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Abstract 

Background:  N6-methyladenosine (m6A) is one of the most abundant post-transcriptional modifications of RNA. 
However, there is limited information about the potential roles of m6A regulators in tumor immunity. Therefore, in this 
study, we aimed to testify the functions of m6A regulators in bladder cancer as well as their association with the tumor 
immune landscape.

Methods:  We reported the variation and expression levels of m6A regulators in the TCGA database and GTEx data-
base of bladder cancer. Clusters, risk score patterns, and nomograms were constructed to evaluate the function and 
prognostic value of m6A regulators. Furthermore, we constructed nomogram to evaluate the prognosis of the individ-
ual patients. The correlation between insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and programmed 
cell death ligand 1 (PD-L1) was evaluated both in vitro and in vivo.

Results:  We found that the tumor grade and DNA damage pathways were strongly correlated with distinct clus-
ters. Furthermore, two risk score groups with six m6A regulators were identified using the least absolute shrinkage 
and selection operator (LASSO) and multivariable Cox regression analysis, which could be regarded as independent 
prognostic markers in patients with bladder cancer. The risk score pattern was linked to the tumor immune landscape, 
indicating a correlation between immune checkpoints and m6A regulators. Moreover, an m6A regulator, IGF2BP3, was 
found to be highly expressed in the tumor samples, regulating both the total and membrane-bound PD-L1 expres-
sion levels.
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Background
Of the 171 post-transcriptional modifications of RNA, 
including 5-methylcytosine (m5C), 7-methylguano-
sine (m7G), m1G, m2G, and m6G, N1-methyladenosine 
(m1A) and N6-methyladenosine (m6A) have been iden-
tified in living organisms [1]. m6A is one of the most 
prominent and abundant internal modifications in 
eukaryotic mRNA and long noncoding RNA (lncRNA), 
accounting for 0.2–0.4% of the total adenosine residues 
and half of the total ribonucleotides in mammalian 
RNA [2–4]. Similar to dynamic and reversible epige-
netic modifications of genomic DNA and proteins, 
m6A RNA modification is a reversible process in mam-
malian cells, which may be regulated by three vital fac-
tors, namely the methyltransferases, demethylases, and 
binding proteins, which are also known as writers, eras-
ers, and readers, respectively. They can add, remove, or 
read an m6A site [5, 6]. m6A modifications are related 
to various biological functions, such as RNA splicing, 
translocation, stability, and translation [7, 8], as well as 
multiple dysregulated biological processes, including 
aberrant proliferation, promotion of tumor metastasis, 
and inhibition of apoptosis [9–12].

Tumor progression is attributed to multiple genetic 
and epigenetic variations in tumor cells [8]. However, 
increasing evidence has shown that evading tumor 
surveillance is a hallmark of tumor development [13]. 
The immunogenic interaction between the host tissues 
and the tumors, and the ability of the tumor to evade 
immune recognition could determine the prognosis 
of patients [14]. Immunotherapy targeting immuno-
logical checkpoints, such as programmed cell death 1 
(PD-1), programmed cell death 1 ligand 1 (PD-L1), and 
cytotoxic T lymphocyte-associated antigen-4 (CTLA-
4), has been used as a potential therapeutic strategy 
for cancers. As cancers are not solely neoplastic cells, 
they contain the tumor microenvironment (TME), 
which can be divided into immune and non-immune 
infiltrates, such as cytotoxic T cells, natural killer cells, 
dendritic cells (DCs), tumor-associated macrophages 
(TAMs), endothelial cells, and stromal cells [15]. The 
TME is a highly complex ecosystem, and various bio-
logical behaviors change through direct and indirect 
interactions with the TME components. Thus, it is 

important to clarify the immune infiltration at the 
tumor site and the biomarkers associated with TME, 
which might help to individually evaluate patients who 
could benefit from immunotherapies and will broaden 
our understanding of tumor immunity.

Bladder cancer (BCa) is more common in men than 
in women, and ranks 4th in incidence and 8th in mor-
tality among the male population, according to the lat-
est published cancer statistics [16]. Approximately 75% 
of patients with newly diagnosed BCa are non-muscle 
invasive bladder cancer (NMIBC), and 25% are mus-
cle invasive bladder cancer (MIBC) [17]. Bacillus Cal-
mette-Guérin (BCG), which can activate human innate 
and adaptive immune responses, intravesical instilla-
tion is the current gold standard clinical treatment for 
NMIBC. Meanwhile, anti-PD-1/PD-L1 immunotherapy 
is the hotspot for advanced MIBC, and the response 
rate of immunotherapies is determined by various 
conditions, including tumor immunity and cancer cell 
immunogenicity [18, 19]. Recent studies have revealed 
an interaction between m6A modification and the TME. 
A study by Jiang et  al. revealed that when co-cultured 
with M2 macrophages, the expression levels of alkB 
homolog 5 (ALKBH5) and the toll-like receptor (TLR)-4 
increased in ovarian cancer cells, and TLR4 upregu-
lated ALKBH5 expression and increased Nanog expres-
sion via mRNA demethylation [20]. Moreover, TNF-α 
inhibits the differentiation of mesenchymal stem cells 
by repressing fat mass and obesity‐associated protein 
(FTO) expression and FTO-mediated demethylation 
of Nanog mRNA levels and decreasing Nanog mRNA 
expression levels [21]. Zhang et  al. integrated gastric 
cancer samples to establish m6A modification patterns 
and scoring systems, and found that TME characteris-
tics were highly consistent with the patterns, suggest-
ing that m6A modification played an insignificant role 
in tumor immunity in gastric cancer [22].

However, the above studies only investigated one or 
two m6A regulators and did not investigate the con-
nection between m6A regulators and tumor immunity. 
Therefore, in this study, we comprehensively investi-
gated the tumor immune landscape associated with 
m6A regulators, established a set of scoring patterns, 
and evaluated the prognostic value of this pattern for 
individual patients.

Conclusions:  The results of this study revealed that the m6A clusters and patterns play crucial roles in the regulation 
of tumor immunity, which may be used to develop comprehensive treatment strategies for the management of blad-
der cancer.

