
iological

sychiatry:
OS
Archival Report

B
P
G

Predicting Prenatal Depression and Assessing
Model Bias Using Machine Learning Models

Yongchao Huang, Suzanne Alvernaz, Sage J. Kim, Pauline Maki, Yang Dai, and
Beatriz Peñalver Bernabé
ISS
ABSTRACT
BACKGROUND: Perinatal depression is one of the most common medical complications during pregnancy and
postpartum period, affecting 10% to 20% of pregnant individuals, with higher rates among Black and Latina women
who are also less likely to be diagnosed and treated. Machine learning (ML) models based on electronic medical
records (EMRs) have effectively predicted postpartum depression in middle-class White women but have rarely
included sufficient proportions of racial/ethnic minorities, which has contributed to biases in ML models. Our goal
is to determine whether ML models could predict depression in early pregnancy in racial/ethnic minority women
by leveraging EMR data.
METHODS: We extracted EMRs from a large U.S. urban hospital serving mostly low-income Black and Hispanic
women (n = 5875). Depressive symptom severity was assessed using the Patient Health Questionnaire-9 self-
report questionnaire. We investigated multiple ML classifiers using Shapley additive explanations for model
interpretation and determined prediction bias with 4 metrics: disparate impact, equal opportunity difference, and
equalized odds (standard deviations of true positives and false positives).
RESULTS: Although the best-performing ML model’s (elastic net) performance was low (area under the receiver
operating characteristic curve = 0.61), we identified known perinatal depression risk factors such as unplanned
pregnancy and being single and underexplored factors such as self-reported pain, lower prenatal vitamin intake,
asthma, carrying a male fetus, and lower platelet levels. Despite the sample comprising mostly low-income
minority women (54% Black, 27% Latina), the model performed worse for these communities (area under the
receiver operating characteristic curve: 57% Black, 59% Latina women vs. 64% White women).
CONCLUSIONS: EMR-based ML models could moderately predict early pregnancy depression but exhibited biased
performance against low-income minority women.

https://doi.org/10.1016/j.bpsgos.2024.100376
Perinatal depression (PND), depression during pregnancy and
up to 1 year postpartum, is one of the most common com-
plications during the perinatal period (1). In the US, the rate of
PND is 10% to 20% (1) and has increased more than 3-fold
from 2000 to 2015 (2,3). The rates of PND among Black and
Latina women are 2- to 5-fold higher than non-Hispanic White
(NHW) women (4–8). In our own longitudinal studies in low-
income women of color, the rate of PND is 23% (9), whereas
the US average rate is 12% (10). During the COVID-19
pandemic, the prevalence of PND rose to 27% to 32%
(11–13), highlighting the importance of environmental stressors
in these mood disorders (9). PND confers significant obstetric
risks of low birth weight (14), preterm labor (14,15), higher
maternal morbidity and mortality, longer hospital stays post-
delivery and higher delivery costs (16), lower initiation and
duration of breastfeeding (17), and poor maternal-fetal
attachment (18). Infants born from women with PND have
increased risks of stunted growth, inadequate cognitive
development, altered stress response, underdeveloped soci-
oemotional behavior, and future mental disorders (16,19–24).
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In extreme cases, PND can lead to suicide, a leading cause of
maternal mortality in the first year after delivery (25).

Multiple individual-level factors have been linked to
increased PND risk, such as lack of a partner and social
support (26), unplanned pregnancy (27), young age (28), his-
tory of depression or trauma (28), and adverse childhood ex-
periences (29,30). Despite a higher prevalence of depression
during pregnancy in Black and Latina women, they are less
likely to be screened (31–33) and to share their PND symptoms
(34–36). Providers commonly screen for depression at least
once during pregnancy and postpartum (37). Common PND
screening methods include self-reported questionnaires, such
as the Edinburgh Postpartum Depression Score (38) and the
Patient Health Questionnaire-9 (PHQ-9) (39). However, the
utility of these self-reported questionnaires depends on the
accurate disclosure of symptoms (34–36). For instance, Black
women might share their PND symptoms with family but are
more reluctant to seek help from medical professionals than
NHW women due to social stigma (34,40) and concern of being
viewed as lacking strength and resilience (41–43). Fear of the
y of Biological Psychiatry. This is an open access article under the
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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consequences of symptom disclosure, such as losing the
infant’s custody (34), and medical mistrust are also important
factors for which pregnant individuals might decide to under-
report or completely deny their symptoms (44). Furthermore,
communication of depressive symptoms may be influenced
by cultural factors that are not fully captured by Edinburgh
Postpartum Depression Score or PHQ-9 (44–48). For example,
studies have shown that low-income urban Black women
endorse lower levels of depressive symptom severity in self-
reported questionnaires than other populations (46–48),
despite having the same clinical diagnosis, hence leading
to more false negative results in Black women than other
groups.

