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Abstract

Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state 

affecting patients who have a prolonged recovery after the acute phase of a large inflammatory 

insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this 

review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular 

dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate 

and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma 

and sepsis the immunosuppressive functions of these cells have mostly been described in acute 

phase of inflammation so far, and their clinical relevance for the development of prolonged 

immunosuppression is mostly unknown. It is suggested that the initial immune imbalance 

determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset 

of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these 

cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural 

killer T cells (NKT cells), TCR-a CD4− CD8− double-negative T cells (DN T cells), and B cells 

can contribute to the development of post-traumatic and septic immunosuppression. Altogether, 

we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression 

and dysfunction to the development of chronic immune disbalance. Further, we will provide an 

overview of promising diagnostic and therapeutic interventions, whose potential to overcome the 

detrimental immunosuppression after trauma and sepsis is currently being tested.

All figures contain adapted graphics from Les Laboratoirs Servier - Medical Art under the terms of the Creative Commons 
Attribution License (CC BY) for noncommercial use. The use, distribution, or reproduction in other forums is permitted: https://
creativecommons.org/licenses/by/3.0/legalcode, last access April 30, 2020.

Address reprint requests to Charles C. Caldwell, PhD, Division of Research, Department of Surgery, College of Medicine, University 
of Cincinnati, MSB SRU G479, 231 Albert Sabin Way, Cincinnati, OH 45267. charles.caldwell@uc.edu. 

The authors report no conflicts of interest.

HHS Public Access
Author manuscript
Shock. Author manuscript; available in PMC 2025 December 31.

Published in final edited form as:
Shock. 2021 June 01; 55(6): 723–741. doi:10.1097/SHK.0000000000001675.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Keywords

B cells; double-negative T cells; immunosuppression; innate lymphoid cells; natural killer T cells; 
regulatory T cells

DEFINITION OF PICS

Many septic and severe trauma patients require treatment in the intensive care unit 

(ICU). Due to improved clinical care in recent years, however, acute mortality rates have 

decreased in these patients (1). Nevertheless, death rates are still unacceptably high and 

current research shows that even survivors often have prolonged ICU stays, struggle with 

recovery after discharge, and fail to regain their strength (2). For the development of better 

diagnostics and therapies for this condition, it became necessary to define it more clearly. In 

2012, Gentile et al. (2) coined the term PICS: Persistent Inflammation, Immunosuppression 

and Catabolism Syndrome and defined the clinical determinants: prolonged hospitalization 

(> 14 days), inflammation (C-reactive protein levels > 150 μg/dL), immune suppression 

(lymphocyte count < 800/mm3), and weight loss despite adequate nutrition (loss of lean 

body mass > 10% during hospitalization or BMI < 18 and, serum albumin < 3.0 g/dL) (2, 

3). The profound impact of the disease, however, becomes evident when looking at the time 

after hospitalization: many PICS patients require treatment in long-term acute care facilities

—Rosenthal and Moore (4) report that by 1 year after ICU discharge, 50% of PICS patients 

have died and another 25% remain bedridden. This inability to properly recover is especially 

observed in older patients, who suffer from persistent inflammation more frequently than 

younger adults (5). With medical and technical progress making it more likely to survive the 

initial inflammatory insult, the aging of Western societies thus makes it evident that there is 

a dire need for a better understanding of the prolonged immune-imbalance underlying PICS 

(2). The focus of this review is set on the contribution of lymphocytes to the development 

of PICS after trauma and sepsis; however, PICS can also be found in ICU patients suffering 

from other diseases.

IMMUNOSUPPRESSION AND IMMUNE CELL DYSFUNCTION IN PICS

PICS is characterized by concurrent inflammation and immunosuppression. Currently, it is 

not fully understood why these apparently contradictory conditions co-exist and how this is 

regulated.

Danger-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns 

(PAMPs) can drive inflammation in response to sterile or non-sterile tissue damage (6, 7). 

Recognition of DAMPs and PAMPs via Toll like receptors (TLRs) causes activation of 

the innate immune system, especially neutrophils and macrophages (8, 9). These, among 

other cells, maintain inflammation by producing pro-inflammatory cytokines, i.e., tumor 

necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein 

1 (MCP-1), and macrophage inflammatory protein 1 alpha (MIP1α) (10, 11). In particular, 

IL-6 plays a significant role as it potently promotes the production of acute phase proteins, 

immune cell maturation and activation, and directly correlates with the severity of injury 

(12, 13).
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Compared to the well-characterized effects of these proinflammatory cytokines, the 

immunosuppressive effects of anti-inflammatory cytokines are poorly understood. 

Prominent anti-inflammatory cytokines in trauma and sepsis are interleukin-10 (IL-10) and 

transforming growth factor beta (TGF-β) (14-16). Newer studies also attribute an important 

role to thymic stromal lymphopoietin (17, 18). All three cytokines significantly change 

immunologic functions in innate and adaptive immune cells. In the context of trauma and 

infection, these changes contribute to an immunosuppressive state that is marked by T cell 

exhaustion (19, 20), increased proportions of regulatory T cells (Tregs) directly after trauma 

or onset of sepsis (21, 22), paralysis of monocytes, macrophages, and dendritic cells (2, 23, 

24), neutrophil dysfunction (25), and stark expansion and activation of immunosuppressive 

myeloid-derived suppressor cells (MDSCs) (26).

CONTRIBUTION OF LYMPHOCYTES TO THE DEVELOPMENT OF PICS

Adaptive immune cells are potent regulators of myeloid innate immune cell functions in 

sepsis (27-30). An important component of PICS, which is also the part of the clinical 

definition (lymphocyte count < 800/mm3), is lymphopenia (2). It is prevalent at admission 

and can remain for up to 30 days (31). In a murine PICS model we could previously 

show that lymphopenia is not only depicted in a quantitative loss of T cells but, but also 

qualitative impairment occurs as naive CD4 and CD8 T cell numbers are also dramatically 

decreased (20). This is of significance as studies did reveal that persistent lymphopenia 

is related to increased mortality and secondary infections in severely ill intensive care 

patients (32-34). Moreover, first promising approaches to treat septic patients with IL-7, 

a cytokine modulating the survival and proliferation of T cells (NCT02640807), underline 

the importance of lymphocytes in the development of chronic immune impairment in PICS. 

Current literature focusses to a great extent on the role of MDSCs in the development of 

PICS (3, 35).

In this review, we will focus on immunosuppression through Tregs, as they are the most 

potent immunosuppressive member of the T-cell family (28), show a relative increase in the 

T-cell population in sepsis and hempen, e.g., CD4 T-cell function (27, 28). The impairment 

of effector T-cell function in sepsis was nicely elsewhere (36, 37). In addition, several 

studies suggest a key role of Tregs in chronic immunosuppression in critically ill patients 

(38-40). Moreover, we sought to fill a gap in the understanding of the contribution of 

lymphocyte immunosuppression and dysfunction to the development of chronic immune 

disbalance. A growing body of evidence suggests that a number of different lymphoid cell 

populations have significant immunosuppressive functions, but are less commonly reviewed: 

innate lymphoid cells (ILC), natural killer T cells (NKT cells), TCRαβ+ CD4− CD8− 

double-negative T cells (DN T cells), and B cells (41). As a conclusion their contribution 

to chronic immune disbalance in PICS might be underestimated or at least is not yet 

well characterized. With this review we provide an overview about the most important 

immunosuppressive functions and dysfunctions that might lead to the development of PICS.
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PROGRESSION FROM SEPTIC OR TRAUMATIC INSULT TO PICS

We suggest that in the case of trauma and sepsis the initial insult already initiates the 

development of PICS. Clinical indications for this suggestion are that in sepsis key 

immunosuppressive mechanisms were shown to be upregulated already at the onset of sepsis 

(within 24 h: upregulation of IL-10 serum levels (35), lymphopenia and T-cell dysfunction 

(in septic shock) (42), increase of serum levels of MDSCs (3); within 3–5 days: relative 

increase and activation of Tregs (38, 43)) and remain throughout the development of chronic 

critical illness (3, 34, 35, 38). Moreover, some studies displayed a correlation between initial 

quantitative and qualitative cell dysfunction and the development MODS (44, 45), which can 

be part of PICS. Therefore, we reviewed acute and chronic changes of lymphocyte behavior, 

which we believe will help evaluate development of PICS in early stages.

