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Abstract

Meiotic recombination is a fundamental process needed for the correct segregation of chromosomes during meiosis in
sexually reproducing organisms. In humans, 80% of crossovers are estimated to occur at specific areas of the genome called
recombination hotspots. Recently, a protein called PRDM9 was identified as a major player in determining the location of
genome-wide meiotic recombination hotspots in humans and mice. The origin of this protein seems to be ancient in
evolutionary time, as reflected by its fairly conserved structure in lineages that diverged over 700 million years ago. Despite
its important role, there are many animal groups in which Prdm9 is absent (e.g. birds, reptiles, amphibians, diptera) and it
has been suggested to have disruptive mutations and thus to be a pseudogene in dogs. Because of the dog’s history
through domestication and artificial selection, we wanted to confirm the presence of a disrupted Prdm9 gene in dogs and
determine whether this was exclusive of this species or whether it also occurred in its wild ancestor, the wolf, and in a close
relative, the coyote. We sequenced the region in the dog genome that aligned to the last exon of the human Prdm9,
containing the entire zinc finger domain, in 4 dogs, 17 wolves and 2 coyotes. Our results show that the three canid species
possess mutations that likely make this gene non functional. Because these mutations are shared across the three species,
they must have appeared prior to the split of the wolf and the coyote, millions of years ago, and are not related to
domestication. In addition, our results suggest that in these three canid species recombination does not occur at hotspots
or hotspot location is controlled through a mechanism yet to be determined.
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Introduction

Meiotic recombination has been the focus of much attention

because it is a fundamental process needed for the correct

segregation of chromosomes during meiosis in sexually reproduc-

ing organisms, and it may profoundly affect population genetic

diversity by unlinking genes located on the same chromosome (e.g.

[1,2]; and references therein). In humans, 80% of crossovers are

estimated to take place in 10%–20% of the genome sequence,

which contain the so-called recombination hotspots [3]. The

location of these hotspots was found not to be conserved across

closely related species, such as human and chimpanzee [4–6]. The

increasing availability of bioinformatic and genomic tools to study

recombination have contributed to the recent explosion of

literature on this topic in order to understand the fundamentals

of how this process takes place and its consequences. A protein

called PRDM9 (also known as Meisetz) has been pinpointed as

playing a role in the determination of recombination hotspots and

its study has recently attracted much interest. However, many

questions remain unanswered about its molecular mode of action.

PRDM9 was found to be expressed in germ-line cells during

meiosis in mice [7] and it was later shown to play an essential role

in meiosis and speciation in a number of metazoan species [8].

Most recently, evidence has been provided that it is a determinant

of sequence-specific meiotic recombination hotspots in humans

and mice [9–12]. The PRDM9 protein in human and mice has

three functional domains: (1) an N-terminal KRAB domain

typically associated with zinc finger proteins and involved in

protein-protein interactions and transcriptional repression; (2) a

central SET domain with histone methyl transferase activity (thus

capable of trimethylating H3K4 and consequently altering

chromatin configuration); and (3) multiple C2H2 zinc finger (ZF)

domains in tandem near the C-terminal part of the protein [13–

16] (Fig. 1). The ZF array selectively binds to specific DNA

sequences, and amino acid substitutions in the ZFs as well as

polymorphism in their number affects the DNA sequences that the

protein recognizes [8,9,17]. PRDM9 is a rapidly evolving protein

due to the instability derived from the minisatellite structure of

the ZF array, thus conferring a capacity for different alleles to

quickly emerge, which will bind to a variety of DNA sequences.

Multiple studies have suggested that this gene has undergone

strong positive selection [8,11,17] and its rapid evolution implies

changes in the DNA sequence patterns that different PRDM9

alleles may recognize, with the potential to affect hotspot location
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genome-wide [9,12]. This may explain the occurrence of hybrid

sterility in individuals resulting from crossing closely related mice

species [8,17–19] or the different location of human hotspots

compared to those of chimpanzees’ [11]. In addition, it has been

observed that the number of ZF repeats and single amino acid

substitutions affect the activation, enhancement and appearance of

recombination hotspots in humans [20,21].

