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Abstract

MADS-box transcription factors (TFs) are present in nearly all major eukaryotic groups. They are divided into Type I and
Type II that differ in domain structure, functional roles, and rates of evolution. In flowering plants, major evolutionary
innovations like flowers, ovules, and fruits have been closely connected to Type II MADS-box TFs. The role of Type I
MADS-box TFs in angiosperm evolution remains to be identified. Here, we show that the formation of angiosperm-
specific Type I MADS-box clades of Mc and Mc-interacting Ma genes (Ma*) can be tracked back to the ancestor of all
angiosperms. Angiosperm-specific Mc and Ma* genes were preferentially expressed in the endosperm, consistent with
their proposed function as heterodimers in the angiosperm-specific embryo nourishing endosperm tissue. We propose
that duplication and diversification of Type I MADS genes underpin the evolution of the endosperm, a developmental
innovation closely connected to the origin and success of angiosperms.
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Introduction
MADS-box transcription factors (TFs) are an evolutionary an-
cient class of TFs and major developmental regulators present
in nearly all major eukaryotic groups (Alvarez-Buylla et al. 2000).
They have largely amplified during land plant evolution and
play important roles in regulating organ patterning and timing
of reproductive developmental programs (Nam et al. 2003;
Gramzow and Theißen 2013). The loosely conserved DNA-
binding MADS domain is located at the N-terminus of
MADS-box proteins, while based on the C-terminal sequences
two types of MADS-box TFs are distinguished, Type I and Type
II (Schwarz-Sommer et al. 1990; Alvarez-Buylla et al. 2000). The
duplication and divergence of Type II MADS-box genes, or
MIKC-type, have been linked to the evolution of floral organs
in angiosperms, including flowers, ovules, and fruits (Becker and
Theissen 2003; Nam et al. 2003; Ruelens et al. 2013, 2017).
Compared with Type II, Type I MADS-box genes are under-
represented in gymnosperms and have experienced more fre-
quent lineage-specific duplications in angiosperms, followed by
fast pseudogenization and gene loss (Nam et al. 2004;
Gramzow and Theißen 2013). Nevertheless, the role of Type
I MADS-box TFs in angiosperm evolution remains to be iden-
tified. Emerging studies suggest a role for Type I MADS-box
genes in the regulation of female gametophyte and endosperm
development in Arabidopsis and grasses (Bemer et al. 2008;
Colombo et al. 2008; Steffen et al. 2008; Roszak and Köhler
2011; Shirzadi et al. 2011; Hehenberger et al. 2012; Chen et al.
2016; Batista et al. 2019; Paul et al. 2020; Zhang et al. 2020).

The endosperm is a reproductive novelty of angiosperms
that develops as the second product of double fertilization
alongside the embryo to support its growth. This nourishing
behavior of endosperm starts only after fertilization; in con-
trast to gymnosperms, where the large female gametophyte
stores nutrients independently of the fertilization status of
the gametophyte (Baroux et al., 2002). The endosperm is
furthermore establishing reproductive barriers between
closely related species, fueling plant speciation (Köhler et al.
2021). Considering the contribution of the endosperm to the
evolutionary success of angiosperms, understanding the ge-
netic basis of endosperm evolution is of key importance. In
this study, we establish a link between the evolution of Type I
MADS-box genes and the origin of the endosperm in flower-
ing plants. We hypothesize that through gene duplication
and neofunctionalization, novel subfamilies of Type I
MADS-box TFs acquired endosperm-specific function in the
shared common ancestor of all extant angiosperms after its
divergence from gymnosperms. This process likely under-
pinned the evolution of the endosperm in angiosperms.

