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Abstract

Damage assessment is a key element in structural health monitoring of various industrial

applications to understand well and predict the response of the material. The big uncertainty

in carbon fiber composite materials response is because of variability in the initiation and

propagation of damage. Developing advanced tools to design with composite materials,

methods for characterizing several damage modes during operation are required. While

there is a significant amount of work on the analysis of acoustic emission (AE) from different

composite materials and many loading cases, this research focuses on applying an unsu-

pervised clustering method for separating AE data into several groups with distinct evolu-

tion. In this paper, we develop an adaptive sampling and unsupervised bivariate data

clustering techniques to characterize the several damage initiations of a composite structure

in different lay-ups. An adaptive sampling technique pre-processes the AE features and

eliminates redundant AE data samples. The reduction of unnecessary AE data depends on

the requirements of the proposed bivariate data clustering technique. The bivariate data

clustering technique groups the AE data (dependent variable) with respect to the mechani-

cal data (independent variable) to assess the damage of the composite structure. Tensile

experiments on carbon fiber reinforced composite laminates (CFRP) in different orientations

are carried out to collect mechanical and AE data and demonstrate the damage modes.

Based on the mechanical stress-strain data, the results show the dominant damage regions

in different lay-ups of specimens and the definition of the different states of damage. In addi-

tion, the states of the damage are observed using Scanning Electron Microscope (SEM)

analysis. Based on the AE data, the results show that the strong linear correlation between

AE and mechanical energy, and the classification of various modes of damage in all lay-ups

of specimens forming clusters of AE energy with respect to the mechanical energy. Further-

more, the validation of the cluster-based characterization and improvement of the sensitivity

of the damage modes classification are observed by the combined knowledge of AE and

mechanical energy and time-frequency spectrum analysis.
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Introduction

Recently, potential applications of carbon fiber composite materials have been explored

because of the material’s properties, which include high stiffness and shape stability, as well

as being lightweight, non-conductive, and economic. Carbon fiber composite materials have

been increasingly used in many applications, including those connected with the aerospace

and space industries, fuel cell cars, sporting goods, turbine blades, and automotive parts. These

composite materials attract more attention than traditional materials such as concrete, wood,

and metal. However, despite having many great advantages in many applications, they are sus-

ceptible to impact damage due to the lack of reinforcement in the out-of-plane direction [1].

In addition, fiber breakage and matrix cracking induced by the de-lamination process are

becoming common failure types when dealing with composite materials. Thus, damage or

defect assessment is necessary for the early detection of potential failure.

Defect assessment is a key element in quality inspection in various industrial applications.

The quality of composite materials and the profitability of the work depend greatly on the

manufacturing process. The presence of inclusions and flaws during the manufacturing pro-

cess causes geometrical discontinuities, affecting failure strength and the overall material

performance [2]. The AE technique offers promising results in the field of structural health

monitoring (SHM) to detect the modes of damage to composite materials. AE sources can

originate matrix cracking, carbon/fiber de-bonding, fiber breakage, and delamination damage

in composite laminates.

There are several studies that provide quantitative results on structural health assessment

using AE. Besides composite structure, the AE technique has proven successful in the real-

time monitoring of damage growth in structural components such as granite [3], metal, and

alloys [4], concrete [5], foam [6], and polymeric coating [7], by correlating the parameters of

AE data to the damage mechanism. In real applications, damage evaluation greatly depends on

experimental results rather than numerical simulations because of the multiple damage mech-

anism, which can cause significant reductions in both tensile and compressive strength [8].

Current practice shows that AE data are able to provide different parameters to identify the

mode of failure occurring in composite fiber materials. AE data can be analyzed in terms of

the evolvement of the amplitude, counting, and energy. Kaltermidou et al. [9] investigated the

damage progression in the composite structure using the rise time of the AE data. R Khamedi

et al. in [10] identified the failure mechanisms of unidirectional composites using wavelet

packet transform before processing it with the absolute energy of the AE data. Munoz et al. in

[11] combined infrared thermography and AE data amplitude techniques to identify the dam-

age evolution in composite fiber. Furthermore, several studies on the AE data generated from

mechanical testing have been reported. Various researchers studied the correlation of AE fea-

tures on composite specimen deformation by tensile testing [9–13]. The most of researchers

highlight the investigation of damage progression in the composite is still a challenging task,

especially when multiaxial stress state occurs.

