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Abstract: It is essential for future research to develop a new, reliable prediction method of DNA
binding sites because DNA binding sites on DNA-binding proteins provide critical clues about
protein function and drug discovery. However, the current prediction methods of DNA binding
sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein
atom as the input, we trained and tested a deep learning model to predict how likely a voxel on
the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the
results show that our model not only outperforms several previous methods on two commonly used
datasets, but also demonstrates its robust performance to be consistent among the three datasets. The
visualized prediction outcomes show that the binding sites are also mostly located in correct regions.
We successfully built a deep learning model to predict the DNA binding sites on target proteins.
It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be
used to predict the potential binding sites on a protein. This approach should be further extended to
develop the binding sites of other important biological molecules.

Keywords: deep learning; protein–DNA interaction; binding site prediction; drug design; convolu-
tional neural network; proteome; systems biology

1. Introduction

DNA carries genetic information about all life processes, and proteins perform many
essential functions for maintaining life. Interactions between proteins and nucleic acids
play central roles in a majority of cellular processes, such as DNA replication and repair,
transcription, regulation of gene expression, degradation of nucleotides, development
(growth and differentiation), DNA stabilization, and immunity/host defense [1,2]. More-
over, the processes controlling gene expression through protein–nucleic acid interactions
are critical as they increase the versatility and adaptability of an organism by allowing the
cell to produce proteins when they are needed. However, revealing the mechanisms of
protein–nucleic acid binding and recognition remains one of the biggest challenges in the
life sciences [1–4]. Identifying the potential binding sites and residues on proteins is essen-
tial to understanding the interactions between proteins and their binding nucleic acids. A
reliable prediction method will address this critical need and influence subsequent studies.

Protein binding site prediction is a critical research infrastructure, which has direct
applications in drug discovery and targeting. Although numerous complex structures
comprising of proteins and their binding partners, including protein–nucleic acid com-
plexes, have been described in the public domain, many existing nucleic acid binding site
prediction methods only utilize sequence (evolutional) data or residue propensities and
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have not yet achieved sufficient accuracy [5–7]. Statistical analysis of nucleic acid bind-
ing residues has helped researchers to understand the binding propensities of 20 amino
acids [8–11]. However, molecular binding and recognition is a sophisticated process and is
affected not only by the composition of amino acids. The subtle changes of main chain and
side chain atoms, and their relative positions, change the local chemical environments on
the protein surfaces. Previous studies which performed large-scale assessments of nucleic
acids binding site prediction programs [5,6] also demonstrated that structure-based pre-
dictors often show better performance than their sequence-based counterparts. However,
neither approach has yet achieved a satisfactory level of prediction. The sensitivity of
most of the prediction methods range from 0.2 to 0.6, as some methods may have lowered
their specificity to increase their sensitivity; therefore, their highest Matthews correlation
coefficient (MCC) value is about 0.3 [5–7]. On the contrary, the methods used to predict
small molecule binding sites have demonstrated sensitivity and specificity over 0.8, and
their highest MCC is around 0.8 [12,13].

The reason that the accuracy of nucleic acid binding site prediction is relatively
low compared to small molecule binding site prediction can be explained as follows:
(1) Small molecules tend to bind to the largest cavities on the protein surface, based on
the observations of previous studies [12,14]. Therefore, prediction methods which have
employed the geometrical features of proteins or combined them with other chemical or
energy features have often produced reliable results [14–23]. On the other hand, DNA is a
long-stretched molecule and binds to relatively flat surfaces on proteins. It is less useful
to apply geometrical data in nucleic acid binding site prediction than in small molecule
binding site prediction. (2) The definition of a nucleic acid binding residue has not yet
been standardized, and there are several definitions [5]. Different cutoffs ranging from
3.5 Å to 6.0 Å have been used to define “binding residues” [4,9,24–41]. A previous study
demonstrated that a distance cutoff of 6.0 Å leads to a two-times-higher number of binding
residues than that obtained with a cutoff of 3.5 Å [5]. The inconsistent cutoffs make it very
difficult to evaluate, compare and improve the performance of different methods. (3) The
energy-based approach has not been employed for nucleic acid binding site prediction and
the binding affinities between proteins and nucleic acids has not been considered. (4) Often,
DNA and RNA binding site prediction methods are developed separately [5,6]. Although
DNA and RNA binding proteins usually perform different functions in vivo, DNA and
RNA are two highly similar molecules. Their binding surfaces and binding mechanisms
may be highly similar to each other [6,42]. In other words, considering RNA-binding
residues/surfaces as non-DNA binding residues/surfaces or considering DNA-binding
residues/surfaces as non-RNA binding residues/surfaces may interfere with the training
and prediction processes.

