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Abstract

To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important
arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in
plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface
structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19.
Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why
different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the
binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas
aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied
microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was
inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient
binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of
complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH,
and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the
domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but
also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a
unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a
‘‘superevasion site.’’
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Introduction

Complement system (C) is an important part of innate

immunity in human plasma, and the alternative pathway of

complement (AP) is the first line of defense against invading

microbes. AP is spontaneously activated on all unprotected

surfaces leading to covalent binding of the main complement

opsonin C3b to hydroxyl or amine groups. Surface-attached C3b

forms a base for enzymatic convertases, which cleave intact C3-

molecules until the activator surface is covered with C3b-

molecules. This opsonization leads to opsonophagocytosis, prop-

agation of the cascade resulting in release of chemotactic and

anaphylatoxic peptides, and formation of lytic membrane attack

complexes. To prevent attack against host structures and over

consumption of the components in plasma, complement needs to

be tightly regulated.

The main regulator of the AP in plasma is factor H (FH). FH is

a 150 kDa glycoprotein and consists of twenty globular comple-

ment control protein modules (CCPs), each approximately 60

residues long. The AP control activity of FH is in domains 1–4

(FH1-4) [1,2]. The so-called cofactor activity of FH is needed for

inactivation of the central complement opsonin C3b by the serine-

protease factor I. In addition to this, FH regulates AP activation by

competing with factor B in binding to C3b and accelerating the

decay of AP convertase C3bBb [3,4]. To regulate complement,

FH has to discriminate between host and non-host surfaces, as

activation is warranted on microbial surfaces, but obviously not on

host surfaces. This ‘‘target recognition’’ site is known to be in the

carboxyl-terminal domains 19–20 (FH19-20) [5,6]. Our structures

of domains 19–20 alone [7] and complexed with C3d [8] showed

how SCR20 can bind to cellular and glycosaminoglycan

containing surfaces while SCR19 binds simultaneously to C3d

part of C3b facilitating control of the AP. This dual binding ability

facilitates target recognition by the AP.

The necessity of FH and its ability to distinguish between host

and non-host surfaces is demonstrated by mutations in the
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carboxyl-terminus of FH. Even heterozygous mutations in this

region can lead to uncontrolled AP activation on host cells causing

severe damage to endothelial cells, red cells, and platelets, resulting

in a serious systemic disease, atypical hemolytic uremic syndrome

[9]. Another important target binding region in FH is within

domain 7 and polymorphism in this domain is strongly associated

with age-related macular degeneration, the most common cause of

blindness in elderly people in industrialized countries [10,11].

FH is utilized by several pathogenic microbes for protection

against complement attack [12]. Binding of FH down regulates

opsonization and prevents further amplification of the C cascade

followed by formation of cytolytic membrane attack complexes.

While prevention of opsonization and subsequent phagocytosis is

beneficial for practically all microbes, evasion of membrane attack

complex formation is especially important for Gram-negative

bacteria and spirochetes. Acquisition of FH is important or even

essential for pathogens; increasing numbers of them have been

shown to bind FH [12]. There are two main interaction sites on

FH for microbial binding (Table S1); one is within domains 6–7,

and group A streptococci [13] and Neisseria [14], for example,

utilize this site. Binding via domains 6–7 facilitates also utilization

of FHL-1, an alternatively spliced transcript derived from FH-gene

which contains domains 1–7 of FH and has cofactor-activity like

FH [15]. Many microbes have been shown to bind both FH and

FHL-1 [16].

The other microbial interaction site on FH is in the carboxyl-

terminal domains 19–20. It seems that most microbes utilize both

sites: for instance, B. burgdorferi sensu stricto, which causes Lyme

disease, binds FH via domain 7 using protein CRASP-1 [17] and

via domains 19–20 using outer surface protein E (OspE) and its

paralogs [18]. This ability for dual binding facilitates efficient

protection against the AP attack. Due to the high homology

between the C-terminus of FH and C-termini of FH-related

proteins (FHRs), some microbes bind also certain FHRs but the

significance of this phenomenon for immune evasion is not clear

yet.

We wanted to analyze in detail how and especially why different

microbes utilize FH via the carboxyl-terminus. We selected

pathogens representing Gram-negative, Gram-positive, and eu-

karyote microbes known to bind FH, and three microbial proteins,

OspE (from B. burgdorferi sensu stricto) [18], FhbA (from B. hermsii)

[19], and Tuf (from P. aeruginosa) [20]. We discovered that they all

share a common binding site in domain 20 that overlaps but is not

identical with the heparin and cellular binding sites. We also

showed that FH bound to the microbial binding site forms a

tripartite complex with C3b and furthermore, formation of this

complex not only facilitates regulation of the AP but also enhances

it.

Results

A common microbial binding site on FH domain 20
We first characterized at the molecular level how microbes bind

FH via domains 19–20. We generated point mutations to 14

surface exposed residues of a recombinant fragment of FH

domains 19–20 and used five different microbes isolated from

patients: three Gram-negative bacteria P.aeruginosa (Pa) [20], (H.

influenzae (Hi) [21], B. pertussis (Bp) [22]), one Gram-positive

bacterium (S. pneumoniae (Sp) [23]), and one eukaryotic pathogen (C.

albicans (Ca) [24]). We also measured binding of full FH to strains

used and noticed they all bind FH, as expected on the basis of

previous reports (Figure S1).