Keywords:  m6A, Immune landscape, Bladder cancer, IGF2BP3, PD-L1
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Methods
Dataset source acquisition
All data were obtained from The Cancer Genome 
Atlas (TCGA)-Urothelial Bladder Carcinoma (BLCA) 
database (https://​portal.​gdc.​cancer.​gov/) and the 
Genotype Tissue Expression project (GTEx) database 
(https://​gtexp​ortal.​org/), including RNA sequenc-
ing data (fragments per kilobase of transcript per 
million fragments sequenced (FPKM) value) of gene 
expression, copy number variation (CNV), somatic 
mutation, and clinical information. The GTEx data-
base includes over 10,000 bulk RNA-seq samples 
representing 53 different tissues (corresponding to 
30 organs) obtained from 635 pre-healthy individu-
als, to link the influence of genetic variants on gene 
expression levels via quantitative trait loci analysis 
(eQTL) [23]. The expression levels of normal samples 
from TCGA and GTEx databases were integrated and 
used for comparison with tumor samples. The Can-
cer Cell Line Encyclopedia (CCLE) database was used 
to evaluate the expression levels of the m6A regulator 
in several cell types, and the correlation with PD-L1 
at the bladder cancer cell level. The protein levels of 
m6A regulators were determined using the Human 
Protein Atlas database (https://​www.​prote​inatl​as.​
org/). The Oncomine database was used to determine 
the insulin-like growth factor 2 mRNA-binding pro-
tein 3 (IGF2BP3) expression levels in several cancer 
types (https://​www.​oncom​ine.​org/). The gene expres-
sion profiling interactive analysis (GEPIA) database 
was used to evaluate the prognostic value of IGF2BP3 
(http://​gepia.​cancer-​pku.​cn/). The workflow of this 
study is shown in Additional file 1: Fig. S1.

Selection of m6A regulators
A total of 24 m6A RNA methylation regulators were 
extracted from the database according to the rel-
evant m6A studies [22, 24], including nine writers 
[METTL3, METTL14, METTL16, RNA-binding motif 
protein (RBM15)-15, RBM15B, WT1-associated pro-
tein (WTAP), KIAA1429, Cbl proto-oncogene like 
1(CBLL1), and zinc finger CCCH-type containing 13 
(ZC3H13)], two erasers (ALKBH5 and FTO), and 13 
readers [YTH domain containing YTHDC1, YTHDC2, 
YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, 
IGF2BP3, heterogeneous nuclear ribonucleopro-
tein A2/B1 (HNRNPA2B1), heterogeneous nuclear 
ribonucleoprotein C (HNRNPC), FMR1, leucine rich 
pentatricopeptide repeat containing (LRPPRC), and 
ELAV-like RNA binding protein 1 (ELAVL1)]. The 
extracted information was used for further analyses.

Consensus clustering analysis
Unsupervised clustering of BCa samples was conducted 
to identify different m6A regulatory patterns based on 
their mRNA expression levels and classify the patients 
for further analysis. The “ConsensuClusterPlus” R 
package was used to perform the consensus cluster-
ing algorithm, which could determine the number of 
clusters and assess their stability according to the m6A 
regulator expression levels [25]. “k” was used to repre-
sent the number of subgroups. Principal component 
analysis (PCA) was conducted to verify the grouping 
results, and the set of protein in PCA is the total of 24 
m6A RNA methylation regulators.

Identification of differentially expressed genes (DEGs) 
and construction of the protein–protein interaction (PPI) 
network
The “limma” R package was applied to identify the 
differentially m6A expressed genes between nor-
mal and tumor samples [26]. The significance criteria 
for determining DEGs was set as the P value < 0.05, 
and |log2FC|> 1. The Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) database and 
Cytoscape software was used to retrieve and construct 
a PPI network of the m6A regulator network.

Gene set variation analysis (GSVA)
To investigate the changes in pathway activity between 
different groups, GSVA was performed using the 
“GSVA” R packages. GSVA is a non-parametric, unsu-
pervised method for estimating the variation in gene 
set enrichment and biological process activity of sam-
ples from an expression dataset [27]. In the present 
study, the gene sets of “c2.cp.kegg.v7.1.symbols” were 
downloaded from the Molecular Signatures Database 
(MsigDB) for running the GSVA analysis. We defined 
an adjusted P value < 0.05, and |log2FC|≥ 0.08, as statis-
tically significant.

Estimation of immune signatures, TME cell infiltration level 
and tumor purity in BCa
The single-sample gene-set enrichment analysis 
(ssGSEA) algorithm was used to quantify the rela-
tive abundance of immune signatures in the TME. 
The enrichment levels of 29 immune signatures were 
quantified for each sample. The gene sets representing 
each immune signature are shown in Additional file 1: 
Table  S1, including B cells, Th2 cells, NK cells MHC 
class I cells, CD8 + T cells, and so on [28]. The “sparcl” 
R package was employed to divide the samples into 
three groups, including immunity high, medium and 
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low for further analyses. ESTIMATE was used to evalu-
ate TME cell infiltration level (including immune and 
stromal scores) and tumor purity for each sample [29].

Cox regression analyses
Univariable and multivariable Cox regression analyses 
were used to assess the prognostic value of m6A regula-
tors, and hazard ratios (HRs) > 1 or < 1 were regarded as 
risk and protective genes, respectively. The least abso-
lute shrinkage and selection operator (LASSO) Cox 
regression algorithm was used to construct the optimal 
prognostic model out of the m6A regulators using the 
“glmnet” package in R. The LASSO analysis performed 
predictor selection, minimized over-fitting, selected 
genes to reduce bias, and developed the best survival-
associated risk pattern [30]. After testing for collinear-
ity, the sum of the Cox coefficient and gene values were 
calculated using the risk score based on the following 
formula:

Each patient was assigned a risk score based on inte-
grative m6A regulator expression patterns. Tree-fold 
cross-validation and 1000 iterations were conducted to 
reduce the potential instability of the results.

The correlation between the expression levels of m6A 
regulators and mutation with immune cell infiltration
To explore the relationship between m6A regulators 
involved in the risk score pattern and the infiltrating 
immune cells, we utilized the Tumor IMmune Estima-
tion Resource (TIMER) web tool (https://​cistr​ome.​shiny​
apps.​io/​timer/) to calculate the correlation coefficients 
between m6A regulator expression and mutations with 
infiltrated immune cells including B cells, CD4 + T cells, 
CD8 + T cells, macrophages, neutrophils, and dendritic 
cells [31, 32].

Construction and validation of a predictive nomogram
Based on the results of the multivariable Cox regres-
sion model, a nomogram based on independent prog-
nostic factors was constructed to predict 3- and 5-year 
OS. The nomogram provides a graphic representation 
linking individual patient factors to predict the survival 
probability of BCa patients [33]. In addition, a boot-
strapped resample with 1000 iterations was applied to 
verify the accuracy of the nomogram. Furthermore, the 
performance of the prognostic models was evaluated by 
receiver operating characteristic (ROC) analyses, and the 
concordance index (c-index) was measured to quantify 
the nomogram discrimination. A scale of 1.0, represents 
perfect predictions, and 0.5, the equivalent of a coin toss. 

