 pathway. It results in apoptosis dysregulation, angiogenesis and metastasis that lead to advancement of cancer.
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TABLE 1 | Table demonstrates how the role of IL-22 can differ in the setting of acute vs. chronic inflammation and how it can convert the protective role of IL-22 into a

pathological one.

Inflammatory condition Role Tissue/Organ Effect References

Acute inflammation Protective Liver, progenitor cells

Pancreas

Lung

Epithelial Cells

Skin

Colon

Proliferation (104, 105, 127, 133, 134,

136, 137, 161, 162, 185)

Skin

Intestinal mucosa cells

Wound healing (78, 127, 128, 131, 132)

Liver

Kidney

Lung

Thymus

Pancreas

Regeneration (48, 104, 133, 134, 139,

161, 162)

Keratinocytes Cell motility (127, 129, 130)

Skin keratinocytes

Intestinal epithelial cells

Lung

Antimicrobial (29, 77, 78, 83, 89)

Hepatic stellate cells

Keratinocytes

Colon

Myofibroblasts

Epithelial cells

Pro-inflammatory (127, 128, 136, 137, 190)

Intestinal epithelial cells

Goblet cells

Mucus production (71, 72)

Chronic inflammation Pathological Colon Uncontrolled

proliferation

Tumor growth

(145–152)

Lung Tumor growth (173)

Gut Potential risk for tumor

Tumor growth

(153–160)

Liver Tumor growth (124, 168, 180, 181)

Pancreas Tumor growth (163–168)

Skin Tumor growth (31, 169–171)

Brain Tumor growth (174, 175)

In acute inflammatory responses, IL-22 is important for proliferation, wound healing, and regeneration. While the role of IL-22 can become pathological and result in carcinogenesis in

the case of chronic inflammation.

cytokines (mentioned in section IL-22 Sources and Targets as
the causes for induction of IL-22 production), metabolites, and
oxygen play an important role in regulating the time and place
of increasing IL-22 expression as well as shutting it down (77). In
the case of acute inflammation, IL-22 generally plays a protective
role like in skin, liver, colon, pancreas, lungs, and epithelial cells,
however, in the case of chronic inflammation, this protective
role can be converted into a pathological one. The epithelial
cells of many organs, liver cells, fibroblasts, and pancreatic cells
are considered to the principal target of interleukin-22 (77). IL-
22/IL-22R1 axis alter signaling in target cells. The epithelial cells
respond by enhancing the expression levels of many different
proteins including anti-bacterial proteins like BD-2, S100A7-9,
LCN2 (lipocalin-2) chemokines that attract granulocytes (CXCL
1, 5, and 8) and some MMPs. In the respiratory cells of colon
and lungs, IL-22 causes the target cells to generate MUC-1. In
skin epithelium, IL-22 has shown to decrease the expression of

certain proteins implicated in cellular differentiation of epithelial
cells (for example keratin 1 and keratin 10, desmocollin 1,
and involucrin). The chief targets of IL-22 are the pancreatic
cells and liver cells, where IL-22 upregulates Bcl-2, Mcl-1
(important antiapoptotic proteins), mitogenic proteins (like p21
and RBL2), and Bcl-XL. Anti-bacterial proteins like REG3
are also upregulated (178). Additionally, in liver cells, IL-22
stimulation also enhances the levels of some acute phase proteins,
including haptoglobin LPS binding protein and serum amyloid
A (135, 185). In rheumatoid arthritis patients, CC chemokine
ligand 2 (a chemokine that attracts monocytes), and RANKL
(receptor activator of NF-kB ligand), that stimulates monocytes
to be differentiated into osteoclasts, are also increased by IL-22
(186). No effect of IL-22 on activated or resting immune cells
is considered to be an important property of IL-22. IL-22 also
synergizes with other cytokines like IL-17 and interferon gamma
to elicit its role (Table 1).
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However, in some cases, IL-22 signaling differs from
reparative conditions and causes pathological conditions like
inflammatory diseases and cancers due to dysregulation or
increased levels like in chronic inflammation. All of these
above mentioned pathways, that are essential for wound
healing, regeneration and protection, become the cause of
pathological conditions when persistently expressed (as in
chronic inflammatory conditions). Furthermore, the levels of IL-
22/IL-22R1 axis also differ in early and late cancers which shows
its potential to be used as a staging marker in the future. The
influence of IL-22 on hyperplasia, adenoma, early carcinoma,
and late carcinoma stages of cancer was investigated using IL-
22−/−/MMTV-PyMT spontaneous breast cancer mouse model
showing that it is necessary for malignant transformation of
cancer cells which is the critical stage for metastasis. Inhibition
of IL-22 can hinder cancer cell malignancy (187). Similarly
the infiltration of cellular sources of IL-22 including Th22 and
CD4+ T cells in the intratumoral tissue increases, corresponding
to the stage of tumor (153, 155). Patients with gastric tumors
have also been shown to have increased levels of circulating T
cells secreting IL-22 as well as IL-17, thus showing a positive
association with tumor progression (154). In gastric cancer
patients, IL-22R1 expression is augmented that indicates a
positive correspondence with the stage of cancer and lymphatic
invasion (156). Furthermore, IL-22+ immune cell frequency was
also higher in HBV-infected patients with liver cirrhosis than
in non-cirrhotic patients in positive correlation with cirrhotic
stage score (123). In colon cancer, enhanced IL-22 expression is
associated with poor prognosis and an enhanced tumorigenesis,
with protective role shown by IL-22 binding protein (188). IL-
22 and HOXB-AS5 (a long non-coding RNA located in HOX
gene clusters) were upregulated in the serum and tissues of Breast
Cancer patients and were associated with clinical stages which
showed that the IL-22-HOXB-AS5-PI3K/AKT functional axes

may serve as potential molecule biomarkers for diagnosis or
therapeutic strategy (189).

FUTURE DIRECTIONS

Further studies are needed to identify more possible sources of
IL-22 and the pathways involved in its signaling. Furthermore,
role of epigenetic modifications, transcription factors, non-
coding RNAs in IL-22 regulation needs to be further studied.
Understanding IL-22 biology for the potential development of
vaccines needs to be further researched to utilize IL-22 for
vaccine development. The factors and conditions that control
the protective and pathological role of IL-22 needs to be studied
further. Owing to its therapeutic potential in inflammatory
diseases like psoriasis, ulcerative colitis, liver and pancreatic
damage, graft-versus-host disease, certain infections and tumors,
and its association with disease staging, IL-22 can prove to be
useful for therapeutic and prognostic purposes in the future.
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