Binding of 125I-labeled wild type (wt) FH19-20 was measured in

the presence of increasing amounts (up to 7 mM) of the mutant

FH19-20 constructs. Concentrations of the mutants that inhibited

50% of the wt FH19-20 binding (IC50) were calculated from

binding curves of three experiments done in triplicate (examples

are shown in Figure S2) and shown in Figure 1 as a reciprocal

value (1/IC50) for clarity (diminished value indicating diminished

binding). Three mutations, R1182A, R1203A, and R1206A,

caused decreased binding to all five microbes (p,0.05); K1188A

had reduced binding to four microbes (Hi, Pa, Sp, Ca); R1210A to

three (Hi, Pa, Sp); and the K1186A and R1215Q mutations

reduced binding to one microbe (Hi) (Figure 1). Four other

mutations (W1183L, T1184R, L1189R, E1198A) in domain 20

and three (D1119G, Q1139A, W1157L) in domain 19 showed no

reduction in binding compared to wt.

To further characterize interaction of FH with microbial

surfaces, similar binding inhibition assays were used with three

non-homologous and structurally unrelated bacterial outer surface

proteins: OspE, a 15 kDa protein from a Lyme borreliosis agent B.

burgdorferi [18], FhbA, a 20 kDa protein from a relapsing fever

spirochete B. hermsii [25], and Tuf, a 43 kDa protein from P.

aeruginosa [20]. Binding of 125I-FH19-20 to the recombinant

proteins was measured in the presence of increasing concentra-

tions of the 14 mutant proteins and the IC50 values were

calculated from the binding curves as above. When compared to

wt FH19-20, two mutant proteins, R1182A and R1206A, showed

decreased affinity to all the three microbial proteins, five mutants

(W1183L, L1189R, E1198A, R1203A, R1215Q) to two microbial

proteins and one mutant (R1210A) to one protein (p,0.05)

(Figure 2, Panels A–C, shown as a reciprocal value (1/IC50) for

clarity). The effect of three mutants (T1184R, K1186A, K1188A)

in domain 20 and three (D1119G, Q1139A, W1157L) in domain

19 was comparable to wt FH19-20 (p.0.05). Six of the mutants

showed decreased binding to both OspE and FhbA suggesting an

overlap of the binding sites. The overlap was confirmed using cross

inhibition assays with OspE and FhbA (Figure 2, Panels D and E).

Taken together, the binding inhibition assays revealed that all

mutants that affected binding were in the domain 20. Further-

Author Summary

Complement is an important arm of innate immunity.
Activation of this plasma protein cascade leads to
opsonization of targets for phagocytosis, direct lysis of
Gram-negative bacteria, and enhancement of the inflam-
matory and acquired immune responses. No specific signal
is needed for activation of the alternative pathway of
complement, leading to its activation on all unprotected
surfaces. Pathogenic microbes need to evade this path-
way, and several species are known to recruit host
complement inhibitor factor H (FH) to prevent the
activation. FH is important for protection of host cells,
too, as defects in FH lead to a severe autoreactive disease,
atypical hemolytic uremic syndrome. We have now
identified at the molecular level a common mechanism
by which seven different microbes, Haemophilus influen-
zae, Bordetella pertussis, Pseudomonas aeruginosa, Strepto-
coccus pneumoniae, Candida albicans, Borrelia burgdorferi
and B. hermsii, recruit FH. All microbes bind FH via a
common site on domain 20, which facilitates formation of
a tripartite complex between the microbial protein, the
main complement opsonin C3b, and FH. We show that, by
utilizing the common microbial binding site on FH20,
microbes can inhibit complement more efficiently. This
detailed knowledge on mechanism of complement eva-
sion can be used in developing novel antimicrobial
chemotherapy.

Microbial Acquisition of Factor H
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more, we identified one mutant (R1182A) with significantly

decreased binding to all the microbes or microbial proteins

analyzed and two mutants (R1203A, R1206A) with significantly

reduced binding to seven out of eight targets (p,0.05) (Table 1). In

addition, the three central residues in microbial binding, R1182A,

R1203A, and R1206A, are close to each other in the crystal

structure of FH19-20 [7]. They are within 14 Å of each other on

domain 20 and three residues (K1188A, R1210A, R1215Q)

Figure 1. Microbial binding site on FH19-20. Pseudomonas aeruginosa (A), Haemophilus influenzae (B), Bordetella pertussis (C), Streptococcus
pneumoniae (D), and Candida albicans (E) were coated to microtitre plates and binding of 125I-FH19-20 was measured in the presence of serial
dilutions of 14 mutant proteins. Bound radioactivity was measured and the IC50 values (the 50% inhibitory concentration in mM) were determined by
fitting these measurements to inhibition curves (Figure S2). Means of the reciprocal values of IC50 (1/IC50) with SDs of three individual experiments
performed in triplicate are shown with difference compared to the wildtype (wt) calculated by a t-test. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.ppat.1003308.g001

Microbial Acquisition of Factor H
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involved in binding to several microbes are also nearby (Figure 3).

Folding of all these mutants was comparable to wt FH19-20

according to a circular dichroism analyses (Figure S3).

Microbes mimic host surfaces upon binding to FH20
One binding site for glycosaminoglycans/heparin is located at

FH domain 20 [26]. We next analyzed if microbes could utilize

Figure 2. Binding site for microbial proteins on FH19-20. Three recombinant FH19-20 binding microbial proteins, OspE (A, D), FhbA (B, E) and
Tuf (C) were coated to microtitre plates. First, inhibition of binding of 125I-FH19-20 by the FH19-20 mutants (A–C) was measured, data fitted to
inhibition curves and IC50 values (the 50% inhibitory concentration) determined. Data shown are means of 1/IC50 values from three experiments
performed in triplicate (bars indicating SDs); differences compared to wt were calculated by a t-test (*p,0.05, **p,0.01, ***p,0.001). Second,
inhibition of binding of 125I-FH19-20 to OspE (D) or FhbA (E) by microbial proteins, OspE, FhbA, and a negative control OspA, was measured. Data
from representative experiments performed in triplicate are shown with SDs (D, E).
doi:10.1371/journal.ppat.1003308.g002

Microbial Acquisition of Factor H
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this site by analyzing binding of 125I-FH19-20 to OspE, FhbA, and

Tuf in the presence of heparin, a model substance for cell surface

glycosaminoglycans. We showed that heparin inhibits binding of

FH19-20 efficiently to Tuf and slightly also to OspE and FhbA

(Figure 4). The data are consistent with previous data showing that

glycosaminoglycans bind to residues R1203, R1206, R1210, and

R1215 at the very carboxyl-terminus of FH20 [27]. This suggests

that the microbial binding site on FH overlaps to some extent with,

but is not identical to, the heparin binding site needed for

recruitment of FH to eliminate C3b on host cells.