Patients developing chronic critical illness such as PICS are a severe burden for the 

healthcare system due to a high mortality, especially in septic patients (cumulative mortality 

after 2 years between 67% (46) and 42% (47)). Interestingly not all patients develop chronic 

immune disturbances such as PICS. A recent publication of Hawkins et al. (35) showed 

that patients in a septic cohort can either progress to early death (<14 d), rapid recovery 

(6-month survival of 98%), or chronic critical illness (6 month survival of 63%). Currently, 

there is no diagnostic tool to evaluate in which of these categories a patient will progress. 

Different clinical phenotypes of sepsis have been described, as an attempt to distinguish 

different immune disturbance patterns, affecting different organs (48). This might guide 

treatment and allow estimating the chances of survival. We believe that beside the clinical 

evaluation defining the clinical phenotype, the assessment of cellular phenotypes mirroring 

the immunologic state of lymphocyte cell is important to guide diagnostic and treatment. 

Cellular phenotypes can be examined using different biomarkers such as surface receptors, 

cytokines, or combinations thereof. Several studies displayed better predictive values when 

biomarkers were combined (49, 50). Functional assays of biological activity seem promising 

in the attempt to gather a more valid picture of immunosuppressive functionality (51), which 

might not be fully reflected by the measurement of biomarkers.

As a consequence, it might be possible to adjust therapeutic approaches that failed in the 

past because treatment was not adjusted to the patients’ immune status. Potential diagnostic 

and therapeutic approaches are therefore highlighted in the last chapters.

LYMPHOCYTE IMMUNOSUPPRESSION AND DYSFUNCTION IN TRAUMA, 

SEPSIS ITS CONTRIBUTION TO PICS

Regulatory T cells (Tregs)

Types of tregs—: The origin of Tregs allows a broad categorization as either thymus-

derived (tTreg) or peripherally derived (pTreg). Immune tolerance to self-antigens presented 

in the thymus is provided by tTregs, whereas pTregs ensure peripheral immune tolerance 

to non-pathologic foreign antigens, such as commensal bacteria in the gastro-intestinal tract 

(52) or antigens experienced during pregnancy in the placenta (53). These antigens cannot 
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be presented in the thymus. Thus, peripheral immune tolerance has to be ensured by pTregs, 

in addition to serving to regulate innate and adaptive immune cells in inflammation (54, 55).

One well-studied sub-group of pTregs are Type 1 regulatory T cells (Tr1 T cells) (54, 

55). Induction of Tr1 T cells occurs in the periphery. Currently there is no specific 

transcription factor that controls differentiation or characterizes Tr1 T cells (54). They do not 

constitutively express FoxP3, which distinguishes Tr1 T cells from FoxP3-expressing pTregs 

(54). The functional differences between FoxP3+ pTregs and FoxP3− Tr1 T cells have not 

yet been systematically examined. Roncarolo et al. (56) observed different unsupervised 

transcriptomics and found that murine Tr1 T cells seem to rely on aerobic glycolysis 

whereas FoxP3+ Tregs metabolism is dependent on oxidative phosphorylation. Both cell 

types are found in secondary lymphoid tissue and there seems to be a functional interaction 

between Tr1 T cells and FoxP3+ Tregs (56). A distinct cytokine profile of TGF-β and high 

levels of IL-10 expression can characterize Tr1 T cells (57, 58), as well as the expression 

of the surface markers CD49b and LAG-3 (59). However, the specificity of CD49b and 

LAG-3 to identify Tr1 T cells has been questioned by some authors, as some other cell 

types, including CD8 T cells and B cells, were shown to express them as well (60, 61).

The majority of Tregs in the lymphatic system are believed to be tTregs (~70–90%) 

(62, 63). However, assessing this distribution is difficult, as it is still unclear how to 

adequately distinguish tTregs and pTregs experimentally. Shevach and colleagues identified 

the transcription factor Helios and the cell surface molecule neuropilin-1 (NRP1), as 

distinguishing markers (64). However, the specificity of these markers has also been 

questioned and thus their use remains controversial (65).

In addition to their origin, Tregs can be categorized further by their similarities in 

differentiation to non-regulatory T-cell lineages (Table 1). These distinctions are important, 

as it is becoming clear that these cell types fulfill different regulatory functions and affect 

different T cells. Table 2 summarizes the different immunosuppressive capabilities of Tregs 

with respect to their life cycle, into “central” cTregs, “effector” eTregs and “memory” 

mTregs. These cells seem to have different functions in different tissues, almost like a 

division of labor (66): cTregs circulate throughout secondary lymphatic tissues, dependent 

on IL-2 to maintain homeostasis and suppress T-cell priming (66). On the other hand, eTregs 

mainly reside in non-lymphatic tissue, their homeostasis and proliferation are largely IL-2 

independent and they provide rapid immunosuppression in inflamed tissue (66, 67). The 

last subtype, mTregs, also resides in non-lymphatic tissue but maintains regulatory function 

at barrier surfaces, such as the skin. While mTregs develop after transient Ag recognition, 

eTregs need TCR-mediated signaling for self-maintenance (66).

Another distinction of Tregs, that is gaining importance, is their localization. A growing 

body of evidence shows that Tregs serve to maintain homeostasis in different tissues (68). 

A recent study shows that human Tregs from blood, lung, and colon show distinct receptor 

expression patterns at the mRNA level (69). While these patterns still have to be confirmed 

on protein level, they indicate that Tregs from different tissues may be functionally distinct. 

Another study supports this notion as they characterized Treg subsets by their characteristic 
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transcription factor expression and cytokine release and found distinct distribution patterns 

in different organs (70).

In line with this, another interesting challenge is enumeration of the concentration of Tregs 

in different compartments. If tissue-resident and circulating Tregs are indeed functionally 

distinct, they may have unique contributions to the immune response to sepsis and trauma. 

Importantly, if a higher percentage of Tregs than previously thought is tissue-resident, then 

these cells may actually produce the majority of immunosuppressive cytokines released 

during trauma and sepsis, and not their more frequently studied, circulating counterparts. 

In any case, how Treg functions and plasticity are affected by trauma and sepsis is not yet 

fully understood. Moreover, as trauma can be considered a sterile inflammation (at least in 

its early stages), the mechanisms of Treg activation in trauma and sepsis are likely to be 

different. But the discussed- and future categorizations of Tregs will help elucidate their role 

in systemic inflammation in both trauma and sepsis.