Computational approaches, such as machine learning (ML)
using electronic medical records (EMRs), have been able to
predict pregnancy outcomes, including gestational diabetes
(49–51), preterm birth (52), and suicidal thoughts (53). EMR-
based ML models for PND have generally focused on pre-
dicting postpartum depression (54–64) and rarely include racial
and ethnic minorities (55,60). In middle-class White women,
EMR-based ML models to predict postpartum depression can
perform relatively well, with area under the receiver operating
characteristic curve (AUROC) .0.75, using various ap-
proaches such as random forest (55,59,60,64–66), artificial
neural networks (56,57,67), and logistic regression (55,63,68).
However, the performance of EMR-based ML models for
predicting depression in pregnancy for low-income minority
women remains unexplored.

Biases in prediction performance exist in ML models, which
refer to the disparate levels of model prediction of the outcome of
interest for certain sociodemographic variables, called protected
variables, such as sex, gender, age, race, ethnicity, or socio-
economic status (69). Given that EMRs are not collected from
well-designed balanced studies, the model performance can
better predict or be biased toward groups more represented in
EMRs. In addition, some groups might have more available data
(e.g., more clinical encounters and diagnostic tests), or their EMR
information is of higher quality (70). White women are commonly
disproportionally overrepresented in EMRs. Consequently, ML
models based on EMRs have lower performance at predicting
PND risk in Black and Latina women than White individuals (60).
Other reasons for poor performance include the lower quality and
quantity of EMRs for racial/ethnic minorities than those of White
women because of lower access to care (60), e.g., no docu-
mented medical history in the EMRs, underutilization of health
care due to work conditions, lack of childcare or transportation,
reluctance to reveal certain sensitive information (34), and/or
implicit bias by health care providers (34,44). Thus, understanding
the sources of bias in ML models is essential for the equitable
prediction of PND risk in diverse populations.

Despite the negative consequences of depression during
pregnancy for both the mother and the infant that dispropor-
tionally affect low-income women of color, no study has thus far
used EMRs enriched by women of color from underresourced
communities to predict depression early in pregnancy and
examined the model bias. Here, we constructed ML models to
predict depression symptom severity early in pregnancy for
urban low-income women of color who received care in the
same outpatient obstetric clinic, and we subsequently assessed
model performance and racial and ethnic biases.
2 Biological Psychiatry: Global Open Science November 2024; 4:10037
METHODS AND MATERIALS

Study Population

EMRs were extracted from patients who received obstetric care
at the University of Illinois Chicago Hospital Health Sciences
System, an urban academic hospital in Chicago, where the
population served is 52% non-Hispanic Black (NHB), 29% His-
panic (H), 9% NHW, and 10% Asian and Native American, and
we further selected EMRs from patients who were 15 years or
older and received their obstetric care and delivered at University
of Illinois Chicago between 2014 and 2020. We obtained infor-
mation on the patient’s sociodemographic characteristics, med-
ical history, mental health assessments, health behaviors (e.g.,
substance abuse, vital records, laboratory tests, medications,
prior and current obstetric complications, and delivery and fetus
information) (Tables S1 and S2). Depressive symptom severity
was assessed using the self-reported PHQ-9 (39). The EMR
extraction was approved by the University of Illinois Institutional
Review Board (IRB # 2020-0553).

Preprocessing of EMR Data

Patients were included if 1) their PHQ-9 scores were between
1 and 4 or 9 and above and 2) their first obstetric visit was
before 24 gestational weeks given that depressive symptoms
later in pregnancy might be distinct from those in early preg-
nancy. We excluded patients with mild levels of depression
(PHQ-9 scores between 5 and 8) or those who reported no
depression symptoms (PHQ-9 score 0) to avoid incorporating
possible false negatives due to underreported or denial of
symptoms, respectively. Patients with a PHQ-9 score. 9 were
categorized as cases, and those with a PHQ-9 score between
1 and 4 as controls (Figures S1 and S2).