In a study of ZF sequences in a diverse panel of 35 metazoan

species spanning about 700 million years of evolution, it was

proposed that, despite Prdm9’s important role at meiosis, it had

acquired several disruptive mutations in the dog, Canis familiaris

[8]. Dogs have a unique evolutionary history. Through domesti-

cation and strong artificial selection, humans have created the

most phenotypically diverse vertebrate species, and the genetic

mechanisms underlying this diversity are only partially under-

stood. Dog breed isolation started a few hundred years ago, but

domestication and selection of specific phenotypic and behavioural

characters began tens of thousands of years ago [22–25]. The

morphological [26,27], behavioural and physiological [28] differ-

ences among dogs are larger than the differences observed across

the entire family Canidae, which includes about 35 species such as

raccoon dogs, foxes, wolves, jackals and coyotes, and that have

evolved over 15 million years. Several mechanisms have been

hypothesized to explain the large phenotypic diversity found in

dogs, including the relaxation of selective forces acting upon the

dog genome as compared to the wolf genome [29,30], modifica-

tions in structural genes (e.g. [31–36]), the presence of repetitive

and/or SINE elements that could affect the function of genes

[37,38] or an elevated recombination rate in dogs as compared to

wolves. Chiasma frequencies for domestic animals, especially for

the dog, were observed to be larger than expected according to

their age to maturity [39] and, additionally, recombination rates

have been observed to be variable between cattle families,

suggesting that this trait is heritable and susceptible of being

selected [40]. High recombination rates would allow novel trait

combinations to emerge, although it is not clear how much

diversity was present in the ancestral species. Therefore, we

decided to study the diversity of Prdm9 and its functional status in

the dog and compare it to the orthologue in the wild ancestor, the

grey wolf (Canis lupus), and in a close wild relative, the coyote (Canis

latrans).

Materials and Methods

We sequenced the region aligning to the human’s last exon of

Prdm9 from the genomic DNA of four dogs, 17 wolves and two

coyotes. Dogs were either purebred (German shepherd, n = 1) or

mongrels/crossbred (n = 3). Wolves had a variety of geographical

origins (Canada, North West Territories, n = 3; Canada, British

Columbia, n = 1; Italy, n = 3; Finland, n = 4; Spain, n = 1; Sweden,

n = 3; USA, a captive population in Minnesota, n = 2). The coyotes

were from Colorado and Nebraska (USA). We used the alignment

between human and dog genome sequences available at the ECR

browser to locate the areas surrounding the last exon of the Prdm9

gene in humans and the corresponding region in the dog. We used

this information to download the corresponding sequence of the

dog genome from the UCSC browser and then designed primers

that would amplify a region of about 2000-bp that was expected to

contain the entire ZF domain. We also designed four additional

internal primers and used all six of them to sequence this region

(Fig. 1, Table 1). DNA was amplified using the LongRange PCR

Kit (QIAGEN, Hilden, Germany) in 35-ml reactions containing

16 buffer (106 LongRange PCR Buffer), 0.5 mM dNTPs each

(10 mM dNTP mix as provided), 0.4 mM of each primer

CanPrdm9.F and CanPrdm9.R, 1.4 U of Taq polymerase (Long-

Range PCR Enzyme Mix) and 10–100 ng genomic DNA. PCRs

were performed in an ABI 2700 thermal cycler (Applied

Figure 1. General structure of PRDM9 in rodents and primates and position of the primers used and stop codons found in this
study in dogs, wolves and coyotes. (A) PRDM9 as described for most metazoans, in particular primates and rodents [8,9,47]. (B) Region
sequenced in this study aligning to the last exon of humans as shown by the ECR browser (see text for details); position of the primers is indicated by
arrows and position of the stop codons is represented by asterisks (for detailed information, refer to the text and tables).
doi:10.1371/journal.pone.0025498.g001

Table 1. Primers used to amplify and sequence in dogs,
wolves and coyotes the region aligning to the human last
exon of the Prdm9 gene.