Risk score =
∑

(coefficient × expression of signature gene)

The calibration of the model was assessed by comparing 
the observed survival with the predicted survival by plot-
ting a calibration curve. The 45° line indicates a perfect 
calibration. Any deviation above or below the 45° line 
indicates underprediction or overprediction, respectively. 
Due to the limited conditions, no extra BCa cohort could 
be used as an externally validated database to evaluate 
the efficacy of model validation and prediction. Thus, 
only internal validation was conducted to evaluate the 
nomogram model.

Tissue specimens
This study was approved by the Medical Ethics Commit-
tee of the Shandong University School of Clinical Medi-
cine. Twenty human BCa tissues were collected at the 
Qilu Hospital of Shandong University. Informed consent 
was obtained from all patients.

Cell cultures and manipulation
T24, 5637, and UMUC3 cell lines were purchased from 
the American Type Culture Collection (ATCC). T24 
and 5637 cells were cultured in the Roswell Park Memo-
rial Institute (RPMI)-1640 medium (Gibco; 11875093). 
UMUC3 cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM; Gibco; 11995065). All media 
were supplemented with 10% fetal bovine serum (Gibco; 
10099-141C). The cells were incubated at 37  °C in a 
humidified atmosphere with 5% CO2.

Stable IGF2BP3 knockdown, overexpression cell lines, 
and their controls were generated as described previously 
[34]. Lentiviruses were purchased from GeneChem Inc. 
(Shanghai, China).

Western blotting and antibodies
Western blotting was performed as previously described 
[34]. The primary antibodies included anti-IGF2BP3 
(Abcam; ab177477), anti-PD-L1 (Proteintech; 28076-1-
AP), and anti-GAPDH (Proteintech; 60004-1-Ig).

RNA extraction and reverse transcription‑polymerase 
chain reaction (RT‑PCR)
Extraction of total RNA and RT-PCR were performed as 
previously described [34]. Primers used were purchased 
from Sangon Biotech (Shanghai, China), and primer 
sequences are shown in Additional file 1: Table S2.

Flow cytometric assay
Flow cytometric assays were performed as previously 
described [35]. Briefly, single-cell suspensions were 
freshly prepared from the inidicated cells. Cells were 
washed once with PBS and stained with anti-PD-L1 anti-
body (Biolegend, 329705) for 30 min. The samples were 

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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analyzed on a FACSCanto II (BD Bioscience, USA) using 
FlowJo 7.6.5.

Statistical analysis
All analyses were conducted using the R v.4.0.0 and SPSS 
v.20.0 software. The “RCircos” R package was used to 
plot the CNV landscape of m6A regulators. The somatic 
mutation landscape was assessed using the “maftools” 
R package to plot the mutation summary, waterfall, and 
gene cloud figures. The correlations among different m6A 
regulators were computed by “corrplot” R package. “Sur-
vival” R package was adopted to analyze Kaplan–Meier 
curve analysis. The “forestplot” R package was conducted 
to visualize the univariable and multivariable prognos-
tic analysis for risk score. The specificity and sensitivity 
of risk score were assessed using the ROC curve and the 
area under the curve (AUC), which were quantified by 
the “pROC” R package. Data from the two groups were 
evaluated using a two-tailed unpaired Student’s t-test. 
Categorical data were analyzed using the chi-square 
test. The correlation between continuous variables was 
assessed using the Spearman’s correlation analysis. Sur-
vival analysis was performed using log-rank test. Statisti-
cal significance was set at P < 0.05.

Results
Landscape of somatic mutation and CNV mutation of m6A 
regulators in BCa
A total of 24 m6A regulators in BCa were used in the pre-
sent study. We first clarified the incidence of CNV and 
somatic mutations in m6A regulators in BCa. Among 
the 412 samples, 116 (28.2%) experienced somatic muta-
tions in m6A regulators (Fig.  1A). METTL3 showed the 
highest mutation frequency among the m6A regula-
tors (approximately 4%), while two writers (RBM15B 
and METTL16) and two readers (HNRNPC and FMR) 
did not exhibit any somatic mutations in BCa. Correla-
tion analyses revealed that most m6A somatic mutations 
did not exhibit a co-occurrence relationship, except for 
FMR1 and YTHDF2, YTHDF1 and KIAA1429, WTAP 
and METTL3, ZC3H13, and RBM15 (Fig. 1B). Next, we 
summarized the CNV mutation frequency among the 
m6A regulators, and KIAA1429, YTHDF1, YTHDF3, and 
IGF2BP2 had a widespread frequency of CNV amplifica-
tion, while METTL16 and ALKBH5 showed high CNV 
deletion frequency (Fig. 1C). We also explored the CNV 
mutation in normal tissues, and only 7 m6A regulators 
had a CNV mutation burden, with an extremely low fre-
quency (Additional file  1: Fig. S2). The location of the 
CNV mutation in m6A regulators on different chromo-
somes is shown in Fig. 1D.

Profiles of mRNA and protein expression level of m6A 
methylation regulators in BCa
After exploring the mutation of m6A regulators, we 
investigated the mRNA expression levels of m6A regula-
tors in normal bladder samples and tumor samples. The 
GTEx and TCGA datasets were merged for further analy-
sis, with 28 normal samples and 411 tumor samples. As 
shown in Fig. 2A, B, mRNA expression levels of CBLL1, 
ELAVL1, HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3, 
LRPPRC, RBM15, RBM15B, YTHDF1, YTHDF2, and 
YTHDF3 were significantly higher in tumor samples than 
in healthy samples, while the expression levels of FTO, 
METTL14, METTL16, WTAP, YTHDC1, YTHDC2, 
and ZC3H13 were decreased in tumor samples. Due to 
the functional similarity or complementation, the com-
prehensive landscape of m6A regulator connections was 
depicted by Spearman correlation analysis, STRING 
website, and Cytoscape software, METTL3 and YTHDF3 
showed the strongest positive correlation, while METTL3 
and IGF2BP2 showed the strongest negative relevance 
(Fig. 2C, D). Not only did the m6A regulators with similar 
functions show a significant correlation, but a remarkable 
interaction was shown among writers, erasers, and read-
ers. Moreover, correlations between writers and erasers 
were investigated to determine whether tumors with high 
eraser expression levels exhibited low writer expression 
levels. The results revealed that tumors with high expres-
sion of CBLL1 and METTL14 showed a high expres-
sion of FTO, while the high expression of CBLL1 and 
METTL14 showed low expression of ALKBH5. Tumors 
with high expression of ZC3H13 and WTAP showed high 
expression of FTO. However, ZC3H13 and WTAP did 
not interfere with ALKBH5 expression. The remaining 
writer genes did not affect the eraser genes ALKBH5 and 
FTO (Additional file 1: Fig. S3A). Immunohistochemistry 
staining images of m6A regulator proteins were retrieved 
from the Human Protein Atlas, revealing cellular sublo-
calization and intensity (Fig. 2E and Additional file 1: Fig. 
S3B). The above results revealed that cross-talk among 
m6A regulators might construct important modification 
patterns.