Immunosuppressive functions of Tregs—: Tregs exert immunosuppressive functions 

on other T cells, dendritic cells, B cells, macrophages, osteoblasts, mast cells, NK cells, 

and NKT cells by a variety of methods (71). For instance, Tregs can produce IL-10, IL-35, 

and TGF-β, which suppress CD4+ effector T cells and antigen-presenting cells (APCs) (27, 

28, 54, 72). Further, adjacent effector T cells can be starved by Tregs by upregulating their 

own IL-2 receptor (CD25) expression and thus scavenging IL-2 (27, 28). Moreover, Tregs 

can directly destroy effector T cells and B cells via cytolysis with granzymes (27, 28). 

Myeloid APCs can be destroyed via the release of granzyme B and perforins and via cell–

cell contacts through CD2/CD58 and CD266/CD155 (54, 73, 74). In terms of naive T cells, 

Tregs can hamper their activation by impeding their interaction with dendritic cells (27, 75). 

Metabolically, Tregs can affect T cells by hydrolyzing extracellular ATP to adenosine with 

CD39 and CD73 (54, 76). Adenosine is known to suppress T-cell activation and function 

through adenosine A2a receptor (77). For an in-depth review of Treg immunosuppressive 

functions, please refer to Caridade, Graca, and Ribeiro (27).

Treg-mediated immunosuppression in trauma and sepsis—: The role of Tregs 

in trauma and sepsis is still only partially understood. Generally, Tregs are thought to help 

restore immune-homeostasis through their immunosuppressive functions, and thus Tregs are 

typically considered protective in the context of trauma and sepsis (78, 79). However, it 

is not yet known how clinically relevant changes in Treg quantities and functions are with 

regard to patient outcomes and if these can be used to predict the clinical course. Particularly 

in patients with a prolonged disease course, such as PICS, immunosuppression through 

Tregs could conceivably contribute to poor outcomes (79). Some studies have started to 

investigate this issue.

Preclinical studies—: Preclinical animal studies suggest that higher Treg numbers are 

associated with increased mortality: recently, Hu et al. (80) showed reduced disease severity 

and increased survival in a murine two-hit sepsis plus pneumonia model upon in vivo Treg 

depletion with anti-CD25 antibody. Increased survival was also reported in a murine sepsis 

model following indirect reduction of Tregs through IL-10 and TGF-β neutralization (81). 

Other Murine studies also found that the frequency of Tregs increases in the acute phase 
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of sepsis, while the total number of CD4+ T cells concomitantly decreases (82). It is still 

unclear if this increase in Treg frequency is solely due to the apoptosis of conventional T 

cells or if an expansion of Tregs is induced as well.

Clinical studies—: Similar dynamics have been observed in human patients. In a 

prospective observational study including 106 burn patients, some of which developed 

sepsis, Treg frequency in peripheral blood was positively associated with the size of the burn 

area, as were IL-10 and TGF-β levels (38). Additionally, FoxP3 and CTLA4 expression 

levels were increased in Tregs of non-survivors with sepsis (38). In another study of 

patients with post-traumatic sepsis, an imbalanced Th17/Treg ratio positively correlated 

with an increased sequential organ failure assessment (SOFA) score (83). Among septic ICU 

patients, non-survivors had a significantly increased Treg ratio by day 7 (39). Additionally, 

the INFECT trial suggests that an increased Treg ratio predicts susceptibility to secondary 

infections in ICU patients (40). These findings contrast the general assumption that Tregs 

are beneficial in trauma and sepsis but rather suggest, as seen in preclinical studies, that 

increased Treg numbers are associated with worse outcomes.

Consequences for the role of Tregs in PICS—: These findings highlight the gaps 

in our understanding regarding Tregs in trauma and sepsis, but much less in PICS. 

Further studies are needed to determine how Treg proportions and functions change in 

response to these conditions. Future studies will address if the increases in Treg ratios 

observed so far are the result of a reactive release, i.e., the host’s attempt to control an 

overwhelming excessive inflammation, or rather a proportional shift resulting from the 

death of conventional T cell and/or dysfunctional proliferation of Tregs. The latter may be 

promoted by the high basal proliferation rate of Tregs compared to conventional T cells (84). 

Additionally, the contribution of different types of Tregs and their origin will have to be 

considered. Many clinical studies with Tregs from peripheral blood use CD4+ and CD25+ 

as markers and lack differentiation in “central” cTregs and “effector” eTregs, which seem 

to have different functions in different tissues (66). Answers to these questions will help 

develop strategies to stratify patients and may subsequently allow for therapeutic targeting 

of Tregs in a personalized- and Treg-subset specific manner, which has great potential for 

improving patient outcomes.

Innate lymphoid cells (ILCs)

Types of ILCs—: Innate lymphoid cells (ILCs) are derived from common lymphoid 

progenitors, but unlike T or B cells, they lack an antigen-specific T- or B cell receptor. 

Originally, they were grouped as equivalents to T-cell lineages as ILC1 (Th1), ILC2 

(Th2), and ILC3 (Th17). Since then, two more classes of ILCs have been described, NK 

and lymphoid tissue inducer (LTi) cells (85). The nomenclature and function of ILCs is 

summarized in Table 3. ILCs regulate immune homeostasis in different tissues. ILC3s, 

for example, maintain control over symbiotic microbiota (85). In contrast to T cells, ILCs 

respond immediately to inflammation, much like innate immune cells. Similar to their 

“mature” T-cell relatives, however, ILCs also show great plasticity, enabling them to change 

their phenotype if stimulated by certain cytokines (85).
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Unlike lymphocytes, ILCs are considered local keepers of tissue function: most ILCs reside 

in tissues long-term and do not circulate through the blood. Locally ILCs are maintained 

by self-renewal and can expand upon systemic perturbations of immune homeostasis (86). 

The exceptions are NK cells and inflammatory ILC2s, which are found in relevant numbers 

in peripheral blood. NK cells make up 5% to 15% of lymphocytes in human blood. They 

are potent producers of interferon gamma (IFN-γ) and TNF-α and augment functions of 

macrophages and dendritic cells. Additionally, NK cells can kill target cells through death 

ligand engagement and release of perforins and granzymes (29).

NK cells in trauma and sepsis—: Very few studies have examined the role of ILCs in 

sepsis so far. Thus, the underlying mechanisms leading from normal hemostatic functions of 

ILCs to their deleterious dysfunction in trauma and sepsis are not well understood. In case 

of NK cells, it is well established that they express several TLRs (2, 4, 7, and 9 (87)). Their 

degree of activation could thus result from the specific bacterial strain and the tissue from 

where the infection originates.

Preclinical studies—: To date, most research on the matter has focused on decreased NK 

cell numbers and their impaired IFN-γ production. Some studies report a suppression of NK 

cells during sepsis. Reduced cytotoxic activity and cytokine production by NK cells, as well 

as increased expression of programmed death receptor 1 (PD1) and its ligand PD-L1, have 

been described in septic mice (88).

An important role of IFN-γ production by NK cells was indicated by a sepsis study in 

rats that showed increased NK cell numbers, serum IFN-γ levels, and survival after IL-15 

treatment (89). This study and others suggest that NK cells are significant producers of IFN-

γ in sepsis (89, 90). In contrast to the previously described results on suppression of NK 

cells during sepsis, NK cell numbers were reported to increase in mesenteric lymph nodes, 

colon, and ileum on day 7 in a murine sepsis model (91) which roughly coincides with 

the day that mice develop PICS (20). Further, the depletion of NK cells in a rodent sepsis 

model resulted in decreased mortality (29). Although IFN-γ typically amplifies microbial 

clearance, the improved survival in this study was attributed to mitigation of an excessive 

release of IFN-γ (29). Results from a murine endotoxemia study indicate that IFN-γ 
production by NK cells, which was induced through mTORC1 by activated invariant NKT 

cells, reduces macrophage phagocytic capacity, impairs clearance of secondary Candida 

infection, and increases mortality (30).