Primer Name Sequence

CanPrdm9.F AGAGAAGCTGCCTCTGATGC

CanPrdm9.R CTGGACCCTTTTGCTTTCAG

CanPrdm9.NR1 AATTTGCCTGTGTCCTCTGG

CanPrdm9.NF2 GCAGGCTCACAGAAATTGAA

CanPrdm9.NR2 TGAAGCCTCTAAGTGTGTCCTC

CanPrdm9.NF3 GGACACACTTAGAGGCTTCATC

doi:10.1371/journal.pone.0025498.t001

Prdm9 Is Not Functional in Dogs, Wolves and Coyotes
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Biosystems) or MJ Research DNA Engine Tetrad with an initial

denaturation step of 93uC for 3 min followed by 35 cycles of 93uC
for 15 s, 58uC for 30 s and 68uC for 2 min and a final extension of

68uC for 7 min. DNA-free controls were included in all cases to

monitor for potential contamination.

PCR products were run in 1% agarose gels and were excised

and purified using the QIAquick Gel Extraction Kit (QIAGEN,

Hilden, Germany) following the manufacturer’s instructions. Both

strands of each PCR product were then sequenced with the six

primers (Table 1) and reaction products were separated in an

automated sequencer (ABI 3730xl DNA Analyzer; Applied

Biosystems). Sequences from multiple PCRs were concatenated

and edited using Sequencher ver. 4.6 (Gene Codes Corporation,

Ann Arbor, MI, USA), and were then aligned by eye using Se-Al

ver. 2.0a11 Carbon [41] (Accession Numbers: HE590859–

HE590881). We then used Sequencher, Se-Al and the TIME

Sequence Editor [42] to translate the DNA to all reading frames

using the standard genetic code. PHASE 2.1 [43,44] was used to

construct haplotypes.

Results

Several lines of evidence are consistent with the idea that the

region we sequenced is an orthologue to Prdm9 and not a

paralogue. Both the Prdm9 gene and the protein have been well

established for humans and the house mouse. Since primates and

rodents are more closely related to each other than to carnivores

[45], the sequence information from either species is equally

appropriate for comparison with canids, and we decided to take

the human sequence as reference. First, we used the ECR browser

to find the region in the dog that aligned to the human last exon of

Prdm9 (see Materials and Methods). Second, we blasted one of the

dog sequences (the reference sequence, CanFam2) and found that

the most similar matching sequence was to Prdm9 genes in Bos

taurus, Homo sapiens, Macaca mulatta, Mus musculus, Nomascus

leucogenys, Pan troglodytes and Pongo abelii. The maximum identity

ranged between 94% and 83% and the part of the query sequence

that was covered ranged between 48% and 22%, comprising the

part of the sequence ranging from position ,200 to ,1200

(Table 2). The next most similar matching sequence was to the

predicted Prdm7 of Ailuropoda malnoleuca (the giant panda), covering

only 17% of the query sequence (90% similarity), corresponding to

positions 168–505 (Table 2). Because the canid sequences we

obtained were almost identical (Table 2), we blasted just one of

them. Third, we took the sequence of the confirmed Prdm9 gene

and PRDM9 protein in humans and did a blast, a protein blast

and a tblastn against the dog genome and found high similarity

only to ZF proteins. Finally, multiple paralogues of Prdm9 have

been found in primates, ruminants and monotremes [46,47], but

have not been reported for other species, including the dog [47].

The sequences we obtained ranged between 1,568 and 1,886

base pairs per individual (Table 2). In particular, we were not able

to clearly read positions 1–17 for one dog and four wolves, and

positions 1–20 for one wolf. For one coyote it was not possible to

read the sequence between positions 990 and 1307 because this

individual seemed to have a 3-bp deletion in one allele as

compared to the other. In addition, all individuals had a poly-A

stretch starting at position 1306 containing 12 to 15 As, although

some uncertainty may exist as to the exact number of nucleotides

in this region due to polymerase slippage during amplification.

Ignoring the poly-A stretch, 28 variable positions were identified.

The last exon of Prdm9 has been reported to confer functionality

to the protein, as the C2H2 ZF domains are located here, and in

particular positions -1, 3 and 6 in each one of them, act as DNA-

binding sites [9]. We found that the region we sequenced in these

three canid species has acquired several mutations that may result

in a protein that is non functional, as suggested by several lines of

evidence.