Down-regulation of the AP by FH on host cells occurs because

FH20 binds to glycosaminoglycans/heparin while FH19 binds

simultaneously to the C3d part of C3b [8,28]. Next we tested if

microbes could utilize FH similarly, i.e. facilitating a two point

binding of FH19-20 to surface-bound C3b, one site binding to

the microbial protein and the other to C3b. There are two

binding sites on FH19-20 for the central complement opsonin

C3b, one in domain 19 and the other in domain 20 [8].

Structural analysis shows that the site on domain 20 overlaps

with the microbial site, while the site on domain 19 of FH is

clearly distinct from it [8]. In agreement with our model,

binding of C3d did not inhibit binding of FH19-20 to the

microbial proteins (Figure 4, panels A–C) but, to our surprise,

actually enhanced it.

Formation of a tripartite complex between microbial
protein, FH19-20, and C3b

As C3d enhanced binding of FH19-20 to microbial proteins, we

analyzed further if microbial proteins could enhance binding of

FH19 to its main physiological ligand, C3b. We measured the

binding of 125I-FH19-20 to C3b in the presence of OspE, FhbA,

and Tuf. OspE and FhbA enhanced binding of FH19-20 to C3b

statistically significantly while enhancement with Tuf was smaller

and not significant (Figure 5, Panel A). This suggests that a

microbial protein, FH19-20, and C3b together form a tripartite

complex. We were able to prove this by measuring binding of 125I-

OspE to solid phase C3b in the presence of FH19-20 (Figure 5,

Panel B). This means that the tripartite complex must form,

because OspE alone does not bind C3b [18]. Mutation of four

central residues in the C3d/C3b binding site on domain 19 of FH

(FH19del-20) [8] significantly reduced the formation of the

tripartite complex, indicating that the C3d/C3b binding site on

domain 19 is essential for the interaction (Figure 5, Panel B). These

experiments show that FH19-20 can bind simultaneously to a

microbial protein and C3b, and that binding of microbial proteins

to FH19-20 enhances the FH-C3b interaction. To further test

formation of the tripartite complexes on microbial surfaces we

measured effect of C3d (100 mg/ml) on binding of FH19-20 to the

surface of whole microbes (B. burgdorferi, S. pneumoniae, P. aeruginosa,

H. influenzae and C. albicans). A small increase in FH19-20 binding

was observed with all the used microbes, most clearly with S.

pneumoniae and C. albicans (Figure S4). No binding of 125I-C3d to

any microbes was seen (data not shown).

By modeling the tripartite complex on a surface using the

structure of FH19-20 in complex with C3d [8], C3b (containing

the C3d part) [29], and our recent crystal structure of FH19-20 in

complex with borrelial OspE protein (Bhattacharjee et al.,

submitted), a model of a microbial surface protein, we could also

show that formation of a tripartite complex is possible without any

steric clashes. Furthermore, in this model the thioester site of C3b

faces towards the membrane indicating that a surface-bound

microbial protein can enhance binding of FH to C3b on the same

surface (Figure 5, Panel C).

Binding to a microbial protein enhances the regulatory
function of FH

The results above suggested that, by enhancing the interaction

between FH and C3b, microbes might be able to down-regulate

complement activation more efficiently. The main regulatory

function of FH is to act as a cofactor for serine protease factor I in

inactivation of C3b. We therefore measured the cofactor activity of

full length FH in factor I mediated cleavage of C3b in the presence

of the three microbial proteins, OspE, FhbA, or Tuf (Figure 6,

Panels A and B). All tested microbial proteins enhanced

Table 1. Summary of the FH19-20 binding results.

FH19-20 mutation Pa Hi Bp Sp Ca OspE FhbA Tuf

D1119G 0.3* 0.4 0.3 0.4 0.7 0.6 0.9 0.5

Q1139A 0.8 1.0 1.1 0.9 1.4 1.2 1.1 0.2

W1157L 0.7 1.0 0.6 1.1 1.2 1.4 1.4 0.7

R1182A 4.0 4.9 1.9 3.3 3.9 3.0 18.0 5.0

W1183L 1.1 1.2 0.7 1.5 2.0 97.1 66.4 1.2

T1184R 0.3 0.4 0.2 0.6 0.5 1.2 1.7 0.6

K1186A 1.6 2.3 0.7 1.2 1.4 0.2 0.5 0.2

K1188A 3.5 4.0 1.7 4.1 4.1 0.8 1.6 1.3

L1189R 0.6 0.8 0.4 1.0 0.8 2.9 4.9 1.3

E1198A 0.3 0.4 0.3 0.6 0.4 24.7 25.1 0.2

R1203A 6.2 8.6 3.2 5.0 3.5 4.7 41.9 1.5

R1206A 2.2 4.8 2.0 2.9 3.7 3.4 3.1 3.1

R1210A 2.1 3.0 1.5 2.0 1.6 1.3 1.8 2.3

R1215Q 1.7 2.5 1.4 1.7 1.8 33.8 2.0 1.6

*The values represent relative binding of FH19-20 mutants vs. wild type FH19-20 (IC50mut/IC50wt) to microbes (Pa; Pseudomonas aeruginosa, Hi; Haemophilus
influenzae, Bp; Bordetella pertussis, Sp; Streptococcus pneumoniae, Ca; Candida albicans) or microbial proteins (OspE, FhbA, Tuf). Bold font of the value indicates
statistically significant increase in IC50 (i.e. diminished binding) when compared to wild type FH19-20 (unpaired t-test, p,0.05).
doi:10.1371/journal.ppat.1003308.t001
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significantly the cofactor activity of FH (p,0.05 at $20 mg/ml for