Results and Discussion

Duplication of Mb and Mc MADS-Box TF Genes Is
Concerted with the Evolution of Angiosperms
We identified Type I MADS-box genes in 40 species, represent-
ing all major lineages of angiosperms and other land plants as
outgroups (supplementary table S1, Supplementary Material
online). The phylogeny of Type I MADS-box genes in all
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angiosperms revealed three major clades (fig. 1; supplementary
fig. S1, Supplementary Material online), corresponding to the
previously defined groups Ma, Mb, and Mc (Parenicov�a et al.
2003; Arora et al. 2007; Gramzow and Theißen 2013).
Specifically, we found Mc type genes in all angiosperms we
assayed (supplementary table S2, Supplementary Material on-
line), including Amborella trichopoda, the species sister to all
other angiosperms, suggesting the presence of an ancestral Mc
MADS-box gene in the most recent common ancestor of all
angiosperms. Mb genes in angiosperms are sister to the an-
giosperm Mc clade, while the most closely related homologs in
three major lineages of gymnosperms, Picea abies, Ginkgo bi-
loba, and Gnetum luofuense (previously identified as Gnetum
montanum in the genome project; Wan et al. 2018; Hou et al.
2020), form a clade that is the outgroup of the angiosperm
Mc/Mb clade, followed successively by Mb-like genes in the
fern Salvinia cucullata, the clubmoss Selaginella moellendorffii
and the mosses Physomitrella patens and Sphagnum fallax.
Supporting previous findings (Gramzow et al. 2014), ancestral
seed plants probably possessed only Mb-like genes, in form of
preduplicated Mb/c genes (fig. 1). After the divergence from
the ancestral gymnosperms, a gene duplication event in the
common ancestor of all angiosperms gave rise to the Mc clade,
thus most likely there was at least one ancestral angiosperm
Mb gene and one ancestral angiosperm Mc gene inherited in
all the descendant lineages of angiosperms (fig.1).

Expression of Mc MADS-Box TF Genes in the Endosperm
Is Ubiquitous across the Phylogeny of Angiosperms
We investigated the expression patterns of the duplicated
Type I MADS-box genes to pinpoint their regulatory roles
in certain tissue types. Based on transcriptome data across
different organs and developmental stages in Arabidopsis
thaliana (Klepikova et al. 2016), Mc genes were preferentially
expressed in seeds and siliques, but rarely in vegetative tissues
(fig. 2A). Using available microarray data from dissected seed
tissues (Belmonte et al. 2013), we inferred that several Mc
genes were mainly expressed in the early developing endo-
sperm, but less or absent in the other compartments of seeds,
such as seed coat or embryo (fig. 2B). These data suggest that
Mc MADS-box TFs have endosperm-specific functions in
A. thaliana. Consistent with this notion, the Mc MADS-box
TF PHERES1 is a master regulator of a gene regulatory network
controlling endosperm development (Batista et al. 2019).

We also investigated the endosperm transcriptomes
at early developing stages of maize, coconut, castor bean,
soybean, and tomato and found at least one of the Mc genes
to be expressed in the endosperm of each species, consistent
with their proposed roles in endosperm development
(fig. 3). The Mc genes of maize and soybean had either
none or minimal expression in the embryo, supporting
an endosperm-specific function (supplementary fig. S2,
Supplementary Material online). Mc gene expression was

Angiosperm Mα
Non-angiosperm Mα

Angiosperm Mβ

Angiosperm Mγ

Non-angiosperm Mβ

Amborella Mγ

Amborella Mβ

FIG. 1. Phylogeny of Type I MADS-box TFs in selected land plants. Gene identifiers as in supplementary tables S1 and S2, Supplementary Material
online.
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also detected in whole-seed transcriptomes of rice, avocado,
and monkeyflower (fig. 3). Since the orthologous Mc genes
were primarily expressed in the endosperm in other species,
we infer that the observed Mc expression in whole-seed tran-
scriptomes likely reflects transcription predominantly in the
endosperm. Thus, Mc genes are ubiquitously expressed in the
early endosperm of various species representing major line-
ages of angiosperms, including eudicots, monocots, and mag-
noliids, indicating that endosperm expression of Mc genes is a
conserved feature of angiosperms. Among those expressed

Mc genes, OsMADS87/89 in rice have been characterized as
TFs regulating endosperm development similar to PHERES1 in
A. thaliana, suggesting that the expressed Mc genes in diverse
angiosperm lineages may function similarly (Chen et al. 2016;
Paul et al. 2020).