In addition, AE data collected from tensile and bending tests were grouped and analyzed to

understand the behavior of composite materials under different forces [14]. The mode of dam-

age that occurs during tensile testing is successfully identified by AE. Effective and efficient

analysis is still a relevant topic of study because the data are unique. A trend of embedding a

piezoelectric sensor in the sample structure is quite popular among researchers when dealing

with AE. Sahir et al. [15] monitored composite materials by embedding piezoelectric sensors

in the structure subjected to mechanical tests. Even though the embedded sensor showed

higher sensitivity compared to a sensor mounted on the surface of the structure, this technique

is more costly and has limited applicability, as the sensor has to be integrated during the
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production process. Hence, the AE technique in structural health monitoring is able to provide

sufficient features to identify and predict composite failure modes, including matrix cracking,

debonding, fiber fracture, and delamination. The AE technique employs to monitor the acous-

tic response of the composite laminates throughout the tensile tests. AE is a non-destructive

testing (NDT) method which has been used in several SHM applications for the damage

assessment of carbon fiber composite materials [14, 16–18] and other engineering materials

[15] either as a self-standing method or in integration with other NDT techniques [9]. How-

ever, there is no strong correlation of the AE activity to multiaxial stresses introduced in com-

posite materials found in the literature. In this work, we investigate the association between

the AE features and mechanical data for identifying damage and failure initiations of CFRP

specimens. Afterward, we conduct multiple tensile tests on CFRP specimens in two different

orientations to collect mechanical and AE data. Furthermore, we classify the initiation and

progress of the modes of damage and failure in the tested specimens using mechanical stress-

strain data. Besides, the SEM analysis is carried out on tested specimens to verify the modes of

damage. In addition, an adaptive sampling technique is introduced to resample the AE data by

eliminating redundant data samples to fit the AE data to the bivariate clustering model. After-

ward, the correlation between AE and mechanical data is analyzed. Moreover, an unsupervised

bivariate data clustering technique is utilized to classify the states of damage of CFRP speci-

mens based on the combined knowledge of AE and mechanical data. Finally, sentry function

analysis is performed to verify and improve the sensitivity of various modes of damage initia-

tions and failure classification by the combination of AE and mechanical data.

Materials and tests

This section explains the various features and characteristics of the given specimens. The

details about the experimental tests for mechanical and AE data acquisition are discussed.

Material specimens

Specimens were composed using XPREG1XC110 Carbon Fiber Epoxy Prepeg (0.25 mm

thickness) supplied by Easy Composites Ltd. Staffordshire, United Kingdom. XPREG1XC110

Carbon Fiber Epoxy Prepreg is made from a uniform plain weave of Pyrofil TR30S high

strength 3 k carbon. The specimen was prepared using the single vacuum bagging method and

was subjected to various temperatures up to 120˚C and a constant pressure of 1 MPa using

XC110 epoxy adhesive to produce a (320 x 250 x 2.5) mm plate geometry. The final laminate

consisted of ten layers of uniform plain weave with constant weave dimensions. The specimens

were cut into two types of lay-up which were 45˚ and 90˚ lay-ups with final dimensions of (270

x 250 x 2.5) mm using a diamond-coated abrasive cutter. The 45˚ and 90˚ layouts were deter-

mined by referring to the initial 0˚ of the vertical direction of the plain weave. The specimen

underwent pre-conditioning at 23˚C for 16 hours in a desiccator to stabilize the humidity

prior to the tensile test.

Tensile test

The mechanical testing was performed using a tensile test following the ASTM D3039/D, a

standard testing method to generate damage modes of composite material. Both types of speci-

mens were fixed between the jaws of the machine to undergo testing. These tests were con-

ducted using a universal tensile machine (UTM) manufactured by Gotech Testing Machine

Inc. (AI-7000L) with a 15 kN capacity, at room temperature. For each type of lay-up, at least

four specimens were tested. The average value and the standard deviation were then recorded.
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Acoustic emission data acquisition

The AE sensor was installed onto the specimen to monitor the damage of the composite mate-

rial continuously during the tensile tests. However, installing the AE sensor is complicated

when dealing with a composite specimen. Unlike metallic specimens, conventional magnetic

sensor holders are not applicable to composite specimens. There is a risk of breakage when the

specimen undergoes the harsh operating test. Thus, the AE sensor must be mounted onto the

specimen properly in such a way that the AE data are efficiently transmitted. Fig 1 shows the

sensor holder design, which is mainly used for composite specimens. The holder was made

from lightweight aluminum, making it easy to handle. The sensor was placed in the middle of

the holder.

AE data and mechanical data were recorded simultaneously when the tensile tests started

and continuously acquired the data during the tests. AE Data were monitored on one channel

of the data acquisition system with a built-in low-noise preamplifier. In this work, a piezoelec-

tric sensor was used for data acquisition and R6I-Auto Sensor Test (AST) was executed to fix

the threshold to 40 dB. The sensors were attached to the specimen together with the coupling

agent and secured with our modified sensor holder to hold the sensor onto the specimen in

Fig 2. The whole system including the sensor was supplied by Physical Acoustics Corporation

(USA). The pencil lead break procedure was used to calibrate the acquisition system prior to

tensile testing. Values for peak definition time (PDT), hit definition time (HDT), and hit lock-

out time (HLT) was employed in the acquisition software. The values were PDT = 400 μs,

HDT = 800 μs, and HLT = 1000 ms. These values depend on the type and nature of the mate-

rial. The main AE data parameters measured throughout the tensile test are depicted in an

example of the AE waveform in Fig 3. In this work, the classification of AE parameters was

done using input features namely rise time, counts, amplitude, duration, data strength, root

mean square (RMS), absolute energy, and peak frequency. A short description of each feature

in the waveform is as follows:

Fig 1. AE sensor holder drawing.

https://doi.org/10.1371/journal.pone.0242022.g001
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• Rise time—the time from first threshold crossing to the highest voltage point on the

waveform

• Counts—number of times that data cross the detection threshold

• Amplitude—highest voltage in the AE waveform, expressed on the dB AE amplitude scale

• Duration—the time from first to last threshold crossing (μs)

• Signal strength—time integral of the absolute signal voltage expressed in pVs (picovolt-sec-

onds) referend to the sensor before any amplification.