Identification of m6A regulators in two subgroups using 
consensus clustering
The empirical cumulative distribution function was plot-
ted to analyze the optimal k value at which the cluster 
model achieved maximum stability (Fig.  3A and Addi-
tional file  1: Fig. S4A). The results showed that k = 2 
gained the most powerful clustering efficacy, and the 
samples were divided into two subclusters using unsuper-
vised clustering (Fig. 3B and Additional file 1: Fig. S4B-F). 
PCA analysis was used to judge the classification, and the 
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two clusters could gather together (Fig.  3C). Prognostic 
analysis for the two clusters did not show a statistically 
significant difference, but a trend in overall survival 
(OS) (Fig. 3D). We explored PCA analysis and prognos-
tic analysis for k = 3 and 4, and no significant benefits in 

OS were found (data not shown). However, the correla-
tion analysis showed that clustering was associated with 
the tumor grade (Fig.  3E). The m6A expression profiles 
showed that all m6A regulators were upregulated in clus-
ter 2, except for IGF2BP1 (Additional file  1: Fig. S4G). 

Fig. 1  Landscape of the somatic and copy number variation (CNV) mutations of m6A regulators in bladder cancer (BCa). A The mutation profile 
of 24 m6A regulators in patients with BCa. The upper barplot indicates the tumor mutational burden (TMB) of individual patients, and the number 
on the right shows the mutation frequency in each regulator. B The m6A somatic mutation co-occurrence and mutually exclusion analyses of 24 
m6A regulators. Co-occurrence to mutual exclusion from green to brown. C The CNV variation frequency of m6A regulators in BCa. The blue column 
represents the deletion frequency, and the red column represents the amplification frequency. D The location of CNV alteration of m6A regulators 
on different chromosomes. ·P < 0.05; *P < 0.001

Fig. 2  Profiles of expression levels of 24 m6A methylation regulators in BCa and adjacent normal tissues. A Heatmap of m6A RNA expression levels 
in BCa and normal tissues from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression project (GTEx) databases. B Box plots of m6A 
RNA expression levels of the tumor and normal tissues. C Spearman correlation analysis of the m6A regulators in BCa. Red dot represents positive 
correlation and blue dot represents negative correlation. D The interaction among m6A regulators in BCa. Brown dots represent the writers, red dots 
represent the erasers, and yellow dots represent the readers. The lines linking regulators show their interactions, while the thickness and color show 
the correlation strength between the regulators. Low interaction is marked with thin orange lines, while positive correlation is marked with blue 
thick lines. E The protein levels of m6A regulators detected by immunohistochemistry staining were from The Human Protein Atlas database

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Identification of consensus clusters by m6A regulators associated with the clinicopathological characteristic and pathway. A Consensus 
clustering cumulative distribution function (CDF) diagram with a clustering number from k = 2 to k = 9. B Consensus clustering matrix for k = 2, 
displaying the clustering stability using 1000 iterations of hierarchical clustering. C Principal component analysis (PCA) for the transcriptome profiles 
of two consensus clusters. D Kaplan–Meier curves for patients with BCa. Patients in cluster 1 were marked with blue, while those in cluster 2 were 
marked with red. E Heatmap and clinicopathologic features of the two clusters classified by the m6A regulators consensus expression. The m6A 
cluster, N status, M status, T status, tumor stage, tumor grade, gender, and age were used as patient annotations. Red represents the high expression 
of m6A regulators and blue represents the low expression. F–G Gene set variation analysis (GSVA) enrichment analysis showed the status of 
biological pathways between the two clusters. The volcano plot was used to visualize these biological processes. Red dots represents the activated 
pathways and green dots represents the inhibited pathways, logFC set as 0.1, and P value set as 0.05 (F), and the heatmap was used to visualize 
these biological processes and red represented activated pathways and green represented inhibited pathways (G)
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GSVA enrichment analysis was performed to explore 
the biological behaviors of the two clusters. As shown 
in Fig.  3F–G, cluster 1 presented enrichment pathways 
associated with metabolism, such as linoleic acid, ara-
chidonic acid, retinol, drug, and xenobiotic metabolism. 
Cluster 2 was remarkably enriched in DNA damage, 
including mismatch repair, DNA replication, cell cycle, 
nucleotide excision repair, and spliceosome.

Characteristics of risk score pattern based on m6A 
regulators
To further explore the prognostic value of m6A regulators 
in BCa, we first performed a univariable Cox regression 
analysis on the expression levels of m6A regulators. The 
results showed that high expression of IGF2BP3 (hazard 
ratio [HR] = 1.2, 95% confidence interval [CI] = 1.1–1.3) 
and LRPPRC (HR = 1.0, 95% CI = 1.0–1.1) had worse sur-
vival outcomes in patients with BCa, whereas YTHDC1 
(HR = 0.9, 95% CI = 0.9–1.0) and WTAP (HR = 1.0, 95% 
CI = 0.9–1.0) were regarded as protective markers for 
BCa (Fig.  4A). However, high expression of ZC3H13 
seemed to have worse survival outcomes in patients with 
BCa regardless of P value.