Clinical studies—: The suggestion that murine NK cells with increased PD-1 expression 

supposedly play a detrimental immunosuppressive role (88) was confirmed in humans. A 

correlation between increased PD-1 expression on NK cells in septic patients and reduced 

monocyte and neutrophil phagocytic functionality has been described (92).

In humans, similar to mice, impaired IFN-γ production by NK cells is thought to contribute 

to the deleterious effects of immunosuppression after burn injury (93). The effects on 

the inflammatory response are visualized in Figure 1. In line with this, several clinical 

studies report beneficial effects of supportive IFN-γ treatment in sepsis (94, 95) and trauma 

(96). Individual clinical cases also report improved outcomes in severe infection (97), but 
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larger clinical studies are still needed. Impaired NK cell IFN-γ was also associated with 

cytomegalovirus reactivation in critically ill patients (98). In fungal infection the dynamics 

of IFN-γ release seems to be important. In a case series, using IFN-γ as treatment for 

invasive fungal infections some immune functions could be restored (99). However, high 

IFN-γ levels in the early state of sepsis in human patients, were reported to be associated 

with the development of secondary Candida infections (30). These findings are important 

to examine in future studies as secondary infections are a clinical expression of chronic 

immunosuppression that can be seen in PICS (2).

It is well established in both human and mice that TGF-β can downregulate IFN-γ release 

and impair cytolytic functions of NK cells (15). Thus, these findings may also contribute to 

our understanding of how TGF-β release contributes to immunosuppression in trauma and 

sepsis. This is a point of contention, however, as some researchers argue for a role of TGF-β 
and IL-10 in modulating NK cell responses in sepsis and trauma (100), while others report 

no- or only minimal effects (93).

Consequences for the role of NK cells in PICS—These contrasting results indicate that NK 

cell functions are neither detrimental nor beneficial in sepsis and trauma per se, but depend 

on the complex dynamics of the host’s response in the respective tissue. Future research 

might focus more on tissue-specific inflammatory responses of NK cells and on the role 

of distinct NK subsets. In humans, for instance, it is possible to distinguish a CD56dim 

CD16bright cytotoxic subset and a CD56bright CD16−/dim subset, which predominantly 

produces cytokines (29). We therefore suggest that if a rather suppressive or dysfunctional 

NK cell subtype relatively dominates over time, or the acute or hyperacute activation 

of NK cells impairs other cells permanently, NK cells might therewith contribute to the 

development of PICS. Differences in NK cell behavior between mice and humans also 

hinder our understanding of their role in sepsis and will have to be addressed in future 

studies as well (29).

Other ILCs in trauma and sepsis—: Our knowledge on the role of other ILCs is still 

limited. Similar to NK cells, findings regarding their beneficial or detrimental role in sepsis 

and trauma vary substantially. Exact activation mechanisms still have to be defined for other 

ILCs other than NK cells, but a variety of cytokines are known to modulate ILC function 

(29, 100, 101) and a dependency on micronutrients and Vitamin A have been described (85). 

Thus, an impaired metabolic and nutritional state, as present in PICS, may contribute to ILC 

dysfunction.

Preclinical studies—: ILCs are generally considered to play an important role in tissue 

repair, especially ILC3s, which contribute to immune hemostasis in the gut (102). An 

increase in ILC2 cells has been described as harmful in allergic airway inflammation in mice 

as they promote Th2-associated cytokines (103). Similarly, a harmful role was described in 

the gut. In Enterococcus faecalis translocation after burn injury, murine ILC2 cells in the 

lamina propria of the intestine were reported to impair antibacterial defenses (104). On the 

other hand, ILC2 cells protected lung endothelial cells from pyroptosis in a murine sepsis 

model (105). The same study also reported an increase of ILC2 cells after sepsis induction 

(105). A tissue-dependent upregulation of ILC2 cells was also observed in mice and humans 
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with abdominal sepsis, but in this study ILC2 depletion in a murine cecal ligation and 

puncture sepsis model was associated with a beneficial outcome (106).

Although increased proliferation was also reported for lung ILC2 s, as well as for NK, 

ILC2, and ILC3 cells, in a murine two-hit model of sepsis plus Pseudomonas pneumonia, 

IL-7 treatment led to improved survival (107). In this study, cytokine levels such as IFN-γ 
were unchanged in blood and spleen, but elevated in the lung. It was suggested that during 

the early onset of sepsis, the proliferation of ILCs might be of higher importance than the 

proliferation of other lymphoid cells, such as CD4 and CD8 T cells, as the latter need more 

time to orchestrate pathogen defenses (107).

Clinical studies—: A proportional increase of ILC2 cells compared with ILC3 cells 

was reported in the peripheral blood of septic patients (108). In this case, however, the 

increase appeared to result from apoptosis of circulating ILC1 and ILC3 cells. All ILCs 

showed increased expression of active caspase 3, an apoptosis marker, leading to an 

overall decrease in the number of circulating ILCs, but relatively ILC3 were most affected 

(108). Circulating ILCs also displayed decreased HLA-DR expression (108). This suggests 

that ILCs contribute to immunosuppression in sepsis. However, some pro-inflammatory 

capabilities seem to remain unimpaired as the ability to secrete TNF-α in response to TLR 

activation was not significantly affected (108). A decrease of ILC3 cells in septic patients 

was also reported in a prospective study comparing patients with septic shock, ICU patients 

without infection (trauma, cardiac arrest, neurological dysfunction) and healthy volunteers 

(109). But in this study, the decrease of ILC3 cells was accompanied by an increase in 

circulating ILC1 cells and a decrease in ILC2 cells (109). This also led to a relative decrease 

of ICL3 cells compared with ILC2 cells. The difference may be explained by different 

immune states of the septic patients included in these studies: While the second study only 

looked at septic patients with septic shock, the first study did not make such a distinction. 

We highlighted the potential role of the proportional changes of ILCs and summarized their 

functions in Figure 2.

Consequences for the role of ILCs other than NK cells in PICS—Based on these studies, 

particularly the latter, it can be postulated that ILC2 cells contribute significantly to the 

detrimental immunosuppressive state of patients with septic shock (109). Interestingly, TGF-

β was found to promote the development of ILC2 cells and maintain their mature phenotype 

in the periphery in mice (110). As TGF-β can be upregulated in human trauma and sepsis 

(38, 111), this may promote ILC2-mediated immunosuppression. However, this needs to be 

confirmed in future studies.

Taken together, these studies suggest that ILCs play an important role in modulating the 

inflammatory response in a tissue- and immune-status-specific manner. Thus, to determine 

their role in acute sepsis, as well as their prolonged effects in PICS, it will be crucial to study 

ILCs’ tissue-specific responses.

Natural killer T (NKT) cells

Types of NKT cells—: NKT cells are a heterogenous group of cells that have similarities 

to both T cells and ILCs: While they do express an antigen-receptor, they can be activated by 
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antigen-independent mechanism, making them more “innate-like” than conventional T cells. 

Based on their antigen-receptor, NKT cells are classified as either invariant (iNKT/type I) 

or diverse (dNKT/type II). iNKT cells express the same invariant TCR α chain and share 

the same antigen specificity. dNKT cells, as the name indicates, can have a broader range of 

TCRs (112).