• Root mean square (RMS)—voltage during a period based on software programable time

constant, referend to the input to the signal processing board

Fig 2. The acoustic emission (AE) sensor position on the specimen, focusing on the location of the sensor and the

special sensor holder.

https://doi.org/10.1371/journal.pone.0242022.g002

Fig 3. Features of an AE waveform.

https://doi.org/10.1371/journal.pone.0242022.g003
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• Absolute energy (Abs. energy)—time integral of the square of the signal voltage at sensor

before any amplification divided by a 10kΩ impedance and express in aJ (attojoule)

Morphology of specimen

The morphologies of the specimens were taken using a scanning electron microscope (SEM)

manufactured by ZEISS (Zeiss Supra 55 VP). A small breaking part of the specimen was cut

and held over a holder and sprayed with gold (Au) to enable and improve the quality of the

image taken prior to SEM analysis.

Proposed partitioning-based adaptive data sampling and

clustering technique

Partitioning-based data clustering is a well-known unsupervised machine learning technique

that is broadly used in the data mining field to discretize the time-series data into classes.

Time-series data refer to the systematic data collection process where data are sampled by the

sensors at every constant time interval. Partitioning clustering technique groups similar data

into clusters to reduce the data redundancy and characterize the classes of data. This paper

introduces a new partitioning-based data clustering technique which is mainly divided into

two modules. The first module is histogram-based adaptive data sampling which partitions

similar data into the pre-defined number of histogram bins. Afterward, we choose the number

of desired data samples from each bin adaptively by eliminating data redundancy. The concept

of histogram-based adaptive data sampling is adopted from the work in [19]. The second mod-

ule is an unsupervised clustering technique named bivariate K-Means clustering which groups

bivariate data into clusters to classify the relationship among different groups of data of a par-

ticular dependent variable with respect to the groups of data of another independent variable.

The development steps of the proposed technique are presented in Algorithm 1 where the

procedural steps according to (lines 1–16) sampling data adaptively and based on (lines 17–27)

clustering bivariate datasets into different groups.

Adaptive data sampling

An adaptive data sampling is utilized in this paper to eliminate the desired number of AE

redundant data samples before the bivariate data clustering technique is performed. In order

to maintain equality in the number of data samples of the different datasets during bivariate

data clustering, the proposed adaptive sampling technique is utilized. The development steps

of this module are as follows:

Initially, the given dataset Xi where i = 1, 2, 3, �����, n is used as input original data samples.

Then, the desired number of bins Nb to partition data into different groups is defined. The

range Δd of the given dataset Xi is computed to determine the constant discretization step Wd

using the Equation in 1 and 2.

Dd ¼ maxXi � minXi; ð1Þ

Wd ¼
maxXi � minXi

Nb

� �

: ð2Þ

Algorithm 1: Adaptive Data Sampling and Unsupervised Clustering Algorithm
Input: Xi—Original data samples
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parameter: Nb ¼ jX
0

i j—Number of bins
Output: c1, c2, c3, � � �ck—Number of clusters
1 Compute the range Δd of Xi and determine the discretization step Wd
2 Update all bin edges Ek and set the limit of constant bin intervals
recursively
3 for i  0, 1, 2, 3, �����, Xi−1 do
4 Compute Histogram based on the limits of each bin interval
5 Discretize the data of Xi into different bins bk based on the given
intervals
6 Ne = 0 {Number of elements in each bk};
7 end
8 for k = 0 to bk−1 do
9 Compute Ne of each bk;

10 Compute the desired elements Nk ¼
Ne�jX

0

i j

jXi j

l m
from each bk;

11 Standardized the number of elements Sbk lð Þ ¼ k bkðlÞ� mk
sk
k of each bk;

12 Select the lowest standardized elements SbL where |SbL| = Nk;
13 De-standardized the SbL by Dbk = (Sbk(l) × σk + μk);
14 Concatenate samples X0i ¼ X0i þ Dbk fwhere initial X0i ¼ ½0�g;
15 end
16 Aggregated samples X0i, where X0i < Xi;
17 Initilize the cluster centroids randomly K = μ1, μ2, μ3, � � �μk{where
k = 1, 2, 3, � � �K};
18 repeat
19 for i = 1 to X0i do
20 Assign X0i to the nearest μk;