LASSO Cox regression analysis was performed to 
determine the optimal genes for selecting predictors 
and building the most regularized and parsimonious risk 
score pattern, and we only chose the prognostic value of 
m6A regulators P < 0.1 for further analysis. The genes and 
their coefficients obtained from the LASSO analysis were 
used to calculate the risk scores for individual patients 
(Fig.  4B, Additional file 1: Fig. S5A, Table  S3). The final 
LASSO model with the best optimal lambda included 
six m6A regulators (IGF2BP3, LRPPRC, YTHDC1, 
YTHDF2, and WTAP). To investigate the prognos-
tic value of the risk score pattern, BCa patients were 
divided into low-and high-risk groups, and the Kaplan–
Meier curve revealed that the patients in the high-risk 
group had a worse survival than patients in the low-risk 
group (Fig. 4C). As shown in Fig. 4D, E, green (low risk 
or alive) and red (high risk or dead) dots demonstrated 
significant differences between the low-and high-risk 
groups. ROC analysis showed a risk score pattern with 

AUC = 0.64, indicating that the risk score could predict 
the OS of patients with BCa (Fig. 4F). Next, we explored 
the correlation between the risk score pattern and clini-
cal characteristics, and the risk score pattern was related 
to tumor grade, tumor stage, T status, M status, and N 
status (Fig.  4G and Additional file  1: Table  S4). Moreo-
ver, the expression of risk genes (IGF2BP3, LRPPRC, and 
FTO) was higher in high-rsik patients, while YTHDC1, 
YTHDF2, and WTAP tended to be expressed in the low-
risk group. Univariable and multivariable Cox analyses 
were performed to determine the independent prognos-
tic value of the risk score pattern. Patient age, tumor T 
status, N status, and risk score were independent prog-
nostic predictors in patients with BCa (Fig. 4H).

To better understand the function of the risk score 
pattern, we analyzed the GO analysis of DEGs based 
on expressions in low-and high-risk score groups. GO 
analysis indicated that upregulated genes in the high-risk 
group were enriched in malignancy-related biological 
processes, including extracellular matrix organization, 
extracellular structure organization, and antimicro-
bial humoral response, and downregulated genes were 
enriched in hormone metabolic processes and terpe-
noid metabolic processes (Additional file 1: Fig. S5B, C). 
GSVA enrichment analysis was conducted to explore the 
different pathways between the two groups. The results 
revealed that the high-risk group was significantly related 
to the malignant pathways, including gap junction, focal 
adhesion, and ECM receptor interaction (Additional 
file 1: Fig. S5D, E). Then, we investigated the distribution 
differences of somatic mutation between low and high 
risk score by using “maftools” R package. As shown in 
Additional file  1: Fig. S5F–K, the high-risk score group 
exhibited more somatic mutation burden than the low-
risk score group, and missense mutation was the most 
common variant classification; the most common vari-
ant type was SNP, and C>T transversion was the most 
common type of SNV class. Moreover, the top three 
mutated genes were TP53, TTN, and KDM6A in the low-
risk group and TP53, TTN, and KMT2D in the high-risk 
group, respectively. Taken together, the risk score pat-
tern based on m6A regulators could be regarded as an 

Fig. 4  Characteristics of risk score patterns based on m6A regulators. A The univariable Cox regression analysis for predicting the prognosis of m6A 
regulators. Hazard ratio > 1 represents the risk markers for survival and hazard ratio < 1 represents the protective markers for survival. B The most 
regularized and parsimonious risk score pattern was built by multivariable Cox regression using the least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis The grey solid vertical lines represent the partial likelihood deviance ± standard error (SE). The black vertical 
lines are drawn at the optimum values by minimum criteria and 1‐SE criteria. C Kaplan–Meier curves for low- and high-risk score patient groups 
(Log-rank test). D, E Evaluation of the relationship of the risk score patterns with overall survival status. Red dots represent death and green dots 
represent alive. F Receiver operating characteristic (ROC) curve represents the predictive efficiency of the risk score patterns. G Heatmap shows the 
expression levels of the m6A regulators in low- and high-risk score patients with BCa. N status, M status, T status, tumor stage, tumor grade, gender, 
and age were used as patient annotations. Red represents the high expression of regulators and blue represents the low expression. H, I Cox 
regression analyses of the clinicopathological factors and risk score patterns in patients with BCa from TCGA. Univariable Cox regression analyses 
(H), Multivariable Cox regression analyses (I).*P < 0.05, **P < 0.01

(See figure on next page.)
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independent prognostic factor in patients with BCa, and 
the high-risk group gained more malignant behaviors 
and more mutation burden.

Characteristics of immune landscape with risk score 
pattern
To explore the potential relationship between immu-
nity and risk score pattern, we first divided samples 
into three clusters, immunity low, median and high 
using the ssGSEA score to quantify the immune cell 
types, functions and pathways, and the differences in 
29 immune-associated gene sets were shown in three 
distinct immunity clusters (Additional file  1: Fig. S6A, 
B). Next, we investigated the correlation between the 
immune landscape and the risk score pattern. As shown 
in Fig.  5A, the enrichment of the immune landscape in 
the high-risk group was higher than that in the low-risk 
group. Moreover, the percentage of low immunity sam-
ples in the high-risk group was significantly lower than 
that in the low-risk group and more median immunity 
samples in the high-risk group than that in the low-risk 
group (Fig. 5B). In addition, comparing the stromal score, 
immune score, tumor purity, and ESTIMATE score 
between the two distinct risk score groups, we found 
that the high-risk group had significantly higher stro-
mal scores, immune scores, and ESTIMATE scores, and 
lower tumor purity (Fig.  5C–F). Taken together, these 
results suggest that the risk score pattern has a strong 
relationship with the immune landscape, and the poten-
tial mechanisms of m6A regulators in tumorigenesis and 
progression may be associated with tumor immunity.

Next, we explored the immune characteristics of 
independent m6A regulators in the risk group using the 
TIMER database to investigate the correlation between 
m6A regulator expression and immune cells, including 
B cells, CD8 + T cells, CD4 + T cells, macrophages, neu-
trophils, dendritic cells, and tumor purity. As shown in 
Fig. 5G and Additional file 1: Fig. S6C, the expression of 
IGF2BP3 was positively correlated with macrophages, 
neutrophils, and dendritic cells and negatively corre-
lated with tumor purity. The expression of LRPPRC was 
positively correlated with B cells, CD8 + T cells, neu-
trophils, and dendritic cells, and negatively correlated 
with CD4 + T cells. As for FTO, B cells, CD8 + T cells, 

macrophages, neutrophils, and dendritic cells were iden-
tified as significant co-expression cells. The expression 
of WTAP was negatively correlated with tumor purity, 
but positively correlated with CD8 + T cells, CD4 + T 
cells, neutrophils, and dendritic cells. The expression 
of YTHDC1 was only correlated with tumor purity, B 
cells, and macrophages. As for YTHDF2, tumor purity, 
B cells, CD8 + T cells, and neutrophils showed a strong 
correlation. The SCNA module, which was defined by 
GISTIC 2.0, was conducted to provide a comparison of 
immune infiltration levels in BCa with different somatic 
copy number alterations for m6A regulators. As shown in 
Fig. 5H and Additional file 1: Figure S6D, IGF2BP3 ampli-
fication was associated with dendritic cells.YTHDC1 
deletion was related to B cells, while amplification was 
related to CD8 + T cells, neutrophils, and dendritic cells. 
Moreover, FTO amplification had a connection with B 
cells and macrophages, and deletion had a connection 
with CD8 + T cells. Interestingly, LRPPRC deletion and 
amplification were both associated with CD4 + T cells, 
neutrophils, and dendritic cells. The YTHDF2 mutation 
was associated with immune cells, except for CD8 + T 
cells and macrophages. The WTAP mutation is only 
related to CD4 + T cells and neutrophils. Furthermore, 
we investigated the co-expression of m6A regulators in 
the risk score model and several immune checkpoints 
(Fig. 5I). The results indicate that m6A regulators are cor-
related with most immune checkpoints, including PD-
L1 (also known as CD274). In summary, these results 
strongly indicate that the risk score pattern based on 
m6A regulators is significantly correlated with the tumor 
immune landscape.

