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Introduction

Diabetes mellitus is a major health problem with almost 
400 million adults with type 2 diabetes mellitus (T2DM) 
worldwide.1–3 A physiological phenomenon of insulin 
resistance results from circannual weight gain, which con-
fers resistance to hypothermia and infections and is thus 
protective in overwintering and migrating animals.4–8 
However, in man, the loss of regulation of body weight by 
the seasonal needs and artificial lighting leads to a loss of 
seasonal adjustment in adiposity, transforming what is a 
circannual phenomenon of insulin resistance in overwin-
tering animals to a circadian pattern in humans.9–12 Fat-
loaded adipose tissue provokes insulin resistance and 
contributes to metabolic syndrome through the dysregu-
lated production of free fatty acids and pro-inflammatory 
adipokines affecting metabolic tissues (skeletal muscle 
and liver) and modifying inflammatory responses.12–14 The 
net result is a hyperglycaemic and pro-inflammatory envi-
ronment that in turn accelerates vascular pathology, 
explaining the close association between diabetes and vas-
cular ischaemic events.6,8

Cardiovascular disease (CVD) remains the main cause 
of morbidity and mortality in patients with T2DM, with 
around three-quarter of patients dying of CVD complica-
tions.15 In addition to increased risk of first vascular events, 
T2DM subjects have worse outcomes following vascular 
ischaemia compared to subjects with normal glucose 
metabolism.16 One of the key links between T2DM and 
CVD is insulin resistance, which is associated with clus-
tering of vascular risk factors including deranged glucose 
metabolism, increased very-low-density lipoprotein tri-
glyceride, decreased high-density lipoprotein cholesterol 
and hypertension.17–26
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While insulin resistance has been attributed to lifestyle 
changes and the increase in obesity worldwide, under-
standing the mechanistic pathways underpinning insulin 
resistance will help to develop more effective management 
strategies. In particular, the production of the endogenous 
synchronizer of circadian rhythms, melatonin, is reduced 
in several cardiovascular diseases and in insulin-resistant 
subjects.27–35 The anti-inflammatory, antihypertensive, 
antioxidative activity of melatonin is suggested to favour-
ably influence the development of atherothrombotic dis-
ease in diabetes.36–38 This review will use a foundation of 
circadian cardiometabolic physiology to summarize mech-
anisms for increased atherothrombotic events and evaluate 
the potential therapeutic opportunities for melatonin as an 
anti-atherothrombotic agent, particularly in the context of 
obesity-related insulin resistance.

A search of PubMed (MEDLINE) was performed starting 
from the year 1980 until the present, using the following 
terms either singly or in combination: ‘insulin resistance’, 
‘type 2 diabetes’, ‘prediabetic state’, ‘cardiovascular dis-
ease’, ‘atherosclerosis’, ‘atherosclerotic plaque’, ‘inflamma-
tion’, ‘platelet aggregation’, ‘endothelial dysfunction’, 
‘circadian rhythm’, ‘circadian misalignment’, ‘melatonin’, 
‘thrombosis’, ‘coagulation’, ‘atherothrombosis’, ‘fibrino-
gen’, ‘plasminogen activator inhibitor - 1’. Research papers 
were considered on the basis of their relevance to diabetic 
atherothrombosis and potential atheroprotective effect of 
melatonin. Articles that covered circadian rhythm and diabe-
tes, dysglycaemia or cardiovascular disease were selected for 
inclusion in this review.

Mechanisms for increased 
atherothrombotic events in T2DM

Insulin resistance is associated with endothelial dysfunc-
tion, a pro-inflammatory and a prothrombotic environment, 
which are all key to the development of atherothrombotic 
disease in T2DM (Figure 1).39–44

Endothelial dysfunction and vascular 
inflammation

Insulin resistance is associated with a cluster of risk fac-
tors that result in endothelial dysfunction, a key abnor-
mality that contributes to the atherothrombotic process 
(reviewed in Sena et al.71). Briefly, endothelial dysfunc-
tion causes endothelial cells to express adhesion mole-
cules, thus attracting inflammatory cells, and also 
increases inter-cellular permeability resulting in accumu-
lation of lipoproteins and inflammatory cells within the 
vessel wall. Lipid particles migrating to vessel wall are 
oxidized into highly atherogenic molecules that are taken 
up by inflammatory cells to form foam cells. An accumu-
lation of foam cells forms the fatty streak, the earliest 
abnormality in the atherosclerotic process. This is fol-
lowed by deposition of collagen, gradually resulting in 
the development of the mature atherosclerotic plaque. 
Enhanced production of cytokines and growth factors by 
these inflammatory cells leads to smooth muscle migra-
tion and proliferation in the intima, which further con-
tributes to the inflammatory process.42,49,54,55