Effector functions of dNKT cells remain poorly characterized, whereas iNKT cells are 

known to contribute to the clearance of different bacteria, viruses, and fungi. iNKT cells 

usually reside in non-lymphoid tissues, where they can be recruited to sites of infection 

(113). They can be activated through both antigen-dependent and antigen-independent 

mechanisms. Antigen-mediated activation is driven by recognition of microbial lipids bound 

to CD1d receptors on APCs. Antigen-independent activation is driven by inflammatory 

cytokines (113). Upon activation, iNKT cells can kill cells directly either through engaging 

death ligands such as FasL and TRAIL, or releasing granzyme B and perforins (113). 

Moreover, a plethora of cytokines can be released by iNKT cells upon activation, including 

IFN-γ, IL-2, TNF-α, IL-4, IL-5, IL-10, IL-13, IL-17, IL-3, and granulocyte–monocyte 

colony-stimulating factor (GM-CSF). Depending on which cytokines are released and which 

receptors are expressed, iNKT cells can be sub-grouped similar to conventional T-cell 

lineages: NKT1 (IFN-γ), NKT2 (IL-4), NKT10 (IL-10), NKT17 (IL-17), and NKTFH 

(follicular helper NKT cells, express follicle homing receptor CXCR5) (112). Additionally, 

another subset of iNKT cells has been described that is induced by TGF-β, expresses 

FoxP3, and has similar functions to Tregs (114). Lack of IL-12 production by myeloid cells 

drives NKT cells from IFN-γ to IL-4-producing subtypes (93). IL-4 and IL-10-producing 

subtypes can also be promoted through IL-10 or TGF-β (93) and experimentally through 

administration of altered lipid antigens (e.g., OCH) and immune checkpoint modulators 

(e.g., Tim-3 ligands) (112).

Two major functions in combatting extracellular bacterial infections can be exerted by iNKT 

cells: First, iNKT cells (NKT1) induce inflammation through release of IFN-γ to promote 

bacterial clearance. Second, iNKT cells have a regulatory role and promote resolution of 

inflammation through release of IL-4 (NKT2) or IL-10 (NKT10).

NKT cells in trauma and sepsis—: The release of IL-4 (NTK2) and IL-10 (NKT10) by 

iNKT cells promotes the shift to a Th2 cell-associated immune phenotype. This phenotype 

is thought to contribute to immunosuppression after sepsis (115, 116). IL-4 production was 

almost exclusively attributed to NKT cells in a burn model (93). Regulatory iNKT cell 

subsets could thus contribute substantially to immunosuppression during PICS; however, 

their exact roles remain to be elucidated.

The numbers of iNKT cells in peripheral blood are low, as they comprise only about 0.01% 

to 0.5% of all circulating T cells in humans. The percentages in blood are similar in mice 

(0.2%–0.5%), but mice have higher percentages of iNKT cells in the liver (< 0.4% in 

humans, ~30% in mice) (112).

Preclinical studies—: Murine sepsis studies have yielded contradictory results: Hepatic 

murine iNKT cells are activated and recruited to the peritoneum upon CLP and produce 
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a wide array of pro-inflammatory cytokines, as well as IL-10. While two studies reported 

decreased mortality when iNKT cells were depleted, a study with CD1KO mice showed 

no effect of NKT cells on mortality (112, 117, 118). As the latter was the most severe 

CLP model, itis possible that NKT effects vary based on sepsis severity (112). Rather 

than depleting NKT cells, some studies have tried to skew the NKT cells response to 

achieve favorable outcomes in sepsis: administration of altered lipid antigens (e.g., OCH), 

cytokines (e.g., IL-30), and immune checkpoint modulators (e.g., Tim-3 ligands) shift iNKT 

cells toward the more regulatory subtypes and have demonstrated improved outcomes in 

experimental sepsis (119-121). In other mouse studies, activation of iNKT cells was reported 

to worsen the acute respiratory distress syndrome (ARDS) (122, 123), but to contribute to 

bacterial clearance in Pseudomonas aeruginosa and Streptococcus pneumonia (124, 125).

In terms of dNKT cells, a certain subtype was found to be protective after cardiac arrest 

and resuscitation (112), as well as following renal and hepatic ischemia-reperfusion injury 

(126, 127). Additionally, activation of dNKT cells by anti-inflammatory sulfatide was shown 

to lower mortality and production of inflammatory cytokines in a murine Staphylococcus 
aureus sepsis model (128).

In trauma, murine studies aimed to model the findings that in humans changes of NKT 

numbers in the acute trauma phase correlated with the development of multiple organ 

dysfunction syndrome (MODS) (44). The murine models showed that NKT cells are 

activated in the hyper-acute phase after trauma and hypothesize that this early mobilization 

influences long-term outcomes (129). Animal studies proving the causal connection between 

the acute activation and the development of MODS have yet to be conducted.

Clinical studies—: In septic patients, the absolute number of iNKT cells as well as 

the percentage of iNKT cells among T cells seems to increase slightly (112, 119, 130). 

However, this increase is not found in all populations of septic patients (112, 131). It 

remains to be elucidated whether this increase is accompanied by a phenotypical change 

toward an immunosuppressive iNKT cell type.

A recent study investigating post-sepsis immunosuppression found that increased IFN-γ 
serum levels in septic patients in the early stage of sepsis correlated with increased 

susceptibility to secondary Candida infection (30). This finding was attributed to iNKT-

driven production of IFN-γ that impaired macrophage phagocytosis in a translational murine 

sepsis study (30). A second human sepsis study detected heightened activation of NKT cells 

with increased production of IL-4 and granzyme B (130), both of which can contribute to 

immunosuppression. On the other hand, the investigators also found increased IFN-γ levels 

(130). The study has some significant limitations as dynamics were not studied, the markers 

used to identify NKT cells are not specific for iNKT cells and potential phenotype changes 

were not assessed (130).

Further studies are needed to clarify which iNKT cell-dependent mechanisms mainly 

contribute to immunosuppression in humans after sepsis. The suggested differentiation of 

NKT cells into immunosuppressive and pro-inflammatory subsets is visualized in Figure 3.
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In trauma patients, only few studies examined the effect of NKT cells on systemic 

immune dysfunction. A study from Hazeldine et al. (44) found that the development of 

multiple organ dysfunction syndrome (MODS) is associated with elevated NKT numbers 

in the hyper-acute phase after trauma. Following up Jo et al. systematically examined the 

functionality of NKT cells in human traumatic injury. They displayed that in the acute phase 

of trauma NKT cells were relatively and absolutely decreased in numbers and impaired in 

the ability to proliferate and to produce IFN-γ when stimulated (132).

Both studies suggest that the initial impairment of NKT function contributes to the 

development of MODS (44, 132), which can be caused by chronic immune disturbances 

such as PICS (2). The studies did not differentiate between the different NKT subsets, which 

should be addressed in future studies.

Consequences for the role of NKT cells in PICS—Based on the preclinical and clinical 

studies and the known pro-inflammatory and regulatory roles of iNKT cells, it is possible 

that their effects are beneficial in the short term, when bacterial clearance is paramount, but 

detrimental in the long term when continued immunosuppression leaves the host susceptible 

to secondary infections. Thus, future studies should aim to examine the contribution of the 

different NKT subtypes and investigate whether the impairment persists chronically or if 

they contribute to the chronic dysfunction of other cells that might lead to the development 

of PICS. Moreover, future studies should include an assessment of bacterial loads and the 

immune status of the patient when determining the effects of the various iNKT subtypes and 

their effects on patient outcomes in sepsis and trauma.