21 ‘ ¼
XK

k¼1

Xn

i¼1

kX0i � mKk
2
¼
XK

k¼1

Xn

i¼1

gikkX
0

i � mkk
2
fwhere gik ¼ f

1 if k¼agrmin
l kX

0

i � mkk
2

0 else g;

22 end
23 for k = 1, 2, 3, � � �K do

24 ck ¼
Xn

i¼1

gik {Number of elements assigned to cluster k};

25 mk ¼
1

ck

Xn

i¼1

gikX
0

i {μk is set by averaging all assigned elements to k};

26 end
27 until Convergence;

The sequence of edges Ek of the bins is computed based on the arithmetic or linear sequence

where k = 1, 2, 3, �����, K. In a sequence of calculated edges, each new term is accounted by add-

ing a constant interval-width Wd to the previous term. For example, the difference between

any two adjacent edges is Wd. The recursive definition is therefore as in Eq 3:

Ek ¼ Ek� 1 þWd; E1 ¼ E0 þWd; ð3Þ

where the term Ek = E1, E2, E3, � � �Ek and E0 = min(Xi) is defined as the lower bound of edges

as well as the bins K constant intervals (E0, E1], (E1, E2], (E2, E3], � � �, (Ek−1, Ek]. The elements

which fall between the lower-bound edge and upper-bound edge (e.g., E0 and E1) of a bin, then

they are considered for that particular bin. Afterwards, we compute the number of elements

Ne of each bin bk to determine the number of desired elements Nk from each bk. The computed

desired elements Nk are sampled from the elements of bk those are the closest to the central

value of that particular bin. The desired central elements of each bk are chosen based on the

standardized scores of the elements of each bk. Then, we de-standardize the selected elements

from each bk and aggregate them in X0i .
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Bivariate data clustering

Data clustering is performed on the aggregated dataset X0i to group similar data into clusters

for classification. The partitioning-based bivariate K-Means clustering algorithm is adopted in

this paper which is able to group a particular dataset into different clusters with respect to the

other various type of datasets. Moreover, this algorithm classifies the relation among different

clusters of a particular dataset with the different clusters of other datasets. Initially, we deter-

mine the number of cluster centroids randomly. Then, the data samples of the given dataset X0i
are assigned to the nearest centroid based on the euclidean distance method. Afterward, the

number of assigned elements of each cluster is computed to determine the central value of that

particular cluster. If the initial cluster centroids change after averaging, then repeat the cluster-

ing processes according to the Algorithm 1 (lines 18–27) until the computed centroids are

unchanged.

Results and discussion

Damage and failure regions characterization of carbon fiber composite

based on mechanical data

In this section, the mechanical data are utilized to identify the modes of damage to CFRP spec-

imens. The data were collected from several tensile tests on similar CFRP specimens in two

different orientations (45˚ and 90˚). The total average duration of tensile test is 1200 sec (sam-

pling rate 240 ms) for 45˚ lay-up and 250 sec (sampling rate 50 ms) for 90˚ lay-up respectively.

The tensile strength of a CFRP test specimen is mainly conferred by the interfacial bonding

between the carbon fibers and the epoxy matrix. Images of the post-mortem specimen for

both lay-ups are shown in Fig 4. The type of failure mode is difficult to identify from visual

observation. Commonly, a stress-strain relationship curve, as shown in Fig 5, is used to deter-

mine the mode of failure during the test. In general, all specimens showed a load increasing in

the experimental curves due to the fiber pull-out within the epoxy matrix at the end of the test.

However, the fiber orientation of the specimen definitely affected the mechanical properties

including tensile strength and elongation.

A material can be classified into two types: a ductile material or a brittle material. As shown

in Fig 5a, the 45˚ lay-up specimen is prone to ductile behaviour; the specimen tends to elongate

more and the specimen breaks with a brushlike failure. Meanwhile in Fig 5b, the 90˚ specimen

has a transient elongation and the sample breaks apart in an almost perfect transverse direc-

tion, showing brittle behaviour. This can be seen by referring to the comparison of the ultimate

tensile strength (UTS) and strain percentages of the CFRP specimen, shown in Table 1. The

second column of Table 1 indicates that the UTS value for the 90˚ specimen is approximately

twice the value for the 45˚ specimen.

Fig 4. The images for specimens (a) 45˚ and (b) 90˚ lay-up before and after the tensile test.

https://doi.org/10.1371/journal.pone.0242022.g004
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For the 45˚ lay-up specimen, as shown in Fig 6a, the stress-strain curves were divided into

three possible regions: Regions I-elastic region; Region II-yielding region; and Region III-

strain hardening region. Region I is categorized between the initial point of strain and the pro-

portional limit point. The slope of this region will generate the value of Young Modulus (Mod-

ulus of Elasticity) for the material. Region II is defined between the proportional limit point

and the Yield Strength (YS). The YS point is computed from the value of 2% strain offset.

While the Region III is characterized between the YS point and the Ultimate Tensile Strength

(UTS) point.