Figure 1. Mechanisms for increased atherothrombotic events in diabetes. The underlying mechanisms for increased 
atherothrombotic risk in diabetes are complex and multifactorial. In addition to platelet hyperactivity following endothelial damage 
as a result of a low-grade chronic inflammatory response, increased thrombotic tendency primarily stems from enhanced activity 
or raised plasma levels of prothrombotic coagulation factors, including TF (tissue factor), FVII (Factor VII), vWF (von Willebrand 
factor), FVIII (Factor VIII) and fibrinogen. This results in fibrin networks, which form the backbone of the blood clot, that are 
compact with increased resistance to fibrinolysis. Insulin resistance and hyperglycaemia enable these underlying mechanisms and 
directly contribute to an insulin-resistant, pro-inflammatory and prothrombotic environment in diabetes, increasing the risk of 
atherothrombosis.
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Increased inflammatory cytokines, including tumour 
necrosis factor α (TNFα) and interleukin (IL)-6, impairs 
production of a vasodilatory molecule NO (nitric oxide) 
and also modulates activation of PI3K/Akt pathways fur-
ther accelerating atherothrombosis in diabetes.72–79 In 
addition, the activation of the pro-inflammatory nuclear 
transcription factor nuclear factor-kappa B is permitted by 
the loss of NO, increasing the expression of adhesion mol-
ecules, cytokines and chemokines, creating a vicious 
cycle.50,52 Finally, increased production of advanced glyca-
tion end product (AGE) and formation of reactive oxygen 
species (ROS) diminishes endothelial-derived NO and 
leads to enhanced synthesis of vasoconstrictor prostanoids 
and endothelin.49,80–82

Role of circadian rhythm in T2DM and 
increased thrombotic environment

The underlying mechanisms for increased thrombosis 
risk in diabetes subjects are complex and multifactorial. 
Both the cellular and protein arms of coagulation in dia-
betes are affected leading to a prothrombotic environ-
ment. Platelet activation is increased in diabetes and a 
key mechanism appears to be reduced NO production, an 
important inhibitor of platelet activation, secondary to 
endothelial dysfunction.46,83–96 Furthermore, under con-
ditions of hyperglycaemia and insulin resistance, chronic 
low-grade systemic inflammation drives the haemostatic 
system towards a prothrombotic state.39,40–44 Plasma lev-
els of a number of procoagulant factors are elevated in 
diabetes patients, including tissue factor, factor VII, von 
Willebrand Factor, factor VIII and fibrinogen, increasing 
thrombotic tendency.45,49,59–65,80 In addition, diabetes is 
associated with reduced concentration of antithrombotic 
factors, such as antithrombin III and protein C,83 further 
adding the prothrombotic milieu. Moreover, the fibrino-
lytic system is directly affected in diabetes secondary to 
elevated levels of plasminogen activator inhibitor (PAI)-1 
and impaired plasminogen to plasmin conversion, 
together with reduced enzyme activity.16 Interestingly, 
the EuroClot study involving healthy subjects reported 
an association between clustering of cardiometabolic risk 
factors and suppression of fibrinolytic activity, making 
modulation of hypofibrinolysis in diabetes a possible tar-
get to reduce atherothrombotic disease.97 Hypofibrinolysis 
has been recently reported to be an independent predictor 
of cardiovascular mortality in individuals with acute cor-
onary syndrome treated with modern antithrombotic 
therapies.98 In summary, inflammation-mediated 
endothelial dysfunction, platelet hyperactivity, increased 
activation of pro-coagulation factors and impaired 
fibrinolysis represent a wide spectrum of biological tar-
gets with most of them exhibiting circadian variation, 
thus implicating loss of circadian rhythmicity in the 
increased thrombotic tendency in diabetes.99–103