all of the proteins). The enhancement was due to the carboxyl-

terminal part of FH, since it did not clearly occur when FH1-4 was

used instead of full length FH (Figure 6, Panel C), i.e. enhancement

obviously requires domains 19 and 20 that mediate formation of

the tripartite complex.

Discussion

Escape of the complement system, and especially its alternative

pathway amplification cascade, is a prerequisite for microbial

virulence since this first line immune mechanism is spontaneously

activated on all non-protected surfaces. Microbes are known to

protect themselves by binding host complement regulators from

plasma or other body fluids: FH for protection against the

alternative pathway activation and C4b-binding protein for

inhibition of the classical and lectin pathways. Binding of FH

has been thought to be simple recruitment of host FH onto the

microbial surface since FH acts as a cofactor for factor I in the

degradation of the central complement component C3b [30]. This

inactivation is essential for microbial survival in nonimmune

plasma or blood, since it prevents opsonophagocytosis and

microbial lysis by the membrane attack complexes [31]. Microbes

recruit host FH by binding it via two separate sites, one within the

Figure 3. Microbial binding site on the structure of FH20. Panel A shows location of the binding sites of Pseudomonas aeruginosa,
Haemophilus influenza, Bordetella pertussis, Streptococcus pneumoniae, Candida albicans, OspE, FhbA, and Tuf on the surface of the crystal structure of
FH19-20 [7]. The involved residues are shown in red and in each figure the FH domain 19 is on the top and domain 20 on the bottom. In the panel B
the common microbial binding site is marked on the surface model of FH19-20. Residues affecting binding of FH19-20 to three or more microbes
(Table 1) are marked in red, other analyzed mutated residues are marked in blue and all residues have been annotated.
doi:10.1371/journal.ppat.1003308.g003

Microbial Acquisition of Factor H
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domains 6–7 and the other in the C-terminal FH19-20 (Table S1),

but the reason for using these sites has remained unexplained.

Our new data show, first, that the microbes we studied not only

use FH19-20, but in particular the same area on FH domain 20,

which we have named the ‘‘common microbial binding site’’

(Figure 3, panel B). Second, our data show that binding via this

particular site allows the formation of a tripartite microbial

protein:FH:C3b complex (Figure 5, panel C). Third, and most

importantly, our data show that formation of the tripartite

complex enhances FH-mediated inactivation of C3b. This

explains why many kinds of microbes have evolved to utilize this

common microbial binding site on FH.

We analyzed the interaction site between the carboxyl-terminus

of FH and microbes by measuring the effect of mutant FH19-20

proteins on binding of wt FH19-20 to five important human

pathogens (Gram-negative and Gram-positive bacteria and a

yeast). Next we analyzed FH19-20 binding by three structurally

non-related, FH binding proteins, two from spirochetes, OspE

from B. burgdorferi sensu stricto [18] and FhbA from B. hermsii [32],

and Tuf from P. aeruginosa [21]. To our great surprise all the

microbes and microbial proteins studied bound FH via heavily

overlapping binding sites on domain 20 (Table 1, Figure 3, panel

A). We found three key amino acids (R1182, R1203, R1206) that

affected binding to all the studied microbes and three more

(K1188A, R1210A, R1215A) that affected binding to at least three

out of seven microbes analyzed. We believe that this site, the

common microbial binding site, will be found to be used by many

other pathogenic microbes too. We did not use full length FH with

point mutations in these experiments since microbes have often

two binding sites for FH (Table 1) and expression and purification

of full-length FH with mutations in both the microbial binding

sites might not result in easily interpretable results.

Since the different microbial proteins are non-homologous it is

expected that they use slightly different residues within or next to

the common microbial binding site on FH20 to form, for example,

hydrogen bonds and hydrophobic contacts. An example of this is

seen with OspE since mutations of two residues of FH19-20

(W1183 and E1198) that are not used by several other microbes

had the most striking effect on OspE binding to FH19-20. Use of

variable residues within the same area does not compromise the

key finding that the used microbes share a common binding area

on FH domain 20 but indicates variability in the structure of the

microbial molecules binding to the common shared site on FH. It

is obvious that only detailed structural analysis of different

microbial FH-binding proteins in complex with FH19-20 will

show how important each residue within or next to the common

site is for the interaction.

At least three non-homologous microbial proteins and, in

addition, four microbial species without known homologues of

these proteins utilize the same site on FH20. For some of these

microbes, it is not known which surface molecule recruits host FH

and it is possible that, at least in some cases, the surface molecules

are not proteins but carbohydrates. FH is known to bind to several

negatively charged carbohydrates [33] and the common microbial

binding site on FH20 overlaps with the site responsible for binding

to at least one host carbohydrate, heparin (Figure 4, panels A–C)

[27]. It remains to be studied if any microbe binds to the common

microbial binding site on FH20 via a carbohydrate, and if

carbohydrate binding to FH domain 20 could promote the

FH:C3b interaction through formation of a tripartite complex,

similarly to the studied microbial proteins.