EMR features recorded after the first perinatal appointment
were excluded from downstream analysis (e.g., gestational dia-
betes or preeclampsia diagnosis), as well as features that were
missing in more than 60% of patients (Figure S3 and Table S3).
Prescribed medications were grouped into 29 broad classes
based on their most common use, mechanism of action, and
targeted organ system (Table S2). Qualitative features (e.g., race,
insurance, and medications) were hard coded, and continuous
features were transformed using min-max normalization. Missing
data were imputed using MICE (version 3.15.0) (71) (Figure S4).
To partially mitigate bias, ML models were trained by excluding
self-reported race and ethnicity results from genetic tests to
assess ancestry and preferred language to communicate with
their providers. See Supplemental Methods for more details.

ML Model Selection and Training

We explored different ML models, including random forest,
elastic net, and XGBoost, to identify the most suitable ones for
predicting PND. We evaluated and selected models based on
their accuracy, AUROC, positive predictive value, negative
predictive value, specificity, and model bias. We also
computed the harmonic mean of precision and recall (F1) and
the area under the precision-recall curve. Model sensitivity was
fixed at 85% for all models to maximize the identification of
true depression cases (Figure S5).

We employed a nested k-fold cross-validation approach for
model evaluation and hyperparameter tuning. This approach
6 www.sobp.org/GOS

http://www.sobp.org/GOS


Predict Prenatal Depression and Assess Model Bias
Biological
Psychiatry:
GOS
consisted of 2 layers: a 10-fold outer loop and a 5-fold inner
loop. In the outer loop, the data were divided into a training set
and a test set. The training set from the outer loop was then
used in the inner loop to be further split into subtraining and
validation sets. These subsets were used to train models and
optimize their hyperparameters. The model with the best
hyperparameters was applied to the test set from the outer loop
to assess performance, ensuring that every patient in the
dataset was evaluated at once (Figure S6). To maintain the
representativeness of the original dataset in each fold, we
stratified the data according to race/ethnicity and the classifi-
cation of individuals as either a case or a control (Table S4). For
hyperparameter optimization, we leveraged the GridSearchCV
function from the scikit-learn Python package (version 1.2.0),
which conducted a 5-fold cross-validation within the inner loop.
See Supplemental Methods for more details.

Identification of the Most Important Features

To identify the importance and directionality with respect to
depressive symptom severity of the EMR features, we calcu-
lated the Shapley values using Shapley additive explanations
(SHAP) (72). The Shapley value, Fi, is defined as the estimated
contribution of feature i in all samples to the depression
outcome. For feature dependence analysis, we followed the
procedure developed by Artzi et al. (49) to convert the Shapley
values into relative risk (RR). Briefly, in the SHAP analysis, the
log-odds of the predicted probability are calculated as Fi; then
the predicted probability of a single feature i is

Pi ¼ SðF0 1 FiÞ (1)

where

SðxÞ ¼ 1
1 1 e2x (2)

and F0 is the base Shapley value, i.e., the logit of the popu-
lation prevalence (denoted as P0Þ. Therefore,

logit ðP0Þ ¼ ln ðP0 = ð1 2 P0ÞÞ ¼ F0 (3)

P0 ¼ SðF0Þ (4)

Here P0 was set as 0.14, which was the PND prevalence
estimated from the EMRs of the current study.

RR of a single feature i was calculated as follows:

RRi ¼ Pi

P0
¼ SðF0 1 FiÞ

SðF0Þ (5)

When calculating the RR of PND in relation to a set of features
A, equation 5 can be extended as follows:

RRA ¼ PA

P0
¼

S
�
F0 1

P
n˛A

Fn

�

SðF0Þ (6)

We employed the function dependence_plot() within the shap
package in Python (version 0.39.0) to determine the correlation
Biological Psychiatry: Globa
between the most important features and the rest of the EMR
variables based on their Shapley values.

Statistical Analysis

The Mann-Whitney test was used for continuous variables to
identify differences among independent groups. Distinctions be-
tweenmodels were assessed using theWilcoxon signed-rank test.
A two proportion z test was used to evaluate the proportion differ-
ences for categorical or dichotomous variables. Pairwise Tukey’s
honestly significant difference was applied to compare Shapley
values across race/ethnicity for each feature and the Bonferroni
correction to adjust for multiple comparisons. To establish the re-
lationships between each feature and the outcome, we used
Spearman correlation to estimate the direction of the effect.