Construction and validation of nomogram
A nomogram was established based on the independent 
factors using a multivariable Cox regression model to 
predict OS in patients with BCa (Fig. 6A). The AUCs of 
the nomogram for predicting the 3- and 5-year OS were 
0.69 and 0.70, respectively (Fig.  6B, C). The c-index of 
the nomograms for OS in the training set was 0.68. As 
shown in Fig. 6D, E, calibration plots were generated to 
validate the similarities between the actual survival rate 
and the survival prediction by the nomogram, and the 
results demonstrated that the 3- and 5-year survival rates 

(See figure on next page.)
Fig. 5  Characteristics of immune signatures with m6A regulators and risk score patterns. A Heatmap shows the enrichment of 29 immune 
signatures in two risk score groups. Immunity cluster, tumor purity, ESTIMATE score, immune score, and stromal score were used as patient 
annotations. B The proportion of patients from different immunity clusters in low and high risk groups. C–F Violin plot shows the different status 
of scores in risk score groups. Stromal score (C), immune score (D), tumor purity (E), and ESTIMATE score (F). G The association of insulin-like 
growth factor 2 mRNA-binding protein 3 (IGF2BP3) expression levels with 6 immune cells and the tumor purity. The data was obtained from the 
Tumor Immune Estimation Resource (TIMER) website (https://​cistr​ome.​shiny​apps.​io/​timer/). H The association of m6A regulators mutations with 6 
immune cells. The data was obtained from the TIMER website (https://​cistr​ome.​shiny​apps.​io/​timer/). I The association between m6A regulators in 
risk score patterns with immune checkpoints. Red at the bottom right corner represents the positive correlation, and yellow represents the negative 
correlation. Yellow also represents statically difference at the top left corner. *P < 0.05, **P < 0.01, ***P < 0.001

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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predicted by the nomogram were closely corresponded 
with the actual survival rates in the training set.

Moreover, 30 percent of patients with BCa were 
selected in the internal validation set. The AUCs in the 
validation set for predicting the 3- and 5-year OS were 
0.75 and 0.72, respectively (Additional file 1: Fig. S7A, B). 
The c-index of the nomogram in the validation set was 
0.688. The results of the calibration plot suggested that 
the predicted 3- and 5-year survival rates were consistent 
with the actual survival rate within an acceptable margin 
of error in patients with BCa (Additional file 1: Fig. S7C, 
D).

Characteristics of IGF2BP3 expression in cancers
Because of the important role of IGF2BP3 in risk score 
patterns, we used TCGA, GTEx CCLE, and Oncomine 
datasets to further understand IGF2BP3 in normal 
and tumor tissues. As shown in Fig.  7A, the expression 
of IGF2BP3 was higher in BCa, cholangiocarcinoma 
(CHOL), colon adenocarcinoma (COAD), esophageal 
carcinoma (ESCA), head and neck squamous cell car-
cinoma (HNSC), kidney chromophobe (KICH), kidney 
renal clear cell carcinoma (KIRC), kidney renal papil-
lary cell carcinoma (KIRP), liver hepatocellular car-
cinoma (LIHC), lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma(LUSC), stomach adenocarci-
noma (STAD), uterine corpus endometrial carcinoma 
(UCEC), and low expression in thyroid carcinoma 
(THCA), compared to their corresponding normal tis-
sues (Fig.  7A).  Moreover, the CCLE dataset was used 
to evaluate the expression levels of IGF2BP3 in various 
tumor cell lines. The results showed that the top three 
expression levels in tumor cell lines were liver cancer, 
lymphoma, and medulloblastoma. IGF2BP3 seemed to 
be positively associated with PD-L1 expression in BCa 
cell lines (Fig. 7B, C).

The Oncomine database was used to determine the 
expression level of IGF2BP3. And as shown in Fig.  7D, 
IGF2BP3 in most cancer types showed high expression 
levels, except for kidney cancer and myeloma, which 
were opposite to the TCGA database. Furthermore, the 
correlation between IGF2BP3 and PD-L1 in patients 
with BCa showed a trend similar to that of bladder can-
cer cell lines from CCLE (Fig. 7E). Next, we investigated 
the prognostic value of IGF2BP3 in BCa using the GEPIA 
website, and the results revealed that patients with high 
expression of IGF2BP3 had worse prognosis in BCa 

(Fig.  7F). The GETx database indicated that the expres-
sion level of IGF2BP3 in male and female bone marrow 
was significantly high. To compare the expression differ-
ences between males and females, and there was no dif-
ference in the expression of IGF2BP3 in most female and 
male tissues, except for blood vessels, brain, breast, and 
lung (Fig. 7G–J). Taken together, these results reveal that 
the expression of IGF2BP3 is high in various tumors and 
is associated with PD-L1, which may be a potential target 
for anti-PD-L1 immunotherapy.

The correlation between IGF2BP3 and PD‑L1 in BCa cells 
and tumor specimen
Given that IGF2BP3 had a strong correlation with PD-
L1 analyzed using a public database, we examined the 
expression levels of IGF2BP3 and PD-L1 in  vitro. Sta-
ble IGF2BP3 overexpression and knockdown of T24, 
5637, and UMUC3 cells were established, and the results 
revealed that overexpression of IGF2BP3 significantly 
increased, while knockdown of IGF2BP3 decreased 
both the protein and mRNA levels of PD-L1 in BCa 
cells (Fig. 8A–F). Further, flow cytometric assay showed 
that overexpression of IGF2BP3 significantly enhanced 
membrane-bound PD-L1 expression, and knockdown 
of IGF2BP3 decreased membrane-bound PD-L1 expres-
sion in T24 cells (Fig.  8G–H). The correlation between 
IGF2BP3 and PD-L1 expression was analyzed using BCa 
specimens. As shown in Fig. 8I, the positively correlated 
expression between IGF2BP3 and PD-L1 was found in 
14/20 (70%) tumor specimens. Taken together, these 
data demonstrate that IGF2BP3 regulates both total and 
membrane-bound PD-L1 expression levels in BCa.