First, we aligned the region we sequenced in dogs, wolves and

coyotes to the sequences of 15 species of mammals that were

reported to contain a conserved region and to be located in the last

exon of Prdm9 (Homo sapiens, Pan pygmaeus and Pan troglodytes) or its

last-exon candidate (the remaining 12 species) [17]. Whereas no

stop codons were found in those 15 mammalian species, multiple

stop codons were found in the dogs, wolves and coyotes at the

same positions across the three species (Fig. 1).

Second, for the same species [17] we aligned the region

reported to be conserved across them to the region in dogs, wolves

and coyotes that aligned to it. This region is upstream of the ZF

domain, in the ZF-containing exon. We chose to compare the

canids to a cat sequence, the phylogenetically closest relative

among those reported by [17], and to a human sequence taken as

reference. While no stop codons were observed in either the

human or the cat sequence, eight stop codons were found in dogs,

wolves and coyotes, and all mutations were shared across the three

species (Fig. 1; Table S2). The stop codons corresponded to TAA

in positions 40, 87 and 139, to TAG in positions 109 and 133, and

TGA in positions 110, 121 and 135 (Tables S2). If we ignored the

presence of the stop codons and compared the amino acid

sequences across the three canid species, they had almost identical

sequences, with only two substitutions that would be non-

synonymous at positions 29 and 106 (Tables S2). One substitution

was the result of a variable second codon position (position 330 in

Table 2) that resulted in either an isoleucine (ATC) in two dogs, 13

wolves and the two coyotes, threonine (ACC) in two dogs and one

wolf (Finland), and both (AYC) in one dog and two wolves

(Finland and North West Territories). The other substitution was

present in a single wolf from the North West Territories and

corresponded to a change in a first codon position that coded for

methionine in one allele and valine in the other (position 976 in

Table 2).

Third, we checked for the presence of ZFs in the three canid

species. Previous studies have shown that ZFs in the Prdm9 gene

are of the type C2H2 [8,9,17], the sequence motif of which is C–

X2,4–C–X12–H–X3,4,5–H–X. Most of the ZF sequences that were

found in 35 metazoan species were complete (28 codons) and

complied with the C2H2 structure, the sequence of which was C–

R–E–C–X12–H–X3–H–T–G–E–K–P–Y–V [8]. In a sample of

rodents and primates, the number of ZFs in the Prdm9 ZF domain

varied between 7 to12 and 9 to15, respectively [8]. In dogs, wolves

and coyotes we identified only four ZF-like stretches (Table 3),

almost identical across the three species (Table S1). However, if

the whole sequence would be translated into a protein as described

above, the sequence motif C–X2,4–C–X12–H–X3,4,5–H–X would

not appear. The first ZF-like stretch we identified complied with

the previously reported sequence for other metazoans, had 28

codons in the three canids (i.e., it was complete) and was identical

in all individuals both at the nucleotide and the amino acid level,

except for the presence of a stop codon (TGA) in one of the alleles

of a coyote. The second ZF-like stretch was again identical across

the three canids both in terms of the nucleotide and the amino

acid sequences, but was one nucleotide shorter and the resulting

amino acid sequence did comply with the C2H2 structure. The

third ZF-like stretch had 28 codons and the C2H2 structure in all

dogs and wolves, but the coyote for which we had data was one

amino acid shorter due to a 3-bp deletion in this area, and so it was

27-codon long. Lastly, the fourth ZF-like stretch complied with the

C2H2 structure in all dogs, wolves and the coyote for which we had

Prdm9 Is Not Functional in Dogs, Wolves and Coyotes
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data. After these, there were no more ZF-like sequences, but

several additional stop codons were observed (Fig. 1).

Additionally, in the three canid species a poly-A stretch was

present that varied between 12 and 15 As in length, although some

uncertainty remains as to the exact number, likely due to

polymerase slippage during amplification. This poly-A stretch was

not observed in other species for which Prdm9 has been sequenced.