In contrast, Mb genes in A. thaliana were barely expressed
in the endosperm or other seed tissues, only one of them had
low expression in the seed coat (fig. 2B). Similarly, in maize
transcriptomes, Mb expression was not detected in the en-
dosperm (fig. 3). Although Mb expression was detectable at
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FIG. 3. Expression of Type I MADS-box genes in flowering plants. Upper panels: endosperm transcriptomes of tomato, soybean, coconut, castor
bean, and maize. Lower panels: whole-seed transcriptomes of avocado, rice, and monkeyflower. In each panel, the expression values were
normalized into a 0–1 spectrum, with the max value set as 1. For soybean, maize, avocado, and rice, gene expression levels at two developmental
stages; for monkeyflower, three stages are shown; dap, days after pollination; daa, days after anthesis. For tomato and coconut, gene expression
levels in two genotypes (LA1589/SUN) or varieties (aromatic/nonaromatic) are shown. For castor bean, gene expression levels in two reciprocal
crosses between lines ZB306 and ZB107 are shown. In rice, LOC_Os09g02830 is OsMADS78; LOC_Os01g74440 is OsMADS79; LOC_Os03g38610 is
OsMADS87; and LOC_Os01g18440 is OsMADS89.
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variable levels in the endosperm transcriptomes of coconut,
soybean, castor bean, and tomato (fig. 3), the expression level
of Mb genes was lower compared with the corresponding Mc
expression. Based on whole-seed transcriptomes, Mb genes
in avocado were nearly not expressed, Mb genes in rice
were expressed at low level, whereas some Mb genes in mon-
keyflower were active at later stages of seed development
compared with Mc genes. The sporadic occurrence of Mb
gene expression in the endosperm or other seed tissues across
the phylogeny of angiosperms suggests that the function
of Mb is dispensable in the context of endosperm regulation.
In support of this notion, Type I MADS-box genes with
known functional roles in the endosperm are either Mc
or Ma type genes (Bemer et al. 2008; Colombo et al.
2008; Steffen et al. 2008; Roszak and Köhler 2011; Shirzadi
et al. 2011; Hehenberger et al. 2012; Chen et al. 2016;
Batista et al. 2019; Paul et al. 2020; Zhang et al. 2020).
The absence of Mb genes was previously reported for the
orchids Apostasia shenzhenica, Phalaenopsis equestris, and
Dendrobium catenatum, and the loss of Mb genes was pro-
posed to be connected to the deficiency of endosperm in
orchids (Zhang et al. 2017). Nevertheless, some orchid species
undergo double fertilization and form a rudimentary endo-
sperm (Pace 1907; Sood and Mohana Rao 1988), suggesting
that loss of Mb is not directly related to the loss of endosperm
formation in orchids. In agreement with this view, transcripts
of Ma and Mc are present in developing seeds of A. shenz-
henica and P. equestris (Zhang et al. 2017), likely derived from
the arrested endosperm. In A. thaliana, expression of some
Mb genes could be detected in the female gametophyte
(Bemer et al. 2010), raising the hypothesis that their func-
tional role is restricted to maternal tissues, rather than the
endosperm. We tested this hypothesis by investigating the
transcriptomes of species with perispermic seeds, in which
the maternally derived perisperm rather than the endosperm
provides nutrients to the embryo. Consistent with the pro-
posed functional role of Mb genes in maternal tissues, we
detected Mb transcripts in the transcriptome assembly from
perisperm of Coffea arabica. Likewise, in Nymphaea therma-
rum perispermic seeds, transcript levels of Mb genes were
much higher compared with the barely detectable Mc gene
transcripts (supplementary fig. S3, Supplementary Material
online), consistent with the perisperm accounting for the
majority of the seed volume in Nymphaea (Povilus et al.
2015). We also investigated transcriptomes of gymnosperm
reproductive tissues to infer the functional role of predupli-
cated Mb/c orthologs (supplementary fig. S3, Supplementary
Material online). Mb/c orthologous genes were expressed in
female cones of P. abies and ovules of G. luofuense and ex-
pression of some Mb/c orthologous genes could also be
detected in developing seeds of G. luofuense, suggesting these
genes perform important roles in the maternal reproductive
tissue and possibly regulate the maternal nourishing behavior
supporting the development of seeds. In gymnosperms, the
large female gametophyte nourishes the embryo after fertil-
ization; whereas in angiosperms, this role has been adopted
by the endosperm which develops alongside the embryo after
fertilization (Baroux et al. 2002). Based on our data, we

propose that the function of preduplicated Mb/c genes
was to control nutrient provisioning in the female gameto-
phyte, a function that is maintained by angiosperm Mb genes
acting in the female gametophyte and perisperm, whereas
Mc genes neofunctionalized and adopted an endosperm-
specific function, likely enabling endosperm development.