Bias Assessments

We employed 4 common metrics to assess model bias: the
disparate impact (DI) (73), the equal opportunity difference
(EOD) (74), and the standard deviation (std) of true positives and
false positives (equalized odds [EO]) across race/ethnicity (75):

DI ¼ Prðy ¼ 1junprivilegedÞ
Prðy ¼ 1jprivilegedÞ (7)

EOD ¼ Prðy ¼ 1jY ¼ 1;privilegedÞ
e Prðy ¼ 1jY ¼ 1;unprivilegedÞ (8)

Here, Y and y denote the true and predicted outcome of
depression (case = 1, control = 0), respectively, and Pr is
probability.

EOðFPRÞ ¼ stdfFPRNHB;FPRNHW;FPRHg (9)

EOðTPRÞ ¼ stdfTPRNHB;TPRNHW;TPRHg (10)

where FPR is the false positive rate and TPR is the true positive
rate.

The privileged group was selected as the racial/ethnic group
with the highest AUROC. In our study, the privileged group was
NHW women, and the unprivileged groups were NHB and
Latina women. The calibration curve (76) was calculated using
the calibration_curve() function with 100 quantile bins.

RESULTS

EMRs Were Extracted From an Understudied
Population of Urban Low-Income Women of Color

The extracted data included 5875 pregnant women and 694
EMR features (Figure 1; Tables S3 and S5). After data pre-
processing, a total sample of 2414 women and 74 EMR fea-
tures was employed for downstream analysis (Table 1). Most of
the EMRs belonged to low-income women of color, 54% NHB
and 27% NHW women, and more than 72% of women were in
federal aid health care plans (Medicaid and Medicare). We
observed statistically significant differences between racial/
ethnic groups (Tables S6 and S7), with NHB women being
l Open Science November 2024; 4:100376 www.sobp.org/GOS 3
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Figure 1. Overall workflow. Electronic medical
records were extracted from 5875 patients ages 15
years or older who received obstetric care and
delivered at University of Illinois (UI) Health between
2014 and 2020. Patients were included based on
their Patient Health Questionnaire-9 (PHQ-9) scores
and timing of their first obstetric visit, before 24
weeks. The preprocessed electronic medical record
data underwent normalization and nested k-fold
cross-validation to develop machine learning (ML)
models for predicting perinatal depression. This
approach allowed for the identification of important
features contributing to perinatal depression pre-
diction and the assessment of potential model dis-
parities across different racial/ethnic groups. H,
Hispanic or Latina; NHB, non-Hispanic Black; NHW,
non-Hispanic White; SHAP, Shapley additive
explanations.

Predict Prenatal Depression and Assess Model Bias
Biological
Psychiatry:
GOS
more likely to be single or unemployed or having an unplanned
pregnancy (all adjusted p , .01). We also detected statistically
significant differences between cases and controls overall as
well as when segregating the data by race/ethnicity, with
women reporting high levels of depressive symptoms being
more likely to have an unplanned pregnancy and to smoke
independently of their race/ethnicity (adjusted p , .01).

Elastic Net Was the Best Model to Predict
Depression in Early Pregnancy

First, we determined the most adequate ML model to predict
depressive symptom severity early in pregnancy in our sample,
including random forest (77), XGBoost (78), and elastic net (79).
While both elastic net and random forest had similar perfor-
mance when models were agnostic to patient’s race/ethnicity,
the calibration analysis suggests that the elastic net model’s
predictive accuracy is moderately consistent across different
risk levels of PND with slope close to 1 and intercept close to
0 (Figure S7; Table S8). Elastic net also had significantly lower
bias, EO (TPR), and EO (FPR) predicting PND. Thus, it was
chosen for downstream analysis (Table S8).

Identification of Well-Known and Novel Features
Associated With Prenatal Depressive Symptom
Severity

To identify the features that were most predictive of depressive
symptom severity early in pregnancy and the directionality of
their associations, we determined their Shapley values. Based
on game theory, Shapley values provide an estimate of the
contribution made by each feature toward the overall predic-
tion of the model. The top 20 most predictive features based
on their mean absolute Shapley values included well-known
sociodemographic factors associated with PND, such as
having an unplanned pregnancy (80); being single (81), of
young age (28), or unemployed (82); and use of federal aid
insurance (proxy for poverty) (83) and of tobacco (84)
(Figure 2A), yet our model also identified features that have
either not been previously associated with depressive symp-
tom severity in pregnancy or only reported in a few studies. For
instance, we discovered that elevated depressive symptoms
were positively associated with self-reported levels of pain; an
4 Biological Psychiatry: Global Open Science November 2024; 4:10037
asthma diagnosis; carrying a male fetus (85); use of antihis-
tamines, analgesics, antibiotics, or mood and anxiety medi-
cation; and higher mean platelet volumes in blood (86,87).
Features related to preventive care, such as prenatal vitamin
intake (88) and immunization against influenza and tetanus,
were negatively correlated with depressive symptom severity.