The constant exposure to food and the loss of the dark/
night stimulus translate into loss of environmental control 
of circadian rhythmicity, which is implicated in the above-
mentioned processes and thus increased risk of developing 
both diabetes and cardiovascular disease.104–106 The master 
circadian pacemaker in the suprachiasmatic nucleus gener-
ates diurnal circadian rhythms secondary to cyclical 
expression of clock-controlled genes in response to light 
and food intake.107 Clock genes, the Clock and Bmal1, 
encode transcriptionally activating proteins of the clock 
system in response to light, whereas Per 1-3 and Cry 1 and 
2 genes encode transcriptionally inhibiting proteins of the 
clock system.35 Rudic et al.108 reported that an adequate 
insulin response depends on normal function of the circa-
dian clock. Indeed, Clock mutant Bmal1−/− mice develop 
a diabetes phenotype with metabolic abnormalities, includ-
ing impaired gluconeogenesis, hyperglycaemia and hyper-
cholesterolaemia.108 Mutations in the Clock gene have also 
been associated with the metabolic syndrome and vascular 
dysfunction in man, implicating circadian disruption in the 
development of both diabetes and associated cardiovascu-
lar disease.109–111

In human subjects, data linking circadian misalignment 
with development of T2DM and adverse cardiovascular 
events comes either from epidemiological studies in shift 
workers or from short-term sleep deprivation studies 
(Table 1). Factors opposing aligned circadian rhythmicity 
are proposed to underlie higher rates of cardiovascular dis-
ease events in shift workers when compared to day work-
ers.112–117 Women of the Nurses’ Health Study cohort with 
6 years or more of rotating shift work experience were 1.51 
[95% confidence interval (CI): 1.12–2.03] more likely to 
develop coronary heart disease compared to women who 
had never been shift workers.118 A systematic review con-
ducted in 2012 reported that shift work was associated 
with 41% increased relative risk of coronary events.119 
Furthermore, circadian misalignment has been shown to 
have a negative impact on the predictors of cardiovascular 
disease risk, including pro-inflammatory markers, such as 
serum IL-6 and C-reactive protein (CRP), and was also 
associated with hypercoagulability.120,121 There is, how-
ever, evidence of metabolic and cardiovascular disease 
markers being improved when shift work schedules are 
adapted to biological rhythmicity.122

Epidemiological evidence also indicates associations 
between shift work and development of T2DM.27,123 An 
important prospective clinical study, including 402 night-
shift workers and 336 daytime workers followed up for a 
median of 4 years, identified a five-fold increased risk of 
developing T2DM/obesity in night-shift workers.124 In 
addition, a prospective study on a cohort of 1529 workers 
reported a 77% higher incidence of the metabolic syn-
drome in shift workers.125 Misalignment of circadian 
rhythm and sleep disorders have been associated with the 
development of metabolic syndrome and prediabetes, 
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correlated with an elevated risk of T2DM.27,126 There is 
also mounting evidence to demonstrate a close association 
between sleep deprivation, insomnia, restless leg syn-
drome and T2DM.128 Poor sleep quality is associated with 
increased sympathetic activity, decreased leptin levels and 
elevated ghrelin levels among other disturbances, leading 
to a number of metabolic abnormalities, including glucose 
intolerance.127,129,130 Moreover, loss of circadian clock syn-
chronization has been suggested as one mechanism for 
increased thrombotic tendency in diabetes.131 That view is 
supported by in vitro studies demonstrating that the Clock/
Bmal heterodimers regulate PAI-1 gene expression.132 The 
involvement of Clock in the regulation of PAI-1 was also 
reported in the setting of obesity, supporting the link 
between obesity, diabetes and CVD through circadian reg-
ulation and PAI-1 gene expression.133

The above evidence raises the possibility of using circa-
dian rhythm modulators to ‘reset’ normal circadian physi-
ology, in turn reducing metabolic abnormality and vascular 
risk.134

Melatonin and the circadian rhythm

The pineal gland is essential as a rhythmic synchronizer, 
connecting the nervous and the endocrine systems.135,136 