Duplication of Ma Genes and Specialization of
Interaction with Mc and Mb
MADS-box TFs usually form homo-or heterodimers
(Kaufmann et al. 2005). In A. thaliana, an atlas of MADS-
box interactions based on yeast two-hybrid data revealed
distinct interaction patterns between Type II and Type I
TFs (de Folter et al. 2005). Some Type II MADS-box TFs can
homodimerize, but many typically heterodimerize only with
other Type II TFs. In contrast, Type I TFs unlikely form homo-
dimers, nor do they heterodimerize within the Ma, Mb, and
Mc subgroups. Instead, Ma TFs interact with members of the
Mb and Mc subgroups, whereas Mb TFs and Mc TFs barely
interact, consistent with their intrinsic relatedness inherited
from preduplicate Mb/c ancestors, which only dimerize with
ancestral Ma TFs. Notably, we found that the Ma TFs
(AGL62, 40, 28, 23, 61) that mainly interact with Mc TFs
clustered in a single clade (fig. 2C). Another cluster contained
Ma TFs that interact specifically with Mb TFs and Ma TFs
that have the potential to interact with both, Mb and Mc.
Genes encoding for the obligate Mc-interacting Ma TFs (Ma*
hereafter) were preferentially expressed in reproductive tis-
sues and coexpressed with PHE1/2 and other genes encoding
for Mc TFs in the endosperm (fig. 2). In contrast, genes
encoding for Mb-interacting Ma TFs, as well as Mb genes
were not expressed in the endosperm. Those Ma TFs that
were able to interact with both, Mb and Mc TFs, did not
coexpress with Mc TFs in the endosperm, making it unlikely
that they are able to form functional heterodimers with Mc
TFs.

We next investigated if there are Ma TFs specialized to be
Ma* in other angiosperms. A bona fide Ma* TF is expected to
have central cell/endosperm-enriched or endosperm-specific
expression and interacts with Mc TFs. Based on these pre-
dictions, Arabidopsis AGL62, 40, 28, 23, 61 classify as Ma*
TFs. In rice, the Ma type TFs MADS78 and 79 interact with
the Mc type TFs MADS87 and MADS89 and the interaction
between the two Ma TFs and Mc TFs is required for endo-
sperm development (Paul et al. 2020). The two rice Ma genes
as well as the two Mc genes are barely expressed in non-
endosperm tissues (Sakai et al. 2011; Davidson et al. 2012).
We found that the two rice Ma genes are closely related with
each other in the same subclade (fig.1; supplementary fig. S1,
Supplementary Material online). Knockout of both, MADS78
and 79 genes, results in endosperm failure and seed lethality
(Paul et al. 2020), revealing that other Ma TFs that putatively
interact with Mb TFs cannot complement the Mc-interact-
ing function in the endosperm.

To test whether the functional divergence of Ma genes can
be detected in other angiosperm species, we analyzed the
expression of Ma genes in the transcriptomes of endosperm
or seeds where Mc expression could be detected. We also
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found Ma genes to be highly expressed specifically in the
endosperm or seeds in those species, suggesting that the
regulatory divergence between the Ma* genes and other
Ma genes took place across the angiosperm phylogeny
(fig. 3). We hypothesize that in response to the duplication
of Mb and Mc genes, the duplicated Ma genes specialized in
protein–protein interactions and subsequently the novel
interacting pairs, Ma* and Mc, together occupied the endo-
sperm regulatory niche.