Why have different microbes evolved to utilize domain 20, and

practically the same particular site on this domain, in recruitment

of FH? Our results provide three reasons for this. First, our work

shows that FH bound to microbial surface via domain 20 can also

bind the C3d part of C3b by domain 19 (Figure 5, panels A and

B). This brings FH near to its main target, C3b, and allows

complement inhibition. On the basis of the superimposition of

three structures, our recently solved structure of a microbial FH-

binding protein (OspE) in complex with FH19-20 (Bhattacharjee

et al, submitted) and the previously solved structures of FH19-20

in complex with C3d, [8] and of the C3b (containing the C3d

[29]), it became clear that FH19-20 can bind simultaneously to a

microbial protein and C3b (Figure 5, panel C). Furthermore, in

Figure 4. The common microbial binding site on FH20 overlaps
partially with the heparin but not the C3d binding site. Effect of
increasing concentrations of C3d, heparin, and FH19-20 in binding of
125I-FH19-20 to solid phase OspE (panel A), FhbA (panel B), or Tuf
(panel C) is shown (counts per minute (cpm) 6 SD from a
representative of three experiments performed in triplicates is shown).
doi:10.1371/journal.ppat.1003308.g004

Microbial Acquisition of Factor H
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this superimposition the microbial binding site is also directed

towards the surface to which C3b is bound to via the thioester site

and is therefore readily available for the microbial molecules in

general. Second, the site on domain 20 is available under

physiological conditions: the previously described physiologically

important heparin binding site [27,34,35] and the common

microbial site overlap to some extent (Figure 4, panels A–C).

Ferreira and coworkers [36] have also emphasized that the

cofactor site on domains 1–4 must not be disturbed upon binding

of FH to a microbe and our common microbial binding site fulfills

also this criterion. Third, utilization of this particular common

microbial binding site provides more efficient down regulation of

Figure 5. Binding of FH20 to microbial proteins enhance the FH-C3b interaction. Panel A shows enhanced binding of radiolabeled FH19-
20 to solid phase C3b in the presence of 1.25 mM OspE, FhbA, or Tuf compared to buffer control (cpm 6SD from a representative experiment
performed in triplicates is shown; difference to the control was calculated by a t-test; *p,0.05, **p,0.01, ***p,0.001). In panel B, binding of 125I-
OspE to C3b (or bovine serum albumin, BSA, as a negative control) is shown in the presence or absence 1.25 mM of FH19-20 or FH19Del-20 lacking the
C3d binding site on FH domain 19 (cpm 6SD from a representative experiment performed in triplicates is shown). Panel C shows solvent accessible
surface representation of a model of the tripartite complex between FH19-20, C3b, and a microbial protein on a microbial surface. Two projections
with the microbial membrane lipid bilayer on the bottom are shown. Color code: C3b (2WII, [44]) is shown in blue and its C3d part (TED domain) is
darker blue with the thioester site in orange (1C3d, [7]); a microbial protein is shown in yellow; FH19-20 is shown in grey (2g7i, [8]).
doi:10.1371/journal.ppat.1003308.g005
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complement activation on the microbe. The intact a9-chain of

C3b disappears more efficiently when FH and microbial proteins

are present (Figure 6, Panels A and B). This is due to the carboxyl-

terminus of FH, as practically no enhancement was seen by using

FH1-4, which has cofactor activity but does not have the common

microbial binding site on domain 20 (Figure 6, Panel C).

The tripartite microbial protein:FH:C3b/C3d complexes are

clearly formed in fluid phase in vitro (Figure 5). It is, however,

uneasy to demonstrate the complex formation on microbial

surface since C3b is bound covalently to the molecules on the

target surface and the formed tripartite complex is easily broken

upon purification of C3b from the cells. To indicate the complex

formation on cell surfaces we therefore used an experimental setup

where binding of FH19-20 to whole intact microbes was analyzed

in the presence of soluble C3d and saw that addition of C3d could,

indeed, enhance the binding (Figure S4). Since the extrinsic C3d

can enhance binding of FH onto the microbial surface it is highly

likely that the microbial proteins could also enhance formation of

the tripartite complex on the microbial surface, at least if the

density of C3b depositions was high enough. The highest C3b

concentration occurs on the target surface areas where alternative

pathway activation is vigorously amplified via the feedback loop. It

would be most beneficial for the microbe if the tripartite

complexes were formed within those areas leading to maximal

complement down regulation exactly at the spots where it is

needed most. For the tripartite complex formation the microbial

FH-binding molecule needs to be – or bend – next to the C3b

molecule but most, if not all, of the FH-binding microbial proteins

which have been structurally characterize are either long

molecules (e.g. streptococcal M protein) or have a flexible tail

that allows twisting and tilting (e.g. OspE, Bhattacharjee et al,

submitted). Therefore at least some of the microbial FH-binding

molecules seem to be able to operate on a broader area of the

surface than just the exact spot they are attached to. The area

where the tripartite complexes could be formed might in addition

be expanded by lateral movement of the lipid tail or membrane

anchor of the microbial FH-binding molecules on at least surface

of Gram-negative bacilli.

An FH-related protein found in plasma, FHR-1, has a C-

terminal domain that differs from domain 20 of FH only by two

residues. The differences are located close to the microbial binding

site and it remains to be studied if FHR-1 binds similarly to the

used microbes, and if possible recruitment of FHR-1 is function-

ally beneficial or unfavourable for the microbes as FHR-1 does not

have any cofactor-activity.

Clearly, formation of the tripartite complex is the reason for the

increase in the regulatory function of FH caused by the microbial

proteins. As far as we know, this kind of enhancement has neither

been suggested, nor studied before. Instead, it has been suggested

that microbes mimic host structures and thereby bind FH and

other complement regulators [37]. Although microbes, heparin or

endothelial cells do bind to overlapping sites on FH, this is not

exactly molecular mimicry as the binding sites are not identical.