The retinohypothalamic-pineal system becomes activated 
by norepinephrine with the onset of darkness, leading to 
melatonin release (Figure 2).36,135,136 Activity of the central 
pacemaker, being regulated by the humoral system, trig-
gers peripheral circadian oscillators, controlling their 
rhythmicity to coordinate metabolic activity throughout 
the body.136–138 These peripheral pacemakers share similar 
organization at the molecular level and regulate circadian 
variation in local transcription clusters.138,139 Metabolically 
active organs including skeletal muscles, liver and adipose 
tissue display circadian variability in the expression of 
clock genes and genes that are involved in hormone syn-
thesis and encode proteins participating in key metabolic 
events.139,140 Although animal studies demonstrate that 
environmental stimuli, such as light exposure, regulate the 
phase of the master clock, experiments of restricted feed-
ing show that the phase of circadian expression in mouse 
liver could be inverted without affecting central clock gene 
expression.141–143 Such desynchrony, whereby the periph-
eral pacemakers are uncoupled from the master clock in 
the suprachiasmatic nucleus, may worsen circadian-related 
metabolic disorders.144

Melatonin plays an essential role in the synchronized 
functioning of the molecular circadian clocks in both  
the periphery and centrally in the suprachiasmatic  

Figure 2. Melatonin an internal synchronizer of circadian biological rhythmicity. The retinohypothalamic-pineal system becomes 
activated with the onset of darkness, leading to the transmission of neural signals from the suprachiasmatic nucleus (central 
pacemaker) to the superior cervical ganglia. Noradrenalin release from postganglionic fibres stimulates synthesis of melatonin by 
pinealocytes. Clock genes encoding transcriptionally activating or inhibiting proteins of the clock system in response to variation 
in light exposure are the Clock and Bmal1, PERs and CRYs, respectively. Activity of the central pacemaker triggers peripheral 
circadian oscillators, which are also influenced by local factors, including hormones and glucose. Metabolically active organs including 
skeletal muscles, liver and adipose tissue display circadian variability in the expression of metabolic transcription factors. Melatonin 
prevents desynchrony, whereby the peripheral pacemakers are uncoupled from the master clock in the suprachiasmatic nucleus, 
which may worsen circadian-related metabolic disorders.
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nucleus.36,137,146,147 Its circadian rhythm-entraining effects 
are mediated via melatonin receptors MT1 and MT2, 
which have been implicated in jet lag phenomenon and in 
the context of sleeping disorders.148–150 Animal studies 
report reductions in visceral adiposity, glucose, insulin 
and triglycerides following melatonin administra-
tion.36,137,151–154 Although the evidence on the effect of 
melatonin is limited in human individuals and in the con-
text of insulin resistance, decreased melatonin production 
found in patients with T2DM, prediabetes and cardiovas-
cular disease suggests a protective role for this hormone 
in insulin resistance and atherosclerosis.27–35

Role of melatonin in vascular 
complications in T2DM

Evidence gathered in the last 20 years indicates that mel-
atonin influences multiple aspects of cardiometabolic 
function.36,137,151–154 Strong evidence comes from studies 
demonstrating that genetic variants in the melatonin 
receptor as a result of single nucleotide polymorphisms 
are related to obesity and are associated with atheroscle-
rosis and the risk of myocardial infarction (MI). Genome-
wide association studies indicate a causal relationship 
between one of the single nucleotide polymorphisms of 
melatonin receptor MTNR1B and reduced glucose-regu-
lating ability. Furthermore, studies on hypercholester-
olemic rats indicated that melatonin leads to lowering of 
total cholesterol, low-density lipoprotein (LDL) and 
very-low-density lipoprotein cholesterol levels, suggest-
ing it may protect from atherosclerosis.155 In addition, 
animal studies provide evidence on the antioxidant and 
anti-inflammatory actions of melatonin, which attenuates 
thermal-induced activation of blood clot formation.156,157 
These observations together with studies demonstrating 
low melatonin levels in individuals with coronary artery 
disease, insulin resistance and T2DM led to the specula-
tion that melatonin has a role in vascular pathology.27–35 
Therefore, melatonin treatment may prove to be an effec-
tive strategy in the management of atherothrombotic dis-
ease, particularly in high-risk subjects with deranged 
circadian rhythm such shift workers. Experimental work 
provided evidence that melatonin supplementation 
improves insulin resistance induced by disruption of 
internal circadian rhythms.158 In addition to preclinical 
evidence suggesting exogenous melatonin could also 
reduce leptin resistance, hyperinsulinaemia and hyper-
glycaemia in animal models of obesity and metabolic 
syndrome, melatonin supplementation has also been 
shown to be associated with significant reduction in 
HbA1c in a small group of patients with diabetes and 
insomnia.159–161 More recently, studies show that the low 
levels of melatonin secretion predicts the onset of T2DM 
in women and that adequate melatonin secretion is 
thought to reduce the incidence of T2DM.34,162

Antihypertensive and antioxidant 
properties of melatonin: potential 
impact on the atherosclerotic process

Studies have shown associations between melatonin secre-
tion and reduction in night-time systolic blood pres-
sure.36,163 Obayashi et al.,163 however, did not find a 
significant relationship between melatonin excretion and 
diastolic blood pressure, suggesting the relationship is 
mainly with systolic blood pressure by mechanisms that 
are not entirely clear.