DN T cells

Types of DN T cells—: Double-negative T cells (DN T cells) express TCR-αβ, but 

neither CD4 nor CD8. They make up about 1% to 5% of the total T cell population in mice 

and humans (133-135). DNT cell activation can be antigen-driven (134). However, similar 

to NKT cells, co-receptor-independent activation mechanisms have also been suggested 

(136). The lack of appropriate distinguishing markers for DN T and NKT cells complicates 

investigation into their specific effects. Unsurprisingly, the described functions of DN T 

cells so far are thus quite similar to those of NKT cells: DN T cells produce similar 

cytokines to NK cells upon activation (IFN-γ, IL-4, IL-5, TGF-β, and IL-10 (135, 137, 

138)), they can suppress CD4 and CD8 T cells, NK cells, dendritic cells, macrophages, B 

cells, and plasma cells and can also have cytotoxic effects through perforin/granzyme B and 

Fas/FasL-dependent pathways (135).

Several studies suggest that DN T cells can be divided into suppressive and immune-

stimulatory subtypes: In burn-injured mice, DN T cells were shown to contribute to post-

burn immunosuppression through suppression of lymphocyte proliferation and production 

of IL-4 and IL-10, but they also produced IFN-γ and IL-2 (139). In septic mice, it was 

shown that DN T cells were either IFN-γ or IL-10 positive, but no dual-expressing DN T 

cells were found (140). This indicates that different DN T cell subsets may be distinguished 

based on their cytokine production. This suggested dichotomy is visualized in Figure 4. 

In line with this, a potentially distinct, third subset expressing IL-17A was described in 

a pulmonary infection model with Francisella tularensis live vaccine strain (141). Similar 
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to the distinction from NKT cells, however, the lack of specific markers for these subsets 

complicates research into subtype-specific functions of different DN T cells.

DN T cells in trauma and sepsis—: Preclinical and clinical studies—Very little is 

known about how DN T cells can influence immunity after trauma and during sepsis and 

PICS. Infectious studies have shown that DN T cells increase at the site of infection (142) 

and potentially contribute to neutrophil recruitment (143). In a stroke model, DN T cells 

increased the numbers of pro-inflammatory microglia (144). It is unclear if DN T cells show 

similar dynamics and pro-inflammatory functions in trauma and acute sepsis. In a murine 

sepsis model, splenic DN T cell numbers were increased 1 week after CLP (140), which 

roughly corresponds to the time that mice develop PICS (20). The proportion of DN T cells 

even remained elevated at 1 month (140).

Consequences for the role of DN T cells in PICS—This indicates that DN T cells may 

contribute to the prolonged immune dysfunction in PICS in mice, but further studies in mice 

and humans are necessary to elucidate their specific role.

B cells

Types of B cells—: Naive B cells are generally divided into B-1 B cells, follicular B 

cells, and marginal zone (MZ) B cells. The different subsets vary in terms of location, 

migration ability, and activation by T cell-dependent or -independent mechanisms. Studies 

on subset-specific functions have mostly been conducted in mice (145).

Immunosuppressive functions of B cells have only recently been studied. Mizoguchi et 

al. coined the term “regulatory B cells,” when they identified a discrete IL-10-producing 

population of B cells (146). However, there is no uniform categorization of these cells 

and their potential subtypes to date, but a number of Breg subsets with overlapping 

phenotypes and functions have been identified in various (mouse) models so far (147). 

Reported suppressive mechanisms include production of IL-10 and TGF-β (148, 149), 

release of cytotoxic granzyme B (149), expression of FasL (149), and induction of T-cell 

exhaustion through expression of PD-L1 and PD-L2 (148, 149). A mechanism unique to 

B cells is the production of immunosuppressive antibodies: sialylated IgG antibodies have 

a reduced affinity for classic Fc-gamma receptors and mediate immunosuppression via a 

complex interaction with myeloid cells, leading to the suppression of effector macrophages 

(reviewed in (149)). Additionally, “natural” antibodies have been attributed with strong 

immunosuppressive functions both in vivo and in vitro. Natural antibodies are low affinity 

antibodies produced by B-1 cells that are thought to help with elimination of apoptotic cells 

(149). The immunosuppressive functions are visualized in Figure 5. Finally, B-cells have 

been described to dampen inflammation by inducing CD4+ FoxP3+ regulatory T cells and 

Tr1 T cells (148).

B cells in trauma and sepsis—: Preclinical studies—In murine sepsis models, 

induction of B-cell lymphopenia was reported as well and began as early as 6 h after sepsis 

induction (150). Similar to observations from septic patients, lymphopenia in mice affected 

different subsets heterogeneously and there was actually an increase in the proportion 

of IL-10-producing regulatory B cells (150). These cells also displayed increased PD-L1 
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and decreased MHCII mRNA expression (150), indicating potential T-cell suppressive 

effects. In contrast, decreased function of regulatory B cells was suggested by decreased 

CD1d expression in a murine endotoxemia model and IL-10 expression by Bregs was 

decreased (151). The adoptive transfer of regulatory B cells from healthy wild-type mice 

was protective in this model and downregulated IFN-γ secretion in CD4 T cells (151). A 

transfer of cells from IL-10-deficient donors, however, did not confer protection (151). Of 

note, the role of regulatory B cells in endotoxemia appears to depend on the severity of the 

model, however, as an increase in regulatory B cells was reported in a mild endotoxemia 

model (151). This may also explain the contrasting findings in the CLP model.

In addition to the IL-10-producing subset, a new subset of B cells, which was coined innate 

response activator B cells, has been described in a murine sepsis model. These B cells 

acted in an innate, non-APC-induced manner and modulated the immune response through 

GM-CSF production (152).

Clinical studies—: An observational prospective clinical study including 52 patients 

revealed that, similar to T cells, B cells undergo apoptosis during septic shock (153). 

B-cell apoptosis during sepsis might lead to the production of anti-inflammatory cytokines 

by phagocytic cells (41, 153). B-cell lymphopenia was maintained throughout 28 days 

of follow-up (153). Of note, lymphopenia affected the B-cell subsets heterogeneously 

and septic shock survivors and non-survivors showed different B-cell patterns: A low 

percentage of CD23+ and a high percentage of CD80+ CD95+ B cells at ICU admission 

were associated with increased mortality (153). It has been reported that CD23 is expressed 

on activated B cells (153, 154), whereas CD80 is supposed to be a T-cell costimulation 

marker and CD95 indicates increased susceptibility to apoptosis (153). This indicates that 

CD23+ B cells represent functional and active cells beneficially contributing to the immune 

response, whereas CD80+ CD95+ B cells predict B-cell lymphopenia. Further indications 

that impaired B-cell function is detrimental in sepsis are the observation that levels of 

HLA-DR, a B-cell activation marker, are lower on B cells of trauma patients with severe 

sepsis compared to non-septic patients (155). Moreover, serum IgM levels in elderly septic 

patients (≥65 years) negatively correlate with acute physiology and chronic health evaluation 

II (APA-CHEII) score (156). The latter study also reported a reduced capacity for IgM 

production upon ex vivo stimulation in B cells of septic patients in general, as well as 

an increased proportion of exhausted B cells (CD21−/low) in septic patients compared to 

healthy controls (156). Septic patients were also reported to have significantly decreased 

serum gamma-immunoglobulin levels, which could contribute to increased susceptibility 

to secondary infections (157). Besides reduced production and/or secretion of gamma-

immunoglobulins, vascular leakage due to endothelial damage, imbalanced distribution in 

inflamed tissues, disproportionate utilization by the complement system, and excessive 

catabolism have also been suggested as potential causes for hypo-gammaglobulinemia (158). 