The structures involved are completely different and they appear

to differ from organism to organism. We and others have recently

shown that host cells recruit FH via domain 20 [27,35] and it

remains to be studied if this leads to elevated FH function due to

tripartite complex as in the microbial proteins [8,28]. If this were

the case, microbes utilizing the common microbial binding site on

FH domain 20 would have functional, not molecular, mimicry of

host cells. So far there is, however, no evidence of this.

The identified common microbial binding site on FH domain

20 represents a surprising type of host-pathogen contact – a single

site on a host molecule utilized by several kinds of microbes in

immune evasion. Such a common immune evasion site for both

bacterial and eukaryotic pathogens has not been reported earlier.

We call this kind of conserved site for microbial immune evasion a

‘‘superevasion site’’ and suggest that superevasion sites may occur

on other powerful down regulators of host immunity, too. The

concept of a microbial superevasion site is valid not only for down

regulators of immunity, such as FH, but also for host immune

activator molecules such as immunoglobulins. It is probable that,

for example, staphylococcal protein A [38], streptococcal protein

G [39], and E. coli protein EibD [40] are not the only microbial

proteins that bind to a conserved site on IgG leading to prevention

of the effector functions of immunoglobulins. This site on the Fc

part of IgG is probably an example of a superevasion site on

immune activator molecules.

In this study we have identified a conserved microbial binding

site on domain 20 of the important complement regulator FH. We

have shown that, by binding to the common binding site on FH,

microbial proteins enhance the FH:C3b interaction by enhancing

their interaction, thereby increasing down regulation of C3b and

leading to efficient evasion of complement attack and presumably

to increased survival of the microbes in the host. The identified

common microbial binding site on FH is the first example of a

Figure 6. Enhanced cofactor-activity of FH bound to microbial
proteins. Effect of OspE, FhbA, and Tuf (each 50 mg/ml) in elimination
of C3b by FH (8–85 mg/ml) and factor I (15 mg/ml). Cleavage of the a9-
chain of 125I-C3b was measured by evaluating the intensity of the a9-
chain in autoradiography (example gel from one out of three
experiments shown in panel A with mobility of the C3b fragments
and size markers indicated) and intensity in the absence of FH was set
as 100% (panel B). As a control, FH was replaced with recombinant FH1-
4 fragment (C). Data in panels B and C are from three independent
experiments with SDs indicated. * p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.ppat.1003308.g006
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‘‘superevasion site’’ pointing to new avenues not only in research

on immune evasion by microbes but also in research aimed at

novel vaccines and antimicrobial agents.

Materials and Methods

Proteins
The outer surface proteins OspE and OspA from B. burgdorferi

sensu stricto strain N40 were cloned, expressed and purified as

described [18]. FhbA was cloned and purified from B. hermsii strain

MAN [32], and Tuf from a P. aeruginosa blood isolate strain

similarly as described earlier [20]. Cloning and purification of wt

FH19-20 and the FH19-20 mutants have been described earlier

[7,27,41]. Circular dichroism spectras of six mutants (R1182A,

W1183L, K1188A, E1198A, R1203A, R1206A) were compared

to wt to confirm proper folding of the mutants (Figure S3, panel

A). The capacity of these mutants to form oligomers was compared

to wt FH19-20 using gel filtration on a Superdex 75 10/300 GL

column (Figure S3, panel B). FH1-4 was produced as described

[42]. C3 and FH were purified from human plasma and C3b

generated with trypsin as described [43]. C3d was a kind gift from

Prof. D. Isenman, Univ. of Toronto, Canada. Factor I was

purchased from Calbiochem/MerckMillipore (Merck, Darmstadt,

Germany) and BSA, gelatin and heparin from Sigma-Aldrich (St.

Louis, MO, US). The wt FH19-20, FH, OspE, and C3b were

labeled with 125I using the IodoGen method (Thermo Scientific

Pierce, Rockford, IL, US).

Bacteria
The strains of Pseudomonas aeruginosa, Haemophilus influenzae,

Streptococcus pneumoniae, Staphylococcus aureus and Candida albicans we

used were isolated from blood cultures of septic patients and were

kind gifts of Dr. K. Haapasalo-Tuomainen, HUSLAB, Helsinki

Univ. Central Hospital, and Univ. of Helsinki, Finland. Bordetella

pertussis was a kind gift of Dr. Quishui He, Pertussis Reference

Laboratory, Turku, Finland. The used serum sensitive Haemophilus

influenzae strain is isolated from a throat swab of a healthy

individual.

Direct binding assays
To detect binding of FH or FH19-20 to the microbes, the

bacteria and yeast were first washed three times with PBS.

Approximately 16108 cells/reaction were incubated with radio-

labeled FH or FH19-20 (40,000 cpm/reaction) in the absence or

presence of C3d (0–100 mg/ml) in 50% PBS containing 0.1%

gelatin (GPBS) at 37uC for 20 min with agitation (1,200 rpm).

Cell-associated and free radioactive proteins were separated by

centrifugation (10,0006 g, 3 min) of the samples through 20%

sucrose in GPBS. Radioactivities in the supernatant and pellet

fractions were measured with a gammacounter (Wallac, Turku,

Finland). The amounts of bound proteins were calculated as

percentages of the total radioactivities in the corresponding pellets

and supernatants. The experiments were performed three times in

triplicate.