In Region I, the material experience elastic behavior where it can restore its original shape

after the load is removed. Beyond Region I, the elastic behavior is taking place by inelastic

Fig 5. Graph stress-strain curve of specimen lay-ups (a) 45˚ and (b) 90˚.

https://doi.org/10.1371/journal.pone.0242022.g005

Table 1. Average ultimate tensile strength (UTS) and tensile strain for the 45˚ and 90˚ specimens.

Specimen lay up Ultimate Tensile strength (MPa) Tensile strain (%)

45˚ 214.70 15.03

90˚ 403.00 0.72

https://doi.org/10.1371/journal.pone.0242022.t001

Fig 6. Designated regions for two different specimens. (a) 45˚ lay-up and (b) 90˚ lay-up.

https://doi.org/10.1371/journal.pone.0242022.g006
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behavior so-called plastic deformation. In this phase, the molecular structure of the material

starts to stretch until to the point of maximum stress that can be exerted before the material

begins to permanently deform. This phenomenon is related to dislocation motion. At the

exact point of where Region II starts, the material reaches its yield strength, and the necking

effect takes place. The stress was continuously applied until the maximum stress point was

reached, before the material bonding severely damage. The maximum stress point is known as

the ultimate tensile strength (UTS).

A different phenomenon occurred on the 90˚ lay-up specimen in Fig 6b. The specimen

experience only two regions are characterized such as Region I and Region III. The yielding

region (Region II) is difficult to determine due to the specimen stretch almost directly propor-

tional to the stress. The Region I and Region II overlap with the tangent line of the whole set

line, making it impossible to distinguish the second region for this specimen. The stress-strain

relationship of the specimen is almost linear indicated the specimen is brittle where the speci-

men will suddenly break after passing the UTS at the end of Region III. Thus, there were only

two main regions for the 90˚ lay-up specimen.

Scanning Electron Microscope (SEM) analysis

As predicted, the SEM images show the morphology of the failure mode after the specimens

underwent the tensile test. The micro-structure of each specimen, with varying fiber orienta-

tion, impacted the mode of failure during the tensile test. In the following images, the mode of

failure is noted. Similar trends of non-localized damage accumulation throughout the material

are shown for the 45˚ and 90˚ lay-ups.

It is noted that the CFRP specimens are susceptible to impact damage due to the energy

absorption during the tensile testing [8]. The energy is generally dispersed from the different

combinations of composite damage, including matrix damage, fiber fracture, and fiber

debonding, as illustrated in Fig 7.

The characteristics of surface fracture for the weak and strong interfaces are shown in Fig

7a. The fairly smooth surface, indicating a strong interface, can be seen on the 45˚ specimen,

while the brushlike failure with an extensive pull-out effect indicates the extensive debonding

which occurred in the 90˚ specimen. The difference in damage appearance of those two images

emphasizes the importance of inter-facial strength based on the fiber layout orientation in con-

trolling fracture behavior and toughness. This is due to the amount of absorbed energy from

the fiber pull-out effect of the matrix. The delamination damage, as shown in Fig 7a and 7c,

propagates from the transverse ply crack. Delamination occurs in Region III before the sample

completely breaks. The break is induced by interlaminar shear stress which is escalated by

matrix cracks or the ply stiffness mismatch.

Matrix damage and fiber fracture can be observed by the appearance of matrix cracking

and fiber pull-out in both specimens in Fig 7b and 7d. For the 90˚ specimen, the longitudinal

split through matrix fracture and debonding from the fiber is seen which is caused by the ten-

sile load in the perpendicular direction of the loading axis. Meanwhile, matrix cracking and

fiber debonding of both specimens are clearly noticed with the appearance of fiber pull-out

from the matrix bond and fiber fracture.

Damage and failure regions characterization of carbon fiber composite

based on AE data clustering

In this section, the AE data are utilized to classify damage and failure regions of carbon fiber

composite that are already characterized by the mechanical data. Five tensile tests were carried

out on a similar type of specimen in two different orientations 45˚ and 90˚ for AE data
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collection. AE data were collected as a waveform in every 500 ms during tensile tests using a

single AE sensor node. The average duration of AE data collection is equal to the duration of

stress-strain data collection as mentioned in Section 27. Each waveform consists of 1024 data

samples (sampling rate 488 μs) and different AE features as highlighted in Fig 3. We consider

average absolute energy (Abs energy) in this work which was mostly utilized in the literature

[20] to characterize damage and failure phases of various types of composite materials. The

average Abs energy was computed from each waveform energy feature. Afterward, we cumu-

late the average Abs energy samples to find the non-linear cumulative Abs energy curve

from the lowest to highest in a temporal order. The significant changes in the gradient of this

cumulative Abs energy curve are considered to be the moment of damage and failure region

initiations.