Although the phylogeny of Ma group Type I MADS-box
TFs in land plants was difficult to resolve, there is only a single
cluster of Ma genes in nonflowering plants (fig. 1). Thus, the
Ma-like genes in nonflowering plants have not undergone the
diversification observed in angiosperms, so they likely repre-
sent the ancestral interacting partners of the preduplicated
Mb-like genes (fig. 1). In contrast, several rounds of duplica-
tions gave rise to angiosperm-specific Ma TF clades that
could diverge to Ma* genes (fig. 1), in concert with the du-
plication of Mb and Mc clades.

We observed that many angiosperm species have at least
two clusters of divergent Ma genes, including the groups
representing the successive sister lineages to all other angio-
sperms, Amborella and Nymphaeales. Furthermore, the Ma
gene phylogeny of all major angiosperm groups is largely,
although imperfectly, reflected by a two-clade pattern, de-
spite the uncertainty at the basal nodes with quite short
branches (fig.1; supplementary fig. S1, Supplementary
Material online). A parsimonious model to describe the evo-
lution of Ma type genes in angiosperms is that ancestral
angiosperms most likely already possessed two, if not multiple
types of Ma genes that arose from angiosperm-specific du-
plication. These could then have subfunctionalized by form-
ing heterodimeric complexes with either Mb or Mc
interacting partners. Another requirement for the specializa-
tion of bona fide Ma* TFs was the acquisition of novel ex-
pression in the endosperm. We hypothesize this two-step
specialization restrained the occurrence of Ma* precursors
and propose that one group of ancestral Ma TFs initiated
the subfunctionalization and gave rise to a single cluster of
potential Ma* TFs, which were capable to specialize into Ma*,
whereas the other Ma TFs did not gain this competence. We
observed that in all the eudicot species we surveyed, there are
Ma genes closely related to the AGL62 clade of Arabidopsis
and expressed in the endosperm or seed transcriptomes; like-
wise, the expressed Ma genes in maize and coconut are in the
same clade as MADS78/79 of rice (supplementary fig. S4,
Supplementary Material online). These putative Ma* genes
may have the same Ma* origin. Alternatively, it is also possible
that several events of Ma* specialization took place in differ-
ent Ma subclades convergently in angiosperms. Based on
approximately unbiased (AU) tests (Shimodaira 2002) it is
not possible to differentiate between the two hypotheses
(supplementary fig. S5, Supplementary Material online).
Nevertheless, following the specialization of an ancestral
Ma*, some descendant genes that duplicated subsequently
in the clade may have lost the function and pseudogenized,
consistent with previous predictions (Nam et al. 2004). In
consequence, the retained functional Ma* genes appear

scattered in the phylogeny, obscuring a possible shared origin.
In summary, we conclude that duplication of Ma genes and
subsequent specialization of Ma* in angiosperms enabled the
formation of heteromeric Type I MADS TF complexes re-
quired for the regulation of endosperm development.

Conclusion
Angiosperms are the most abundant and diverse group
among land plants. The success of angiosperms is closely
connected to the developmental innovations of flowers and
fruits, as well as the process of double fertilization, coupling
fertilization to the formation of the embryo nourishing en-
dosperm tissue (Baroux and Grossniklaus 2019). Duplication
and diversification of type II MADS-box genes underpin the
evolution of flowers and fruits in angiosperms (Irish and Litt
2005; Ruelens et al. 2017), whereas the role of type I MADS-
box genes for angiosperm evolution remained obscure. Based
on our data, we propose that the origin of the embryo nour-
ishing endosperm tissue is linked to the angiosperm-specific
duplication of Type I MADS-box genes (fig. 4). In the earliest
land plants, ancestral Ma and Mb/c-like TFs likely formed
heterodimers that had reproductive function based on the
expression of gymnosperm Ma and Mb/c TFs in female cones
and seeds. After the angiosperm lineage diverged from the
gymnosperms, true Mc TFs arose by gene duplication, expe-
rienced neofunctionalization, and drove the concerted diver-
gence of some Ma TFs formed by angiosperm-specific gene
duplication events. These novel Mc-Ma heterodimers
adopted a function as master regulators of the endosperm
developmental network in flowering plants. This proposed
scenario is strongly supported by the specific or preferential
expression of Mc and Ma*genes in the endosperm of all
sampled angiosperm species as well as functional data in
A. thaliana and rice, revealing that Mc and Ma* TFs are re-
quired for endosperm development (Chen et al. 2016; Batista
et al. 2019; Paul et al. 2020). In contrast to gymnosperms that
only have few Type I MADS-box genes (Gramzow et al. 2014);
in angiosperms, their number strongly amplified, correlating
with the evolution of the embryo nourishing endosperm. The
link between Mc TFs and endosperm evolution was further-
more supported by the negligible expression of Mc genes in
perispermic seeds, in which the maternal perisperm instead of
the endosperm supports embryo growth (Lu and Magnani
2018). The maternal nourishing function in perispermic seeds
correlates with the expression of Mb genes, consistent with
the proposed ancestral role of preduplicated Mb/c genes in
regulating nutrient transfer from the maternal tissues to the
embryo.