Radioligand assays and data processing
Nunc Polysorp BreakApart plates (Thermo Scientific, Rockford,

IL, US) were coated with either bacteria (16106/well in

phosphate-buffered saline, PBS, at 37uC for 12 hours) or proteins

(5–25 mg/ml in PBS at 4uC for 12 hours). The wells were blocked

(0.5% BSA/PBS, 60 min at 22uC, or 0.5% BSA/50% PBS for the

experiment shown in the Figure 4, Panel C) and washed with PBS.

Serial dilutions of proteins were mixed with 125I-FH19-20 or 125I-

OspE (50,000 cpm/well) in a separate 96-well microtitre plate

(Greiner Bio One, Frickenhausen, Germany) before transferring

into the coated wells. After incubation (37uC, 60 min) and

washing with PBS (or 50% PBS for the experiment shown in

Figure 4, Panel C), the radioactivity in each well was measured

with a gamma-counter (Wallac, Turku, Finland). The inhibition

curves were fitted using non-linear regression of a ‘‘log(inhibitor)

vs. response’’ model using GraphPad Prism software (version

5.0b, GraphPad Software, CA, US). The mean inhibitory

concentrations (IC50-values) were calculated from the fitted

curves. All the assays were performed three times using triplicate

wells.

Cofactor assays
To measure cofactor activity 125I-C3b (100,000 cpm/assay) was

mixed with factor I (16 mg/ml) in the absence or presence of FH or

FH1-4 (8–85 mg/ml) and OspE, FhbA, and Tuf (50 mg/ml).

Mixtures were incubated at 37uC for 5 min and, after adding b-

mercaptoethanol, the samples were heated (3 min at 93uC) and

run on 10% SDS-PAGE gels. The gels were subjected to

autoradiography and cofactor activity was evaluated as the

intensity of the C3b a9-chain measured with GelEval-programme

(FrogDance Software, Dundee, UK).

Statistical analyses
Values are expressed as means 6 SD. All statistical analyses

were performed using GraphPad Prism software and statistical

differences were calculated with unpaired t-tests.

Supporting Information

Figure S1 Binding of full length FH to microbes used in
the study. Bacteria and yeast (16108/assay) were incubated with

radiolabeled FH and samples were centrifuged through sucrose

colums to separate unbound radioactivity. Amount of radioactivity

in the pellet and supernatant was measured with a gamma-counter

and FH bound to the microbes is shown as a percentage from total

amount of protein given. Data (%) with SD’s from a representative

experiment performed in triplicates are shown. As negative

controls a serum sensitive strain of H. influenzae and. S. aureus

were used.

(PDF)

Figure S2 Examples of the inhibition assays. Curves from

a single out of three experiments (performed in triplicates) where

inhibition of 125FH19-20 binding to various microbes by wildtype

(wt) and mutant FH19-20 proteins was analyzed to obtain IC50

values (shown in Figure 1). The used microbes were Pseudomonas

aeruginosa (panels A and B), Haemophilus influenzae (panels C and D),

Bordetella pertussis (panels E and F), Streptococcus pneumoniae (panels G

and H), and Candida albicans (panels I and J).

(PDF)

Figure S3 Analyses of general chemical and physical
properties of the key FH19-20 mutant proteins. A,

Circular dichroism spectras of the wildtype and mutant FH19-

20 proteins were similar indicating that all the tested mutant

proteins are most likely folded properly. Crystal structure of the

R1203A mutant has been previously published [41] and found to

be practically the same as the wildtype FH19-20 structure. B,

Purified mutant proteins (35 mM) run through a size exclusion gel

filtration column appeared in the elute within the same fractions as

wildtype FH19-20 implying that the dimerization or oligomeriza-

tion properties of all the tested mutant proteins were similar to the

wildtype.

(PDF)
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Figure S4 Binding of 125I-FH19-20 to microbes is
enhanced in the presence of C3d. Binding of radiolabeled

FH19-20 to indicated microbes was analyzed in the presence (grey

bars) and absence (white bars) of C3d. Data (%) with SD’s from a

representative experiment performed in triplicates are shown.

(PDF)

Figure S5 Correlation between FH19-20 binding to
microbial proteins OspE, FhbA and Tuf and their
enhancing effect on FH-mediated cleavage of the C3b
alpha-chain. Binding of 125I-FH19-20 (data from the Figure 4;

binding of the wild type FH19-20 to proteins without an inhibitor)

is shown as cpm’s (6SD) on the x-axis and the amount of C3b

alpha chain (data from the cofactor-assays presented in the

Figure 6) is shown as percentages (6SD) on the y-axis. OspE binds

more FH19-20 than FhbA and Tuf, and enhances most the

disappearance of C3b alpha-chain.

(PDF)

Table S1 Microbial binding sites on FH. Microbes bind

FH using mainly two interaction sites, one in the domains 6–7 and

another in the C-terminal domains 19–20 (indicated in blue).

Microbial species used in this study are indicated with bold font.

The selected references contain information on binding site(s) of

FH for each microbe.

(PDF)
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18. Hellwage J, Meri T, Heikkilä T, Alitalo A, Panelius J, et al. (2001) The

complement regulator factor H binds to the surface protein OspE of Borrelia

burgdorferi. J Biol Chem 276: 8427–8435.

19. Hovis KM, McDowell JV, Griffin L, Marconi RT (2004) Identification and

characterization of a linear-plasmid-encoded factor H-binding protein (FhbA) of
the relapsing fever spirochete Borrelia hermsii. J Bacteriol 186: 2612–2618.

20. Kunert A, Losse J, Gruszin C, Huhn M, Kaendler K, et al. (2007) Immune

evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a
factor H and plasminogen binding protein. J Immunol 179: 2979–2988.

21. Hallström T, Zipfel PF, Blom AM, Lauer N, Forsgren A, et al. (2008)

Haemophilus influenzae interacts with the human complement inhibitor factor H.
J Immunol 181: 537–545.