Impact on cumulative Abs energy with the variation of mechanical load. In this sec-

tion, AE data samples were considered to observe the behavior of the average cumulative Abs

energy curve over the changes of mechanical data samples. Both types of selected data samples

is computed by averaging the data samples collected from the five tensile tests on a similar type

of specimen. Figs 8 and 9 show the data correlation between AE data and mechanical data

for two different orientations 45˚ and 90˚ of specimen respectively. The plots represent the

Fig 7. SEM morphology of each specimen: (a,b) represent the 45˚ specimen and (c,d) present the 90˚ specimen.

https://doi.org/10.1371/journal.pone.0242022.g007
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initiations of the different phases in the gradients of the average cumulative Abs energy curves

with the increment of the mechanical load for both lay-ups. Hence, it can be claimed that the

AE data have a strong correlation with the mechanical data. Thus, we performed statistical

analysis to validate and compute the correlation matrix between AE data and mechanical data

for 45˚ and 90˚ specimens in the following section.

Correlation analysis between AE data and mechanical data based on statistical test.

Correlation analysis is widely utilized as a statistical procedure to measure and assess the statis-

tical relationship between two different continuous variables. Pearson’s correlation test was

used to measure the association or relationship between the AE Data and mechanical data

because it is based on the covariance method. Figs 10 and 11 present the correlation matrices

between AE data and tensile test mechanical data for 45˚ and 90˚ specimens respectively. Both

correlation matrices highlight the linear relationship of the Pearson’s correlation coefficients

Fig 8. Average cumulative Abs energy versus average mechanical load of the 45˚ specimen.

https://doi.org/10.1371/journal.pone.0242022.g008

Fig 9. Average cumulative Abs energy versus an average mechanical load of the 90˚ specimen.

https://doi.org/10.1371/journal.pone.0242022.g009
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and histograms of the AE data and mechanical data. The results show that there is a strong

positive linear relationship exist between them and Pearson’s correlation coefficients R = 0.98

for 45˚ specimen and R = 0.94 for 90˚ specimen. It is concluded that the two sets of data of

both orientations were significantly correlated. Moreover, the obtained results meant that AE

data can be used to characterize damage and failure regions that were characterized by the

mechanical data to a reasonable extent. In order to classify the damage and failure of carbon

fiber composite laminates, the proposed unsupervised partitioning clustering technique will be

utilized on AE data with respect to the mechanical data in this paper. For that, the number of

data samples should be equal for both AE data and mechanical data. However, the sampling

rate of AE data was much higher than the mechanical data during our tensile tests. The reason

is that the AE data are very sensitive to noise and acquire high-resolution AE features. Hence,

an adaptive sampling technique should be applied to AE data to reduce the number of unnec-

essary samples before the proposed data clustering technique is performed.

Redundant AE data reduction based on adaptive sampling technique. In this section,

we utilize our proposed adaptive sampling technique on AE data to eliminate a number of

redundant data samples. The total number of collected original data samples is 22000 in the

Fig 10. Correlation matrix between AE data and mechanical data collected from 45˚ specimen.

https://doi.org/10.1371/journal.pone.0242022.g010

Fig 11. Correlation matrix between AE data and mechanical data collected from 90˚ specimen.

https://doi.org/10.1371/journal.pone.0242022.g011
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case of 45˚ specimen and 6200 in the case of 90˚ specimen presented in Figs 8 and 9. After-

ward, the proposed technique is applied to original data samples of both lay-ups specimens

and reduced to 5000 data samples that are equal to the collected mechanical data samples. Figs

12 and 13 show the originality between the original data and reduced data pattern after the

unnecessary redundant data reduction using our proposed technique. The results show that

the originality of the reduced AE data samples of both lay-ups specimens is almost equal to the

original data samples because the deviation between the original and reduced data samples is

less. Hence, based on the obtained results, it can be claimed that the original AE data samples

have a strong temporal correlation, and thus our proposed technique performed well in terms

of accuracy even after a significant amount of data reduction.

Statistical data analysis after unnecessary AE data reduction. The statistical properties

of the original and reduced AE data are illustrated in this section to evaluate our proposed

adaptive sampling technique. The original data samples (1x22000) and (1x6200) for the 45˚

Fig 12. Performance comparison of original AE data and reduced AE data of 45˚ specimen using the proposed

adaptive sampling technique.

https://doi.org/10.1371/journal.pone.0242022.g012

Fig 13. Performance comparison of original AE data and reduced AE data of 90˚ specimen using the proposed

adaptive sampling technique.

https://doi.org/10.1371/journal.pone.0242022.g013
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and 90˚ specimens respectively as well as the reduced data samples (1x5000) for both lay-ups

are considered. Figs 14 and 15 show the statistical properties of the distribution of AE data and

the spread of data over the boxplots for the 45˚ and 90˚ specimens correspondingly. From the

boxplots, it can be observed that the minimum, maximum, upper quartile, lower quartile, and

median values of the distribution maintained almost the same as the original AE datasets for

both lay-ups. Thus, it can be claimed that our proposed technique only eliminates redundant

data by maintaining almost similar statistical properties.