Oxidative stress plays a central role in the atheroscle-
rotic process, particularly in diabetes.44 The antioxidant 
properties of melatonin stem from its detoxifying charac-
teristics, effective scavenging of reactive oxygen and 
nitrogen species and its ability to enhance antioxidative 
enzymes.36 Studies have demonstrated that the rhythm of 
antioxidant defence is obliterated in pinealectomized rats 
and by light in humans.36 In prothrombotic stroke models 
of ischaemia-induced oxidative damage, in vivo melatonin 
administered post-ischaemia exhibited a concentration-
dependent protection mediated through a reduction in 
ROS production, associated with decreased infarct size.164 
Similarly, melatonin was shown to have a cardioprotective 
effect against oxidative injury in the ischaemic/reperfused 
heart.155,165,166 Decreased serum melatonin and an increase 
in oxidative stress in patients with MI may indirectly sug-
gest a protective effect of melatonin against cardiovascular 
disease in man.167–169 Finally, subjects with elevated levels 
of LDL, oxidation of which is implicated in the progres-
sion of atherosclerosis, have been reported to have low 
levels of melatonin.153 Some studies, but not all, support 
prevention of LDL oxidation by melatonin, providing 
another potential mechanism of protection from vascular 
pathology.153,170

Melatonin deficiency augments 
sympathetic activity and influences 
atherosclerosis and thrombus 
formation

Nocturnal secretion of melatonin is reduced in subjects with 
coronary artery disease, and especially those with acute 
coronary syndrome (ACS), compared to healthy individu-
als, and in patients with unstable compared to stable  
angina.29,30,168,171–173 Impaired circadian biological rhyth-
micity and the lack of the blunting effect of melatonin on 
sympathetic activity lead to sympathetic activation, contrib-
uting to endothelial injury, platelet activation and predispos-
ing vulnerable plaques to rupture.29,113 Increased sympathetic 
activity and activation of the coagulation cascade in the 
early morning might contribute to the well-described morn-
ing peaks in cardiovascular events in patients with coronary 
artery disease (CAD).28,173,174 In addition, increased sympa-
thetic activity might affect production of a key inhibitor of 
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fibrinolysis, PAI-1, thus contributing to hypofibrinolysis 
and increasing the risk of vascular events.175

Urinary 6-sulfatoxymelatonin excretion, a urinary 
metabolite of melatonin serving as an index of its secre-
tion, is inversely associated with arterial stiffness after 
adjusting for diabetes and hypertension.176 While this does 
not prove causality, the association warrants further inves-
tigation. Previous work has also shown that melatonin has 
antithrombotic properties when administered at low doses 
before or during coronary occlusion, although the exact 
mechanisms remain to be elucidated.177

Melatonin affects activated 
coagulation and platelet aggregation

A few animal studies have investigated the effect of mela-
tonin on heat-induced inflammatory and coagulation 
responses. Platelet morphology and elevated levels of 
fibrinogen, fibrin degradation products, prothrombin 
activity and CRP following thermal injury were normal-
ized after melatonin administration.156,157 Antithrombotic 
effects of melatonin were also investigated in randomized-
controlled trials in healthy volunteers under acute psycho-
social stress conditions. Emotionally triggered 
catecholamine-induced hypercoagulable state promotes 
thrombus formation following plaque rupture.178–181 
Stress-induced increases in FVII:c and fibrinogen contrib-
ute to a hypercoagulable state; however, no statistically 
significant reductions in these factors were observed after 
melatonin administration, arguing against a beneficial role 
for melatonin during thrombotic vascular occlusion.181–183 
In healthy young men, the administration of melatonin was 
associated with a significant reduction in FVIII:c and 
fibrinogen levels, whereas levels of FVII:c and D-dimer 
showed no change.173 On the contrary, melatonin could 
attenuate elevations in d-dimer, suggesting limited throm-
bus formation and providing support for melatonin poten-
tial in reducing atherothrombotic risk.172,183