22. Amdahl H, Jarva H, Haanpera M, Mertsola J, He Q, et al. (2011) Interactions
between Bordetella pertussis and the complement inhibitor factor H. Mol Immunol

48: 697–705.

23. Hammerschmidt S, Agarwal V, Kunert A, Haelbich S, Skerka C, et al. (2007)
The host immune regulator factor H interacts via two contact sites with the PspC

protein of Streptococcus pneumoniae and mediates adhesion to host epithelial cells.
J Immunol 178: 5848–5858.

24. Meri T, Hartmann A, Lenk D, Eck R, Wurzner R, et al. (2002) The yeast

Candida albicans binds complement regulators factor H and FHL- 1. Infect
Immun 70: 5185–5192.

25. Hovis KM, Schriefer ME, Bahlani S, Marconi RT (2006) Immunological and

molecular analyses of the Borrelia hermsii factor H and factor H-like protein 1
binding protein, FhbA: demonstration of its utility as a diagnostic marker and

epidemiological tool for tick-borne relapsing fever. Infect Immun 74: 4519–
4529.

26. Blackmore TK, Hellwage J, Sadlon TA, Higgs N, Zipfel PF, et al. (1998)

Identification of the second heparin-binding domain in human complement
factor H. J Immunol 160: 3342–3348.

27. Lehtinen MJ, Rops AL, Isenman DE, van der Vlag J, Jokiranta TS (2009)

Mutations of factor H impair regulation of surface-bound C3b by three
mechanisms in atypical hemolytic uremic syndrome. J Biol Chem 284: 15650–

15658.

28. Morgan HP, Schmidt CQ, Guariento M, Blaum BS, Gillespie D, et al. (2011)

Structural basis for engagement by complement factor H of C3b on a self

surface. Nat Struct Mol Biol 18: 463–470.

29. Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006)

Structure of C3b reveals conformational changes that underlie complement
activity. Nature 444: 213–216.

30. Pangburn MK, Müller-Eberhard HJ (1978) Complement C3 convertase: cell

surface restriction of b1H control and generation of restriction on neuramin-
idase-treated cells. Proc Natl Acad Sci USA 75: 2416–2420.

31. Haapasalo K, Vuopio J, Syrjanen J, Suvilehto J, Massinen S, et al. (2012)

Acquisition of complement factor H is important for pathogenesis of Streptococcus

pyogenes infections: evidence from bacterial in vitro survival and human genetic

association. J Immunol 188: 426–435.

32. Hovis KM, Jones JP, Sadlon T, Raval G, Gordon DL, et al. (2006) Molecular
analyses of the interaction of Borrelia hermsii FhbA with the complement

regulatory proteins factor H and factor H-like protein 1. Infect Immun 74:
2007–2014.

33. Meri S, Pangburn MK (1990) Discrimination between activators and

nonactivators of the alternative pathway of complement: regulation via a sialic

Microbial Acquisition of Factor H

PLOS Pathogens | www.plospathogens.org 11 April 2013 | Volume 9 | Issue 4 | e1003308



acid/polyanion binding site on factor H. Proc Natl Acad Sci USA 87: 3982–

3986.
34. Herbert AP, Deakin JA, Schmidt CQ, Blaum BS, Egan C, et al. (2007) Structure

shows that a glycosaminoglycan and protein recognition site in factor H is

perturbed by age-related macular degeneration-linked single nucleotide
polymorphism. J Biol Chem 282: 18960–18968.

35. Ferreira VP, Herbert AP, Cortes C, McKee KA, Blaum BS, et al. (2009) The
binding of factor H to a complex of physiological polyanions and C3b on cells is

impaired in atypical hemolytic uremic syndrome. J Immunol 182: 7009–7018.

36. Ferreira VP, Pangburn MK, Cortes C (2010) Complement control protein factor
H: the good, the bad, and the inadequate. Mol Immunol 47: 2187–2197.

37. Schneider MC, Prosser BE, Caesar JJ, Kugelberg E, Li S, et al. (2009) Neisseria

meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature

458: 890–893.
38. Kim HK, Thammavongsa V, Schneewind O, Missiakas D (2012) Recurrent

infections and immune evasion strategies of Staphylococcus aureus. Curr Opin

Microbiol 15: 92–99.

39. Sjobring U, Bjorck L, Kastern W (1991) Streptococcal protein G. Gene structure

and protein binding properties. J Biol Chem 266: 399–405.
40. Leo JC, Goldman A (2009) The immunoglobulin-binding Eib proteins from

Escherichia coli are receptors for IgG Fc. Mol Immunol 46: 1860–1866.

41. Bhattacharjee A, Lehtinen MJ, Kajander T, Goldman A, Jokiranta TS (2010)
Both domain 19 and domain 20 of factor H are involved in binding to

complement C3b and C3d. Mol Immunol 47: 1686–1691.
42. Blanc C, Roumenina LT, Ashraf Y, Hyvärinen S, Sethi SK, et al. (2012) Overall

Neutralization of Complement Factor H by Autoantibodies in the Acute Phase

of the Autoimmune Form of Atypical Hemolytic Uremic Syndrome. J Immunol
189(7):3528–3.

43. Koistinen V, Wessberg S, Leikola J (1989) Common binding region of
complement factors B, H and CR1 on C3b revealed by monoclonal anti-C3d.

Complement Inflamm 6: 270–280.
44. Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, et al. (2009) Structure of

complement fragment C3b-factor H and implications for host protection by

complement regulators. Nat Immunol 10: 728–733.

Microbial Acquisition of Factor H

PLOS Pathogens | www.plospathogens.org 12 April 2013 | Volume 9 | Issue 4 | e1003308