Damage and failure characterization based on unsupervised clustering on AE data with

respect to the mechanical data. In this section, the proposed unsupervised clustering tech-

nique has been utilized on bivariate data to form the desired number of clusters for the damage

and failure classifications of carbon fiber composite laminates. In bivariate data clustering, 5000

AE data samples (cumulative Abs energy) of each orientation are considered as a dependent

variable and 5000 mechanical data samples (Stress) are selected as an independent variable. The

Fig 14. A comparison between original data and reduced data of 45˚ specimen by the adaptive sampling

technique versus cumulative Abs energy.

https://doi.org/10.1371/journal.pone.0242022.g014

Fig 15. A comparison between original data and reduced data of 90˚ specimen by the adaptive sampling

technique versus cumulative Abs energy.

https://doi.org/10.1371/journal.pone.0242022.g015
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desired number of clusters 3 and 2 are defined for the data samples of 45˚ and 90˚ specimens

respectively. Afterward, the performance of our proposed clustering technique was investigated

based on bivariate data analysis. Fig 16 represents the different groups of AE cumulative Abs

energy with respect to the mechanical stress data of 45˚ specimen. The plot shows a line curve

of cumulative Abs energy with three “red circles” that are represented the central points of the

three different clusters. A set of AE data of each cluster characterizes a particular phase of degra-

dation of carbon fiber composite laminates which had already been identified earlier based on

mechanical data. The values of AE data and mechanical data for initiative damage and failure

classification in three different regions are highlighted in the rectangular boxes in the plot. On

the other hand, Fig 17 shows two different groups of AE data with respect to the mechanical

data of 90˚ specimen. These two groups of data represent the two different regions named

Region-I and Region-III defined based on the mechanical data. In this orientation, Region-II

is unable to classify due to the strong linear behavior of the mechanical data over time. The

parameters values of both regions are stated in the boxes of the graph. Hence, it can be claimed

that the cumulative Abs energy is an important feature of AE data to classify the damage initia-

tion and failure regions. Moreover, the proposed unsupervised clustering performs well in

detecting damage initiation and failure regions of carbon fiber composite based on AE data and

these regions are almost similar regions identified by the stress-strain curve.

Damage and failure characterization by the combination of AE data and mechanical

data. In this section, the sentry function f(x) introduced by [21], has been utilized to validate

our proposed clustering technique and increase the sensitivity of the damage and failure

regions classification. The sentry function is defined as the logarithm of mechanical energy or

stress Em(Xi) to the AE energy or cumulative Abs energy EAEðX
0

iÞ. The sentry function charac-

terizes the damage and failure regions based on the combination of mechanical energy and AE

energy. Based on the state of the damage in the composite material structure, the sentry func-

tion shows one of the four following trends:

Fig 16. Classification of different regions for 45˚ specimen based on bivariate data clustering.

https://doi.org/10.1371/journal.pone.0242022.g016
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1. Increasing trend: it shows that the structure is still intact and no damage or some micro

damages occurred in the material.

2. Sharp drop: it reveals that huge damage occurred in the material.

3. Constant trend: It demonstrates that there is a balance between the degrading mechanisms,

like damages, and the strengthening mechanisms, like fiber bridging.

4. Gradually decreasing: It is emphasizing that the load-carrying capability of the composite

structure is losing gradually.

Accordingly, the first big drop in the sentry function curve is considered as the moment of

the damage initiation. Figs 18 and 19 show the curves of the sentry function of 45˚ and 90˚

specimens. The increasing graph trend up to damage initiation-I indicates the elastic region

(Region I) where the fiber reinforcement was still bonded strongly to the matrix with the abil-

ity to return to the original shape when the load is released. The curve line within the damage

Initiation-I and damage Initiation-II shows two events that happened in the specimen struc-

tural bonding such as matrix micro damaging and matrix de-bonding from the fiber respec-

tively. Afterward, the specimen reaches the maximum yield strength. Then the trend-line

shows almost constant trends until the Failure-III event has occurred. During this event, the

specimen underwent a strain hardening phase (Region III) where the fiber reinforcement was

stretched gradually to the load until reaching the UTS and severe fiber pull-out occurred and

broke. It can be observed that the above-mentioned trends exist in the following curves in

Figs 18 and 19 of both lay-ups which characterize the different state of the composite material

structure.

Damage and failure characterization based on AE data. In this section, an individual

AE waveform has been selected for each damage region and interpreted the particular

Fig 17. Classification of different regions for 90˚ specimen based on bivariate data clustering.

https://doi.org/10.1371/journal.pone.0242022.g017
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waveform based on time-frequency analysis. It allows the analytical extraction of temporal and

spectral information from a complex group of AE data. Each damage initiation of the response

AE signal x(t) is transformed based on Fast Fourier Transform (FFT) to extract the frequency

spectrum. Figs 20 and 21 illustrate the original AE signals and energy spectrum of different

damage and failure regions for carbon fiber specimens in 45˚ and 90˚ lay-ups. The damage

and failure classifications of can be achieved by means of the energy (E), root-mean-square

(RMS) Bandwidth (B) and the average frequency (ωc). These parameters are explained below:

E ¼
1

2p

XN� 1

n¼0

jXnj
2
; ð4Þ

oc ¼

XN� 1

n¼0

onjXnj
2

2pE
;

ð5Þ

Fig 18. Sentry function analysis by the combination of AE and mechanical data of 45˚ specimen.

https://doi.org/10.1371/journal.pone.0242022.g018

Fig 19. Sentry function analysis by the combination of AE and mechanical data of 90˚ specimen.

https://doi.org/10.1371/journal.pone.0242022.g019
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Fig 20. Original AE signals for several damage regions of the 45˚ specimen and their corresponding frequency spectrum.

https://doi.org/10.1371/journal.pone.0242022.g020

Fig 21. Original AE signals for several damage regions of the 90˚ specimen and their corresponding frequency spectrum.

https://doi.org/10.1371/journal.pone.0242022.g021
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B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

E

XN� 1

n¼0

ðon � ocÞ
2
jXnj

2

s

; ð6Þ

where Xn and ωn are the FFT and angular frequency of the response signal x(t) in discreet time

y(n) respectively and N is the number of discrete time-points. Fig 22 shows the comparison

between bandwidth and average frequency for three different regions of the damage in 45˚

lay-up specimen. It can be observed that the AE activity varies in different stages of damage.

As observed in Fig 22, the bandwidth ranged from 1.36kHz to 3553.72kHz for “Damage I”,

0.83kHz to 4212.61kHz for “Damage II” and 0.14kHz to 5785.73kHz for “Damage III” as well

as the average bandwidth is 312.23kHz, 248.09kHz and 216.43kHz for “Damage I”, “Damage

II” and “Damage III” respectively. In contrast, the various ranges of average frequency can be

seen which are from 0kHz to 359.9561309kHz, 0kHz to 537.56kHz, 0kHz to 1409.01kHz for

“Damage I”, “Damage II” and “Damage III” accordingly. On the other hand, Fig 23 presents

the comparison between bandwidth and average frequency for two different regions of the

damage in 90˚ lay-up specimen. According to the obtained measurements in Fig 23, the band-

width ranges can be observed from 0.14kHz to 4981.69kHz for “Damage I” and 0.25kHz to

5422.55kHz for “Damage II” as well as the average bandwidth is 240.56kHz and 209.05kHz for

“Damage I” and “Damage II” respectively. Apart from it, two different ranges of average fre-

quency are computed which are from 0kHz to 836.56kHz and 0kHz to 1090.49kHz for “Dam-

age I” and “Damage II” correspondingly. According to the obtained results, the different levels

of damage can be classified utilizing the different ranges of bandwidth and average frequency.

Fig 22. A comparison between bandwidth and average frequency for three different regions of the damage in 45˚ lay-up

specimen.

https://doi.org/10.1371/journal.pone.0242022.g022
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It can also be observed that the activities of AE parameters increase in a different regions of

damage initiations accordingly.

Concluding remarks

Our findings and analysis confirm the fact that data clustering is very useful for detecting

early-stage damage and failure modes of CFRP specimens. The proposed bivariate data cluster-

ing contributes to a better understanding of the structural behavior of CFRP specimens with

high sensitivity in damage monitoring, hence making it more useful for non-destructive struc-

ture health monitoring applications.

The several modes of damages monitor using the AE data recorded by a piezoelectric sensor

attached to CFRP specimens with different lay-up patterns, whilst undergoing tensile tests.

The mechanical information of the CFRP specimen combines with AE data to monitor the

initiation and progress of the mode of damages in the tested specimens. According to the

mechanical stress-strain curve, the behavior of the 45˚ specimen falls under the label of ductile

properties, while the 90˚ specimen is prone to brittle behavior. The validation of the mechani-

cal data-based definitions was rectified using SEM analysis. The proposed clustering technique

characterizes the mode of damages of CFRP specimens into different clusters with respect to

the mechanical data. The validation of cluster-based classification is performed by the sentry

function analysis with the increment of the sensitivity of the several states of damage initia-

tions. The main contribution of this paper is to prove that there is a strong correlation between

AE and stress-strain data in a specific lay-up but no correlation in different lay-up for the same

carbon fiber composite materials. Characterizing the several acoustic responses of the same

Fig 23. A comparison between bandwidth and average frequency for two different regions of the damage in 90˚ lay-up

specimen.

https://doi.org/10.1371/journal.pone.0242022.g023
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carbon fiber material under various stress states using our bivariate data clustering technique

which can be utilized for SHM in real composite structures. Moreover, the time-frequency

spectrum and sentry function analysis provide the acoustic responses and dissimilar AE fea-

tures of different modes of damage initiation regions that can be used to develop the early-

stage damage detection and failure prediction tool for the composite materials. Therefore, it

can be concluded that the introduced methods in this paper are successful in the characteriza-

tion process to enhance the classification of the damage mechanisms in actual occurring

modes of delamination. The extension of this work will focus on the utilization of other avail-

able important AE features to classify the modes of damage of different composite materials.
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