Discussion

During the domestication process, the dog experienced a

dramatic bottleneck and a relaxation in the selective forces that

resulted in a faster accumulation of non-synonymous substitutions

[29,30]. We hypothesized that the domestication process may have

resulted also in changes in the mode and rate of recombination.

However, our results suggest that the dog did not acquire

disruptive mutations in the last exon of Prdm9 gene during the

domestication process or later, given the fact that this gene is also

disrupted in the wolf, from which the dog derives, and a close

living relative, the coyote. The sequences for this particular region

were almost identical across the three species. It then becomes an

interesting question whether other canids also possess a disrupted

Prdm9 and when the disruptions first arose.

PRDM9 has been identified as a gene controlling the location of

recombination hotspots in humans and mice [9]. In particular, the

last exon of Prdm9 seems to confer important functionality to the

protein as a domain upstream of the ZF domain is conserved

across several mammal species [17] and the C2H2 ZF domains

located here act as DNA-binding sites [9]. Moreover, it has been

observed that minor differences in the ZF domains as small as one

amino acid substitution can deactivate, enhance or cause the

appearance of a recombination hotspot in humans [20]. Our

results suggest that the last exon of Prdm9 has accumulated several

disruptive mutations in dogs, wolves and coyotes and, conse-

quently, the resulting protein may be non-functional. If this is the

case, it becomes an intriguing question whether these three canid

species have recombination hotspots and, if they have, whether

there is a different mechanism not involving PRDM9 to control

their location. In sexually reproducing organisms recombination is

an essential process needed for the correct segregation of the

chromosomes during meiosis [48] and it is known that, in

mammals, recombination tends to occur at specific regions called

recombination hotspots that are 1–2 kb long, separated from each

other by tens of kilobases where recombination is essentially

lacking [2,49,50]. Three types of factors have been suggested to

control the location of recombination hotspots: DNA sequence

motifs (e.g. [51,52]), epigenetic mechanisms (e.g. [53,54]) and

trans-acting loci (e.g. [55]). Recently, many studies have focused

on Prdm9 (see the Introduction and references therein), likely

because ‘‘These characteristics of PRDM9 neatly wrap genetic,

epigenetic, and trans-acting factors known to influence recombi-

nation into one intriguing package’’ [56], page 1.

Despite its important role, Prdm9 is absent in sauropsids (birds,

lizards) and amphibians, but seems to be fairly conserved and

functional in other metazoans diverging as much as 700 million

years ago [8,47]. The mutations we found in these three canid

species were shared across individuals and so the mutations must

have happened several million years ago, before the split between

wolves and coyotes. Although PRDM9 appears to be a major

regulator of hotspots in humans and other metazoans, we are still

far from fully understanding how recombination hotspots are

controlled and whether other trans regulatory factors exist [20].

For example, several studies indicate that in addition to the

polymorphisms in PRDM9, polymorphisms at the RNF gene and

an inversion on chromosome 17 [57,58] appear to influence

recombination, but their impacts are modest [21]. Notably, Prdm9

2/2 mice spermatocytes still have detectable double-strand

breaks [7], and trans-acting factors responsible for hotspot location

have been mapped in inbred lines of mice [59,60]. Therefore, it is

likely that there are other factors controlling for meiotic

recombination hotspot specification in animals with sexual

reproduction [20,47,56,61].

In conclusion, our results suggest that if in fact this gene is not

functional in these three canid species, recombination does not

occur at hotspots or hotspot location is controlled through a

different gene or mechanism yet to be determined. Alternatively,

hotspot locations are mediated by Prdm9 in ways that are different

from those described for other organisms. Notably, because the

mutations are shared between the domestic and two wild canids,

we conclude that domestication was not associated to changes in

the functionality of PRDM9. Whether recombination is controlled

by the same gene or a different gene with a similar action or by a

different type of mechanism is still to be determined and warrants

further investigation.
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wolves and coyotes aligning to the PRDM9 region identified by

[17] as conserved across 15 mammal species.

(DOC)

Acknowledgments

We thank Cheryl Asa, Jouni Aspi, Karen Bauman, Dean Cluff, Chris

Darimont, Paul Paquet, Ettore Randi, Óscar Rodrı́guez-Rodrı́guez and
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