Discussion
Although several studies have explored the m6A regu-
lators in tumorigenesis and tumor development, the 
comprehensive analysis of m6A regulators with tumor 
immune landscape in bladder cancer has been poorly 
investigated. Here, we reveal that distinct clusters and 
risk groups are associated with tumor immunity and have 
prognostic value for patients with BCa. Furthermore, 
PD-L1 is identified as a potential target of IGF2BP3, and 
IGF2BP3 can regulate both total and membrane-bound 
PD-L1 expression levels.

Modified RNA bases have been discovered for over 
six decades. After the first RNA demethylase (FTO) 
was identified, the research field was revived, and the 

Fig. 6  Construction of a nomogram to predict the prognosis of individual patients. A Baseline nomogram for predicting the probability of patients 
with 3- and 5-years was constructed from 3 clinicopathological parameters. B, C ROC curves of the nomogram for predicting (B) 3- and (C) 5-year 
overall survival (OS) status. D, E The calibration plots for predicting OS of patients at 3- (D) and 5-years (E), nomogram‐predicted survival probability 
is plotted on the x‐axis; actual survival probability is plotted on the y‐axis. The solid line represents our nomogram and the vertical bars represent 
95% confidence intervals

(See figure on next page.)
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formation of m6A is a reversible process [6, 36]. The m6A 
regulators can be divided into three functional groups: 
writers, erasers, and readers. Writing is the process of 
adding methylated modifications to RNA, including 
METTL3, METTL14, METTL16, KIAA1429, WTAP, 
RBM15, RBM15B, CBLL1, and ZC3H13 [5, 22, 24], while 
the reversible process is mediated by erasers, including 
the FTO and ALKBH5. Moreover, m6A indirectly affects 
RNA processing by recruiting specific reader proteins, 
including nuclear m6A readers, YTHDC-1, HNRNPA2B1, 
HNRNPC, etc., and cytoplasmic m6A readers, YTHDF-
1/2/3 and YTHDC2.Increasing evidence has shown that 
m6A regulators play a crucial role in various pathophysi-
ological processes, including circadian rhythms, sper-
matogenesis, DNA damage response, tumorigenesis, and 
tumor progression [37–40].

The TME consists of immune cells and non-immune 
cells, which could play a crucial role in tumor growth 
and progression, and tumor-infiltrated immune cells 
are highly associated with tumorigenesis, angiogenesis, 
and metastasis [41]. Meanwhile, the imbalance between 
tumor cell growth and elimination might activate immu-
nosurveillance. As the understanding of complexity 
of TME has deepened, more evidence has shown that 
tumor-infiltrating cells play either tumor-suppressive or 
tumor-promoting roles, thus influencing cancer initiation 
and progression. For instance, M1 macrophages mainly 
produce pro-inflammatory cytokines that potentiate the 
anti-tumor immune response, while M2 macrophages 
promote ECM deposition and immunosuppression [42]. 
Therefore, understanding the crosstalk between TME 
and tumor cells might be useful for assessing the prog-
nosis and improving the response rate of immunotherapy 
for individual patients with various cancers.

Bladder cancer is highly correlated with immunother-
apy, including anti-PD-L1 and anti-CTLA4 becomes a 
hotspot in advanced BCa treatment. The Food and Drug 
Agency (FDA) and the European Medicines Agency 
(EMA) granted accelerated approval to atezolizumab and 
pembrolizumab as first-line metastatic cisplatin-unfit 
BCa. However, anti-PD-L1 treatment showed limited 
efficacy in the first-line phase III clinical trials [43], with 
a relatively low response rate of approximately 20% [44]. 

Moreover, several studies have recently demonstrated 
that PD-1 and PD-L1 expression are not reliable biomark-
ers for predicting the benefits of immunotherapy [45, 46]. 
A retrospective study demonstrated that patients pro-
gressing to frontline PD-1/PD-L1 immunotherapy were 
even at risk of early death, excluding them from experi-
encing potential benefit from subsequent systemic treat-
ment [47].

Several studies have demonstrated the function of 
m6A regulators in bladder cancer. For instance, methyl-
transferase-like (METTL)-3 might act as an oncogene by 
interacting with the DiGeorge syndrome critical region 
8 (DGCR8) and accelerating the pri-miR221/222 matu-
ration to promote tumor proliferation [48]. Meanwhile, 
METTL3 plays a role in BCa progression by promot-
ing the cancer cell growth and invasion by regulating 
a network that involves the AF4/FMR2 family mem-
ber 4 (AFF4), nuclear factor-kappa B (NF-κB), and 
Myc [49]. Another mechanism of the m6A regulator 
METTL3/ YTH N6-methyladenosine RNA binding pro-
tein (YTHDF2) mA axis directly degrades the mRNAs of 
SET domain containing 7 (SETD7) and Kruppel-like fac-
tor 4 (KLF4), contributing to the progression of BCa [50]. 
Analysis of the expression levels of METTL3 and CDCP1 
in patients with BCa revealed that METTL3 and CDCP1 
were strongly upregulated in the tumor samples, and the 
METTL3-CDCP1 axis could increase the tumor prolif-
eration, migration, and invasion [51].

Most studies have focused on m6A regulators or 
immunotherapy. However, the correlation between m6A 
regulators and tumor immunity has not been fully rec-
ognized, and only a few studies have demonstrated the 
potential relationship between m6A regulators and TME 
anti-tumor immune responses in various cell types, such 
as gastric cancer, melanoma, and dendritic cells [22, 52, 
53]. Here, we first identified two distinct m6A clusters 
and constructed a risk score pattern based on m6A reg-
ulators to reveal the potential pathways and functional 
processes, predict the prognosis of patients with BCa, 
and investigate the correlation between m6A regulators 
and tumor immunity. Moreover, we analyzed one of the 
m6A regulators in pattern, IGF2BP3, and identified its 
expression level, prognostic value, and association with 