Although the therapeutic benefit of polyclonal intravenous immunoglobulin (IVIG) therapy 

is disputed in sepsis, IVIG seems to have anti-inflammatory and anti-apoptotic effects on 

immune cells in addition to aiding in pathogen and toxin clearance (159).
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Consequences for the role of B cells in PICS—: It is currently unclear what drives 

B-cell dysfunction in sepsis. It could be shown that TGF-β has immunomodulatory effects 

on B cells. It was reported to decrease proliferation of B cells and to increase apoptosis of 

immature or resting B cells in mice and humans (160-163). Furthermore, TGF-β can inhibit 

immunoglobulin synthesis and class switching in IgG isotypes and promotes the production 

of IgA in mice and humans (164-166).

Taken together, these studies suggest that B-cell dysfunction contributes to the development 

of a detrimental immunosuppressive state, but further research needs to be conducted to 

assess the clinical relevance of B-cell dysfunction in trauma, sepsis, and PICS. It remains 

to be elucidated whether A) the impairment of otherwise protective pro-inflammatory 

functions alone is responsible for worsened outcomes or B) immunosuppressive functions 

are triggered in sepsis that may play a detrimental role. Further, the role of B cells 

needs to be evaluated in PICS patients as well as using preclinical models of sustained 

immunosuppression to ascertain the underlying molecular mechanisms.

DIAGNOSTICS AND POSSIBLE THERAPEUTIC INTERVENTIONS

The pathology of immune-perturbation in trauma, sepsis, and PICS is marked by 

the dichotomy of a robust pro-inflammatory upregulation of immunity as well as 

immunosuppression (167). Prior to administering therapy, it will be of utmost importance to 

assess the individual patient’s immune status to minimize the risk of adverse events.

It is important to highlight that over 30,000 patients over the past 30 years have been 

enrolled in clinical trials testing immune modulating treatments in sepsis (168), with none 

evidencing efficacy. These potential reasons for these failures can be illustrated by two 

prominent examples. A monoclonal antibody against TNF-α and anakinra (recombinant 

human IL-1-receptor antagonist) were both tested in clinical trials in septic patients, with 

both trials being terminated early due to ineffectiveness to reduce mortality (169, 170). 

However, in both cases later analyses showed that certain subgroups of patients benefited 

from the treatment. The antibody against TNF-α did reverse septic shock and deferred 

organ failure (171) and anakinra improved survival in patients with macrophage activation 

syndrome (172). We conclude that given the dynamic nature of sepsis and trauma, this 

necessitates an accurate assessment of the patients’ immune state and the degree of 

dysfunction, which can be made available in a timely manner and repeated easily to monitor 

disease progression and therapy response. This patient stratification is crucial and may allow 

future therapeutic approaches with immune modulators to be proven effective in reducing 

mortality and preventing PICS. Staging and personalized interventions for septic patients 

have recently been extensively reviewed (173, 174). Biomarkers that could be used to 

determine a patient’s immune status include cytokine levels, cellular cytokine production, 

and changes in leukocyte surface markers.

A plethora of studies examined cytokines for their predictive value in sepsis and trauma 

patients (12, 38, 111, 175). Studies that focused on multiple cytokines often demonstrated 

better predictive value (49, 50). In light of this, we postulate that the simultaneous 

assessment of several cytokines will be needed to properly evaluate a patient’s immune 
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phenotype. Prominent pro-inflammatory cytokines that could be used to asses inflammation 

are TNF-α, IL-6, and IL-1β (12, 50, 175), whereas IL-10 and TGF-β are potent anti-

inflammatory cytokines associated with disease severity and poor outcomes (49, 111, 176, 

177).

Cytokine levels alone, however, do not sufficiently reflect the functional capacity of a 

patient’s cells (178). Flow cytometry can be used to gain preliminary insights. For example, 

T-cell activation is indicated by CD25, CD44, CD69, and CD71 positivity (179, 180), while 

activated monocytes upregulate HLA-DR and activated neutrophils CD64 (181-183). T-cell 

markers indicating a suppressed state include CD62L, PD-1, and cytotoxic T lymphocyte 

associated protein 4 (CTLA-4) (184, 185) and in the case of monocytes and neutrophils, the 

downregulation of CD88 (186) suggests poor responsiveness.

While flow cytometry can give us some insight, it is still a static measurement and does not 

adequately assess the function of a patient’s immune cells. Hence, to get a more complete 

picture, the use of functional assays has proven useful (51). A particularly promising 

technology is an enzyme-linked immune absorbent spot assay (ELISPOT). This method 

can report cellular responsiveness to physiologically relevant stimuli, is easy to perform 

and standardize, and the technology has already been cleared by the Food and Drug 

Administration (FDA). As ELISPOT can quantitate the total amount of a cell’s cytokine 

production over an extended period, it is more sensitive at revealing group differences in cell 

function compared with other methods using shorter incubation times (173).

If a patient is found to be in an immunosuppressed state by the above methods, his or her 

immune response could be augmented therapeutically. For example, cytokines could be used 

to boost adaptive and innate immune cells.

Currently, there are four cytokines that are being evaluated in clinical studies: IFN-γ, 

GM-CSF, IL-7, and IL-15. Blunted monocyte function in septic patients was successfully 

restored by IFN-γ, as determined by HLA-DR expression and ex vivo TNF-α secretion 

in response to stimulation (94, 187). The results of a phase III clinical study with IFN-γ 
are pending (NCT01649921). It was reported that GM-CSF increases HLA-DR expression 

on monocytes, restores TNF-α production in whole blood, and reduces the incidence of 

nosocomial infections in septic patients (184). Potent anti-inflammatory functions of GM-

CSF are also described, including the expansion of myeloid-derived suppressor cells (188). 

Accurate immune stratification and close patient monitoring will therefore likely be of key 

importance for the success of GM-CSF therapy. A phase III clinical study is currently 

underway (NCT0261528). The survival and proliferation of T cells is promoted by IL-7, 

by increasing TCR diversity and augmenting T-cell recruitment to the site of infection in 

murine models, thereby promoting pathogen clearance and survival (184). Currently, a phase 

II study for the treatment of severe sepsis is underway (NCT02640807). IL-15 or an IL-15 

super-agonist can be used to stimulate IFN-γ production by memory CD8+ T cells, NK 

cells, and NKT cells and thus improve their function and homeostasis. Unfortunately, severe 

toxic reactions, which were not seen with IL-7, occurred with IL-15 treatment. Thus, its 

broad clinical applicability in sepsis is questionable (189).
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Other immunomodulatory therapies, originally developed for cancer, may also be useful 

for sepsis. PD-1, expressed on T cells, and its ligand PD-L1, expressed on monocytes and 

macrophages, constitute an immune checkpoint driving T-cell exhaustion and macrophage 

dysfunction (184, 185). The expression of PD-1 is elevated in septic patients and associated 

with increased mortality (190). In a murine model of polymicrobial sepsis, the use of 

anti-PD-1 restored T-cell apoptosis and improved survival (184, 191, 192). These promising 

results suggest that anti-PD-1 may have similar beneficial effects in septic patients. Another 

checkpoint receptor that was successfully targeted in murine models is CTLA-4. CTLA-4 is 

expressed on activated T cells and inhibits T-cell function upon binding to CD80 and CD86 

on APCs (192, 193). Septic patients have increased CTLA-4 expression on CD4+ T cells 

(179, 184). In murine models, CTLA-4 inhibition diminished T-cell apoptosis (99) and was a 

suitable adjuvant to blocking PD-1 and PD-L1 (193).