Together, our work provides new insights into the role of
Type I MADS-box proteins in the origin and evolution of the
endosperm, a developmental novelty associated with the rise
and diversification of angiosperms.

Materials and Methods

Phylogenetic Analyses
Amino acid sequences of Type I and Type II MADS-box
proteins of A. thaliana obtained from TAIR10 were used as
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queries to search for MADS-box proteins in other plant spe-
cies. The sequences of coding genes in land plant lineages
were obtained from PLAZA 4.0 (https://bioinformatics.psb.
ugent.be/plaza/, last accessed December 18, 2021; Van Bel
et al. 2018), Phytozome v.12 (https://phytozome.jgi.doe.gov/,
last accessed December 18, 2021; Goodstein et al. 2012), CoGe
(https://genomevolution.org/coge/, last accessed December
18, 2021; Grover et al. 2017), or other taxon-themed databases
(supplementary table S1, Supplementary Material online).
MADS-box genes were obtained through reciprocal best
BLASTP hits with A. thaliana MADS-box genes. The presence
of MADS domain in the BLASTP output sequences was fur-
ther confirmed by the conserved domain search tool, CD-
Search (Marchler-Bauer and Bryant 2004) by aligning to the
MADS domain entries in the Conserved Domain Database
(Lu et al. 2020).

MUSCLE was used to generate the amino acid alignments
of MADS-box domains extracted from the identified genes
with default settings (Edgar 2004). IQ-TREE 1.6.7 was applied
to perform phylogenetic analyses for maximum likelihood
(ML) trees (Nguyen et al. 2015). The implemented
ModelFinder determined LG amino acid replacement matrix
(Le and Gascuel 2008) to be the best substitution model in
the tree inference (Kalyaanamoorthy et al. 2017). One thou-
sand replicates of ultrafast bootstraps were applied to esti-
mate the support for reconstructed branches (Hoang et al.
2018). The Ma, Mb, and Mc Type I genes were curated from
the phylogenetic position with the defined Arabidopsis
MADS-box genes. Specifically, for elucidating the evolutionary
trajectory of putative Ma* TFs, we compared the topology of

constrained phylogenetic trees based on different hypotheses
by AU tests (Shimodaira 2002).

Expression Analyses
The expression data of Type I MADS-box genes in A. thaliana
were extracted from Klepikova et al. (2016) for a spectrum of
different organ types and developmental stages and
Belmonte et al. (2013) for specific compartments in develop-
ing seeds. The other transcriptomes used in this study were
retrieved from maize (Chen et al. 2014; Walley et al. 2016), rice
(Sakai et al. 2011; Davidson et al. 2012; Paul et al. 2020), soy-
bean (Chen et al. 2021), castor bean (Xu et al. 2014), tomato
(Pattison et al. 2015), coconut (Saensuk et al. 2016), avocado
(Ge et al. 2019), monkeyflower (Flores-Vergara et al. 2020),
coffee (Ivamoto et al. 2017), N. thermarum (Povilus and
Friedman 2021), Picea (Nystedt et al. 2013), and Gnetum
(Hou et al. 2019; Deng et al. 2020).

Supplementary material
Supplementary data are available at Molecular Biology and
Evolution online.
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