Inspection of the contribution of top significant features to
PND across patient’s race/ethnicity (Figure 2B–D; Figures S8
and S9) and sociodemographic factors, such as being single,
having an unplanned pregnancy, unemployment, and low so-
cioeconomic status, were weaker predictors of depressive
symptoms in NHB women than NHW or Hispanic women
(adjusted p , .01). However, tobacco use, infections, asthma
diagnosis, gastrointestinal disturbance, and elevated self-
reported levels of pain had significantly higher contributions
to PND in NHB women than the other 2 groups (adjusted p ,

.01). Noticeably, mood and anxiety medication, prenatal
vitamin intake, and immunization had higher significance in
NHW women (adjusted p , .01).

Predicted RR of Prenatal Depression

Next, we determined theRRassociatedwith themost predictive
features of depressive symptom severity based on their Shapley
value (Figure 3 and Figure S10). High self-reported pain levels
were positively and linearly correlated with an increased risk of
PND, independently of whether the patient was receiving any
pain medication (Figure 3A). NHB individuals more often re-
ported higher levels of pain (85%, score $ 6) than any other
group (Figure 3A). A history of medication for mood disorders
was associatedwith an increased risk of PND (RR = 1.226 0.02)
(Figure 3B). As previously reported (80,81,84), tobacco use
(RR = 1.1 6 0.01) (Figure 3C), unplanned pregnancy (RR = 1.03
6 0.01) (Figure 3D), and being single (RR = 1.02 6 0.01)
(Figure 3E) were associated with increased risk of PND.

Despite the Study Sample Being Enriched With
Low-Income Women of Color, the Model Was
Biased Against Black Women

Finally, we examined whether ML models had the same pre-
dictive capability to predict PND without including the in-
dividual’s race/ethnicity in the feature set for model training
6 www.sobp.org/GOS
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(Figure 4A, B). The model performance for any patient, inde-
pendent of their racial/ethnic background, was moderate (area
under the precision-recall curve = 50%; AUROC = 66%)
(Model 1). However, when stratifying by racial/ethnic groups,
elastic net predictions of PND status for NHW women were
significantly higher than those for NHB women (Model 1
AUROC: NHW [69%], NHB [55%], H [63%], respectively;
adjusted p , .001). Furthermore, the performance of the ML
model for NHW women was better than for NHB and Latina
women when compared by specificity, accuracy, and negative
predictive value (Figure S11). Notably, our model predicted
NHB women with PND with a sensitivity of 90% although the
positive predictive value and specificity were low (Model 1
positive predictive value: NHB [36%], NHW [31%], H [31%];
specificity: NHB [20%], NHW [67%], H [48%]) (Figure S11B, D,
G).

To further estimate the inequality of model prediction or
model bias, we calculated 4 common bias metrics: EOD—the
true positive difference between the privileged and unprivi-
leged group; DI—the ratio of positive predictions between the
privileged and unprivileged groups; and EO/standard deviation
of TPR and FPR across race/ethnicity. Removal of race/
ethnicity training features from the models—specifically, when
comparing Model 1 with Model 2—moderately reduced model
performance disparities as measured by DI, EOD, EO (TPR),
and EO (FPR), with more significant improvements for NHB
women (adjusted p , .05) than NHW women (Figure 4C, D and
Figure S12).
DISCUSSION

In this study, we examined the capability of interpretable ML
models to predict the risk of depression during early pregnancy
in low-income women of color using EMRs, demonstrating that
EMR-based ML models were moderately predictive of
depressive symptom severity in early pregnancy in this high-
risk population. In addition, using the SHAP analysis, we
identified factors associated with the risk of early PND
including the directionality of their associations. Our models
not only revealed well-known factors, such as unplanned
pregnancy, history of medication use to treat mood disorders,
or young age, but also captured novel or underexplored
markers, such as self-reported pain levels, asthma diagnosis,
carrying a male fetus, or systemic platelet volume. Importantly,
our results highlighted the significant performance disparity in
model prediction among racial/ethnic groups, with women of
color at greater disadvantages in model predictions.