In addition to the protein arm of coagulation, melatonin 
is thought to influence circadian variation in platelet activ-
ity and several studies have suggested melatonin having 
direct effects on platelet function. Melatonin has been 
implicated in the inhibition of platelet aggregation, both 
spontaneous and induced, mainly through the cyclooxyge-
nase-dependent pathway.184–189 In addition, some studies, 
but not all, suggest that melatonin elevates the apoptotic 
events in platelets.190,191 Although both of these effects of 
melatonin on platelets could potentially limit the process 
of thrombogenesis, the evidence behind them is not con-
sistent and therefore warrants further exploration.

Conclusion and future directions

There is convincing evidence stemming from genetic and 
epidemiological studies to implicate deranged circadian 

rhythm in the development of both diabetes and cardiovas-
cular disease. Although the evidence for melatonin as an 
agent that restores the deranged rhythm is limited in man, 
indirect evidence suggests a central role for melatonin in 
abnormal glucose metabolism and/or vascular pathology.

An increased thrombotic tendency in the setting of low-
grade chronic inflammation primarily stems from platelet 
hyperactivity, enhanced activity of prothrombotic coagula-
tion factors and impaired fibrinolysis. Anti-inflammatory 
and antioxidative properties of melatonin may favourably 
modulate the prothrombotic and inflammatory environment 
typically found in atherothrombotic disease.36–38 In particu-
lar, the antioxidant activity of melatonin may be atheropro-
tective in diabetes since hyperglycaemia-induced free 
radical formation increases oxidative stress, which predis-
poses to vascular pathology.49,192,193 A cardioprotective and 
antithrombotic effect of melatonin might also stem from a 
selective effect on the plasma levels of coagulation meas-
ures, including fibrinogen and FVIII:c, both of which are 
found at increased concentrations in diabetes and are associ-
ated with an elevated risk of coronary thrombotic events.84,173 
In addition, the atheroprotective potential of melatonin 
comes from evidence of melatonin deficiency increasing the 
risk of cardiovascular events by augmenting sympathetic 
activity, which contributes to platelet activation and hyper-
tension-induced injury to the endothelial cell layer.29

The potential mechanisms of melatonin-mediated 
atheroprotection are summarized in Table 2. Studies to 
date suggest that melatonin should be explored as an agent 
to reduce insulin resistance and prevent diabetes and/or 
vascular disease, particularly in individuals with deranged 
circadian rhythm. An advantage of melatonin supplemen-
tation is the favourable side effect profile, potentially giv-
ing it an advantage over established therapies.145 However, 
the effects of melatonin to prevent desynchrony are not 
one-sided and melatonin supplementation could affect 
endogenous serotonin concentrations and functions of pin-
eal and hypothalamic systems, thus influencing appetitive, 
emotional and cognitive processes.194 In addition, persis-
tent exposure to melatonin could lead to continuous activa-
tion of both melatonin receptors, generating off-target as 
well as on-target effects. For example, activation of MT1 
receptor could generate continuous effects on downstream 
pathways, such as PLC/DAG/PKC pathway. This in turn 
could impact neuronal firing and immune system response 
via a continuous inhibition of leukocyte rolling in the 
microvasculature.195 In addition, the effects of melatonin 
metabolites have to be explored and evaluated, in particu-
lar, 6-hydroxymelatonin-induced oxidative DNA dam-
age.196 Therefore, more mechanistic studies are needed in 
different population of patients to not only further under-
stand the role of melatonin in modifying the inflammatory 
and thrombotic environment that predisposes to vascular 
disease, but also consider the effect of melatonin and its 
metabolites on the variety of biological systems.
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Key messages

•• An increased thrombotic tendency in diabetes 
stems from platelet hyperactivity, enhanced 
activity of prothrombotic coagulation factors 
and impaired fibrinolysis.

•• Levels of melatonin, the endogenous syn-
chronizer of circadian rhythm, are reduced in 
individuals with vascular disease and those 
with deranged glucose metabolism.

•• Anti-inflammatory, antioxidative, antihy-
pertensive and antithrombotic activities of 
melatonin may favourably modulate the 
prothrombotic and inflammatory environ-
ment typically found in atherothrombotic 
disease, which make it a potential therapeu-
tic agent to reduce the risk of vascular 
occlusive disease in diabetes.
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