(See figure on next page.)
Fig. 7  The expression levels and prognostic value of IGF2BP3. A The comparison of IGF2BP3 expression levels between the tumor and normal 
tissues. B IGF2BP3 expression levels in different tumor cell lines from the Cancer Cell Line Encyclopedia (CCLE) database. C The correlation between 
the programmed cell death ligand 1 (PD-L1) and IGF2BP3 mRNA expression levels from the CCLE database. D IGF2BP3 expression levels in the 
Oncomine database. P value threshold was set 0.05 and the fold-change threshold was set 2.0. The number in the colored cells represents the 
number of studies meeting the thresholds. The printed red (over-expression) or blue colors (under-expression) indicate a significant association. E 
The relation of IGF2BP3 with PD-L1 from the TIMER website. F The Kaplan–Meier curve shows the prognostic values of IGF2BP3 in patients with BCa 
obtained via Gene Expression Profiling Interactive Analysis (GEPIA), which was based on TCGA database. G, H The anatomical structure showed the 
expression levels of the IGF2BP3 in the normal organ tissues in males (G) and females (H). I Histogram visualizing the expression levels of IGF2BP3 
in normal organ tissues. J Histogram visualizing the expression levels of IGF2BP3 in normal organ tissues between the females and males. *P < 0.05, 
***P < 0.001
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PD-L1. Clarifying the role of risk score pattern with TME 
will contribute to broadening the understanding of TME 
antitumor immune response and suggest appropriate 
effective immunotherapy strategies for individual BCa 
patients.

Although the prognostic value of the m6A cluster 
was limited, the m6A cluster was associated with tumor 
grade, and two clusters showed significantly distinct 
pathway enrichment. Cluster 1 was characterized by 
metabolism, and cluster 2 was characterized by DNA 
damage. And the clusters based on m6A regulator expres-
sion could provide a few fresh outlooks for further study. 
Moreover, the correlation analysis revealed that the most 
significant positive and negative relevance were METTL3 
with YTHDF3 and IGF2BP2, respectively, showing dif-
ferent functions in BCa. The function of m6A regulators 
primarily depends on reader proteins. YTHDF2 could 
induce mRNA degradation and YTHDF1 and YTHDF3 
could initiate mRNA translation, while the IGF2BP fam-
ily could enhance the stability of target mRNA [54–57]. 
A comprehensive analysis of m6A regulators revealed 
that the mRNA expression of METTL4 and YTHDF3 was 
higher in high-grade tumors than in low-grade tumors, 
and YTHDC1 was upregulated in the I/II stage, com-
pared to the III/IV stage [58].

Furthermore, the risk score pattern based on 6 m6A 
regulators revealed its prognostic value for OS in patients 
with BCa, and the risk score pattern was highly associ-
ated with pathological features, such as T status, M sta-
tus, N status, and tumor grade. Moreover, in the present 
study, we found an association between risk score pattern 
and TME. High immune score, high stromal score, high 
ESTIMATE score, and low tumor purity were found in 
the high-risk score group. We next found that the expres-
sion and mutation of individual m6A regulators in the 
risk score pattern was associated with immune cells and 
immune checkpoints, which could underlie part of the 
mechanism of the risk score pattern. A nomogram was 
constructed to evaluate the prognostic value of individ-
ual patients for predicting 3- and 5-year survival times. 
If the physicians were able to estimate whether individ-
ual patients had shorter or longer than the median OS 
according to their expression of m6A regulators in tumor 
tissues, it would be useful for patients with different 
treatment strategies [59].

IGF2BP3 was highly expressed in the high-risk group, 
and a recent study demonstrated that IGF2BP3 could be 
regarded as an independent prognostic factor in NMIBC, 
which could present a subgroup of patients with high 
probability of relapse, progression, and metastasis [60]. A 
comprehensive study has reported that the expression of 
IGF2BP3 was detected in 76 different normal tissue types 
and 3889 cancer samples from 95 different tumor catego-
ries, IGF2BP3 overexpression has been found in various 
cancer types, and IGF2BP3 is typically associated with 
aggressive tumor features [61]. IGF2BP3 has been shown 
to directly interact with ULBP2 mRNA, thereby reduc-
ing ULBP2 surface expression. IGF2BP3 indirectly inter-
acts with MICB. The IGF2BP3-mediated pathway leads 
to impaired NK cell recognition of transformed cells 
to facilitate tumor immune escape [62]. In the present 
study, we found a positive correlation between IGF2BP3 
and PD-L1, and IGF2BP3 could regulate total and mem-
brane-bound PD-L1 expression levels in BCa cells, which 
implies the potential role of IGF2BP3 in anti-PD-L1 
immunotherapy.

This study has several limitations. First, because of the 
limited clinical database on BCa, only TCGA patients 
with clinical characteristics were included. Second, 
immunohistochemical staining of m6A regulators was 
obtained from the public database, and the protein lev-
els of m6A regulators will be explored in further studies. 
Third, our nomogram only underwent internal validation; 
it could be more powerful to obtain an external valida-
tion with a large multicenter cohort. Despite considering 
the limitations of the present study, our findings pro-
vide novel insights for m6A regulator clusters, risk score 
based on m6A regulators, and identified the association 
between tumor immunity and m6A regulators.

In summary, the present study investigated the cluster 
and prognosis of m6A regulators in BCa and found that 
the expression of m6A regulators is highly correlated with 
clinicopathological characteristics. We also constructed a 
risk score pattern and nomogram to evaluate the OS of 
patients with BCa. Moreover, we illustrated the relation-
ship between m6A regulators and the TME. Therefore, 
our study provides important ideas for improving the 
clinical outcomes of patients with BCa, which may be 
used to develop different immunotherapies based on the 
expression levels of m6A regulators.

Fig. 8  The association between IGF2BP3 and PD-L1. A–C The protein expression levels of IGF2BP3 and PD-L1 in BCa cells were determined by 
western blotting. T24 (A), 5637 (B) and UMUC3 (C). D–F The mRNA levels of IGF2BP3 and PD-L1 in indicated cells were detected by quantitative 
polymerase chain reaction (qPCR), Puro was set as 1, Puro vs IGF2BP3, negative control (NC) vs shIGF2BP3. T24 (D), 5637 (E) and UMUC3 (F). G–H 
Two representative flow cytometry staining of PD-L1 in indicated T24 cells are shown (left), and quantification of PD-L1 fluorescence intensity is 
shown (right), Puro and NC were set as 1, Puro vs IGF2BP3, NC vs shIGF2BP3. I The mRNA levels of IGF2BP3 and PD-L1 in tumor specimens were 
detected by qPCR, patient #1 was set as 1. All quantification analyses were based on independent triplicate experiments. Error bars represent the 
standard deviation (SD). *P < 0.05, **P < 0.01, ***P < 0.001, based on Student’s t test

(See figure on next page.)
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