ML models to predict PND in racial and ethnic minorities are
scarce. EMR-based ML models to predict postpartum
depression have been developed in a wide variety of pop-
ulations [e.g., Chinese (59), European (56,57,61,64), NHW
women in the US (65)]. These EMR-based ML models can
perform relatively well. However, previous studies have not
demonstrated the predictive capability of EMR-based ML
models to estimate PND status in low-income minority women.
Our results filled this current gap and showed that EMR-based
models trained with a sample primarily composed of low-
income minority women moderately predict PND status, yet
the elastic net model had a better prediction performance for
the less prevalent group in the sample, NHW women
l Open Science November 2024; 4:100376 www.sobp.org/GOS 5
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Figure 2. Multiple known and unexplored electronic medical record features were associated with perinatal depression (PND) status. (A) Top 20 most
important features based on their Shapley value to predict PND status. The color of the bar represents the correlation between each feature and PND status;
red indicates a positive association with outcome, and blue indicates a negative association. (B–D) Features whose importance is significantly different by
race/ethnicity in terms of medication use, sociodemographic factors, substance use, and pain assessment scale. Pairwise Tukey’s honestly significant dif-
ference was used to determine features included in (B–D). H, Hispanic or Latina; NHB, non-Hispanic Black; NHW, non-Hispanic White.
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(AUROC = 69%), than NHB women (AUROC = 55%) and
Latina women (AUROC = 63%).

Our results are interpretable, a very important capability to
identify markers that providers can intervene upon. Using
SHAP analysis, we revealed several established markers that
increased the risk of depression in early pregnancy, such as
unplanned pregnancy (80) or being single (81). Our results
based on minority populations who are at high risk of PND also
suggest that individuals who do not take vitamin supplements
during early pregnancy may be at increased risk of PND. This
observation aligns with results from a systematic review per-
formed by Sparling et al. (88). The authors found that lower
levels of folate, vitamin D, iron, selenium, zinc, fats, and fatty
acids were associated with increased risks of PND; those
studies were limited in their population diversity, which either
failed to include minority populations or had limited sample
sizes of minority groups.

Importantly, our analysis uncovered several new or under-
explored markers that increased the predicted risk of depres-
sion during early pregnancy, such as self-reported pain levels,
mean platelet volume in blood (86,87), carrying a male fetus
(85), and having a diagnosis of asthma. Higher levels of pain
have been linked to postpartum depression (89), and our
6 Biological Psychiatry: Global Open Science November 2024; 4:10037
findings suggest that this relationship also holds during the
early stages of pregnancy. Similarly, patients with major
depression exhibit a higher mean platelet volume (86,87), but
this phenomenon has not yet been investigated in the context
of PND. Recently, Myers et al. (85) reported that carrying a
male fetus increases the odds of postnatal depression. While
the mechanisms that link the fetus’s sex and depression status
are unclear, women who carry male fetuses have lower
estradiol levels in the blood than those carrying female fetuses
(90) with lower levels of estrogens outside pregnancy associ-
ated with higher levels of depressive symptoms (91). In addi-
tion, women carrying male fetuses have higher levels of
inflammatory markers, such as interleukin 1b, in early preg-
nancy, and higher levels of inflammation have been linked to
PND (92,93).

Despite our original expectation, employing samples
enriched in individuals from underserved populations did not
mitigate EMR-based ML model’s performance bias. Our re-
sults revealed a significant disparity in model performance
among race/ethnicity groups to predict PND. NHW women, the
least represented group in the sample, were predicted signifi-
cantly better than NHB women, who represented more than
54% of the sample. This contradicts prior studies and
6 www.sobp.org/GOS
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Figure 3. The predicted relative risk of top selected features. (A) Predicted relative risk of self-reported pain level and its interaction with the use of anti-
inflammatory and analgesic drugs (e.g., ibuprofen). The pie chart represents the racial/ethnic distribution of pain assessment levels below and equal to or
above 6. (B–E) Predicted relative risk of mood/anxiety medication use and their interactions with anticoagulant medication, of tobacco use, of unplanned
pregnancy, and of being single, respectively. Two proportion z test was used in (A). Mann-Whitney U test was used in (B–E). ****, adjusted p, .05. H, Hispanic
or Latina; NHB, non-Hispanic Black; NHW, non-Hispanic White.
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suggests that even with a majority of data from underprivileged
groups with similar EMR quality, ML models can indeed exhibit
performance bias.