A dichotomy of an immunosuppressive subset versus a pro-inflammatory subset was 

suggested for several of the lymphoid cells reviewed here (e.g., NKT10 vs NKT1 (115), 

ILC2 vs ILC3 (108, 109), IFN-γ+ vs IL-10+ DN T cells (140), CD80+ CD95+ B cells 

vs CD23+ B cells (153)). Ideally therapeutic interventions should aim to selectively 

skew populations toward a beneficial subtype and/or selectively deplete detrimental ones. 

However, it is important to consider the dynamic behavior as immunosuppressive subtypes 

might not drive the host immune response toward detrimental outcome at all times during 

the disease progression. Currently only IL-15 treatment augmenting NKT functioning in 

cancer patients (189) and the use of IL-7 to improve survival and proliferation of T cells 

(184) aim in this direction. Future studies examining subtype modulation in other lymphoid 

cells may improve and broaden the armamentarium of therapeutic approaches.

CONCLUSION AND FUTURE DIRECTIONS

Sepsis is a heavy burden for every healthcare system and a challenge for every intensive 

care clinician, as it is responsible for one out of three in-hospital deaths (194). But even 

survivors are often unable to fully recover from sepsis and remain in a chronic state of 

immunosuppression called PICS. Not only septic patients can progress to PICS—it has been 

shown to develop after trauma as well (2, 31). As highlighted in this review, a number of 

different lymphoid cell populations have significant immunosuppressive functions that can 

contribute to this syndrome. However, despite a myriad of studies, there is no approved 

drug for the treatment of immune dysfunction in trauma and sepsis. With regard to the 

immunosuppressive functions reviewed in the previous chapters, we postulate that the 

following four measures will improve patient immunephenotyping and therapy development:

1. Continuous dynamic immune monitoring should be implemented as a standard 

in the ICU. It is not yet common clinical practice to assess a patient’s 

immunological state. However, based on his/her immune status at the time 

of intervention, the patient may need either an augmenting or a suppressive 

treatment—giving a booster to a patient who is already in a hyperinflammatory 

state or suppressing an already impaired immune system further will likely be 

detrimental. Thus, a “one size fits all” approach is unlikely to be successful. 

Academic ICUs should aim to evaluate cytokine levels and assess cellular 
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activation markers and functional assays as their clinical diagnostic standards. 

The long-term goal should be obtaining a “live profile” of the immune response, 

comparable to the constant physiologic monitoring of ICU patients.

2. Several biomarkers and functional assays should be employed to determine the 

immunologic state, not just a single measurement. Studies show that single 

markers fail to predict outcomes in sepsis due to low sensitivity and specificity, 

but the use of ratios or combinations of several biomarkers improve sensitivity 

and specificity (49, 195, 196). The relatively new use of functional assays in 

combination with biomarkers may enhance this further and also improve the 

accuracy of predicting therapeutic responses (51). Thus, an immune status panel, 

rather than a single marker, can not only guide treatment decisions, but also 

improve analyses of clinical trials.

3. Subgroups in the septic and trauma patient populations must be defined based 

on their immune status. This patient stratification is crucial for clinical research, 

as many studies not only use different definitions for sepsis, which makes it 

difficult to compare results, but also broadly administer the tested treatment with 

no regard to a patient’s immune phenotype. Meta-analyses of some past clinical 

trials indicate that their failure was due to limiting the treatment to an appropriate 

patient population (172). A recently published retrospective analysis of 16,552 

unique patients identifies four distinct clinical phenotypes that correlate with 

host-response patterns and clinical outcomes, and simulations suggest that these 

may help understand the heterogeneity of treatment effects (48).

4. Drugs developed for autoimmune diseases and cancer should be considered 

and tested for the treatment of immune dysfunction after sepsis and trauma. 

Autoimmune diseases and cancer share several immunological characteristics 

with sepsis immune dysfunction. It is therefore conceivable that immune-

modulators developed for cancer or autoimmunity may also be beneficial for 

sepsis and trauma patients. Given that these drugs are already being tested in 

clinical trials and are potentially already FDA approved, they could be made 

available to sepsis and trauma patients in a timely manner, if a benefit in these 

patient populations can be demonstrated.
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Fig. 1. Immunosuppressive functions of natural killer cells (NK cells).
Natural killer cells promote the acute immune response through production of IFN-γ. The 

initial increase of IFN-γ however may lead to secondary monocyte dysfunction. In the 

course of sepsis a decrease of IFN-γ can be seen as well as an increase in PD-1 and PD-L1 

expression, impairing proper immune responses by NK cells.
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Fig. 2. Functions and relative shift in proportion of innate lymphoid cells (ILCs).
In sepsis a relative shift of the proportions of innate lymphoid cells can be observed. 

This suggests that ILC2 contribute to the immunosuppressive state post-sepsis. Moreover, 

HLA-DR expression and Caspase-3 activation indicate decreased function and increased 

susceptibility to apoptosis impairing the immune response by ILCs. However, the ability to 

produce pro-inflammatory TNF-α seems mostly unaffected.
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Fig. 3. Different invariant natural killer T cells (iNKT) subsets fulfill different functions during 
inflammation.
During post-septic or -traumatic inflammation iNKT can transform into different subsets, 

such as NKT1, NKT2, and NKT10 driven by IL-12, IL-15, TGF-β, and IL-10. The function 

of these subsets differs during inflammation: NKT1 mainly produces IFN-γ and promotes 

inflammation and bacterial clearance. The release of IL-4 (NTK2) and IL-10 (NKT10) by 

iNKT cells promotes the shift to a Th2 cell-associated immune phenotype, which is thought 

to contribute to immunosuppression.
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Fig. 4. TCR-αβ+ double-negative T cells (DN T cells) are suggested to dichotomously affect 
inflammation.
Double-negative T cells are known to produce IFN-γ, which is thought to be pro-

inflammatory. But they also produce IL-4 and IL-5, which are usually attributed to a Th2 

like immune response that characterizes impaired function after sepsis. Moreover, they 

produce perforin, TGF-β, and IL-10 which exert potent anti-inflammatory functions. Several 

studies suggest that DN T cells can be divided into suppressive and immune-stimulatory 

subtypes as they were shown to produce either IFN-γ or IL-10, but not both simultaneously. 

However, distinctive markers are currently missing to prove this suggested dichotomy.
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Fig. 5. Immunosuppressive functions of B cells.
B cells can exert a broad variety of immunosuppressive functions post-trauma and post-

sepsis. Amongst these is the downregulation of HLA-DR, reduced IgG and IgM production, 

release of granzyme B, TGF-β, and IL-10 and the expression of FasL, PD-L1, and PD-L2. 

They also produce immunosuppressive antibodies: sialylated IgG antibodies have a reduced 

affinity for classic Fc-gamma receptors and mediate immunosuppression via a complex 

interaction with myeloid cells, impairing effector macrophages. Natural antibodies also 

exert immunosuppressive functions. They are low affinity antibodies that are believed to 

contribute to the elimination of apoptotic cells.
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