Multiple reasons might explain our observed results. For
instance, due to cultural differences, social stigma, or medical
Biological Psychiatry: Globa
mistrust, NHB women might underreport their symptoms more
often than NHW women. Studies indicate that urban low-
income women of color report lower levels of depressive
symptoms than NHW women using self-reported question-
naires despite having the same diagnosis when assessed by a
Figure 4. Electronic medical record–based ma-
chine learning models are biased against low-income
minority women. (A) Area under the precision-recall
curve (PRAUC) for different racial/ethnic groups.
(B) Area under the receiver operating characteristic
curve (ROC AUC) for different race/ethnicity groups.
(C) Equal opportunity difference between unprivi-
leged and privileged groups. (D) Disparate impact
values between unprivileged and privileged groups.
Privileged group: non-Hispanic White (NHW)
women; unprivileged groups, non-Hispanic Black
(NHB) and Hispanic (H) women. Model 1: trained
without including race or ethnicity as variables in the
model (blue). Model 2: trained including race and
ethnicity as variables in the model (orange). Mann-
Whitney U test used for (A, B). Wilcoxon signed-
rank test used for (C, D). *p , .05, **p , .01. ns,
nonsignificant.

l Open Science November 2024; 4:100376 www.sobp.org/GOS 7

http://www.sobp.org/GOS


Predict Prenatal Depression and Assess Model Bias
Biological
Psychiatry:
GOS
clinical provider (46). Thus, a lesser number of NHB women
with PND might be referred to mental health providers. Our
results agree with this. Although our model was able to detect
elevated depressive symptoms in NHB women with a high
sensitivity, it exhibited a low positive predictive value and
specificity. In other words, the model predicted a large pro-
portion of NHB women as cases instead of as controls, sug-
gesting that a larger proportion of NHB women may have
experienced higher levels of depressive symptoms. However,
our results are based on self-report screening tools and should
be confirmed using clinical diagnosis. Another plausible reason
for the lower predictive performance of our EMR-based ML
model for women of color might be the different use of medical
services. Although all the EMRs used in this study were from
the same clinic, it was observed that NHB women, predomi-
nantly covered by federal aid insurance, tended to have their
initial obstetric appointment later in their pregnancy, in contrast
to NHW women.

Another possibility is that EMRs might not contain all the
necessary information to predict PND. For example, certain
neighborhood characteristics, such as violence rate, living in
poverty areas, or levels of air pollution, are known to increase
chronic stress and, consequently, chronic inflammation (94),
one of the hallmarks of PND (95). Thus, chronic stress and
chronic inflammation might mediate the negative effects of
structural inequalities in depression during pregnancy. There-
fore, future research should include neighborhood factors that
could boost model prediction performance in women who are
exposed to higher contextual risks, e.g., racial minority and
low-income women living in highly segregated urban poverty
areas (96). Bias can also be addressed using computational
approaches from simple algebraic transformations, such as
the geometric projection (97), to more sophisticated deep
learning approaches, such as the adversarial framework (75).

Our study has several strengths, including 1) the exploration
of the predictive capabilities of ML models using EMR to
identify depression early in pregnancy in low-income women of
color, given that most of the current studies aimed to predict
postpartum depression in middle-class NHW women; 2) the
use of SHAP analysis to make model results interpretable and
thus actionable; and 3) assessing model biases. Given that the
current study has not been externally validated through other
datasets, our models should be confirmed in other populations
with larger sample sizes, including other groups that are at high
risk of PND (e.g., housing instability) using clinical diagnoses of
PND, such as ICD-9/10 codes, instead of self-report depres-
sion questionnaires.
Conclusions

Interpretable ML models based on available EMRs can aid in
identifying women at high risk of PND in their early pregnancy.
This will enable providers to intervene proactively early enough
to prevent the negative consequences of PND for both the
mother and the child, such as prescribing appropriate medi-
cations, recommending therapy, or providing guidance on
preventive measures. However, new tools and approaches are
necessary to increase the prediction performance of EMR-
based ML models to reduce model biases so that the risk of
PND can be equitably predicted for all pregnant individuals.
8 Biological Psychiatry: Global Open Science November 2024; 4:10037
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