In recent years, deep learning has been attracting attention. These methods, which
generally differ from past statistical methods, do not rely heavily on human-designed hy-
perparameters such as feature weighting, combinations, etc. Instead, such relationships and
architectures emerge after periods of training. Neural networks have shown great promise
in other domains, such as the object detection and classification performed by AlexNet
in the 2012 ImageNet competition [43]. Other researchers have applied similar network
topologies to the problem of binding site prediction in the past with good success [44]. A
common limitation to many of these approaches is that they rely on multi-layer perceptrons
(MLPs) at some stage in their network. MLPs are the conventional neural network type
and are essentially groups of neurons (represented through matrix operations) that connect
to each other and “fire” in relation to a linear combination of their connections, often paired
with a final non-linear function. The major drawback of the conventional neural network
is that the input data size must be exactly the same for all data, both in training and in
inference [45]. This is because they are represented by multiplying an input in the form
of a matrix (the number of samples by the number of input features) by a weight matrix
(the number of input features by the number of output features). Finally, in most cases a
bias matrix (the number of samples by the number of output features) is then added to
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the output. Both operations are therefore flexible with respect to the number of samples
used (weights and biases can simply be copied to form the correct matrix size), but the
number of features must remain constant. Therefore, images must be resized prior to
input into networks such as AlexNet. Although this is not a major issue for 2D images,
which typically can be resized without significantly changing the information represented,
a general method for resizing 3D graphs such as protein complexes without the risk of
changing the information does not exist. This means that models using MLPs must instead
only crop the data, thus creating barriers to information flow across the cropped regions.
The goal of this study, like others before it, is to develop an efficient method by which
a large portion of the initial pool of candidates can be screened out prior to the more
expensive steps in the aforementioned pipeline.

2. Results
2.1. Model Statistics and Prediction Outcomes

The purpose of this study is to develop a deep learning model for DNA binding site
prediction. After the training was completed, the prediction outcomes were retrieved and
the performance of our prediction model was calculated on the training dataset (Table 1)
and two external test sets (i.e., PDNA62 and PDNA224, Tables 2 and 3). The two test sets
are not totally independent of the training sets. Based on the sequence alignment outcomes
(see Supplementary Materials), there are 22 and 97 entries in PDNA62 and PDNA224,
respectively, which may be homologs (sequence identity > 40%) of one or more entries
in the training sets (see Supplementary Materials). However, the performance of our
prediction model on the entire test sets and the non-redundant sets (i.e., excluding the
homologs) shows no significant differences (see Tables 2 and 3). This demonstrates that
our prediction model is robust.

Table 1. Prediction performance of DeepDISE on the training and validation sets.

Methods Accuracy Sensitivity Specificity Precision MCC AUC

Training 0.877 0.738 0.907 0.606 0.586 0.926
Validation 0.884 0.691 0.924 0.600 0.558 0.928

Full Dataset 0.878 0.734 0.908 0.606 0.584 0.927

Table 2. Performance of DeepDISE compared with previous methods using PDNA62 [46].

Methods Accuracy Sensitivity Specificity Precision MCC AUC

Dps-pred 0.791 0.403 0.818 0.279 0.191 -
Dbs-pssm 0.664 0.682 0.660 0.210 0.249 -
BindN 0.703 0.694 0.705 0.291 0.297 0.752
Dp-bind 0.781 0.792 0.772 0.378 0.490 -
BindN-RF 0.782 0.781 0.782 0.385 0.436 0.861
BindN+ 0.790 0.773 0.793 0.395 0.443 0.859
PreDNA 0.794 0.768 0.797 0.398 0.424 -
EL_PSSM-RT 0.808 0.854 0.801 0.428 0.507 0.901
PDRLGB 0.815 0.863 0.806 0.438 0.523 0.912
DeepDISE * 0.752(0.750) 0.765(0.767) 0.905(0.908) 0.725(0.735) 0.658(0.662) 0.931(0.926)

* The numbers inside the parentheses were calculated after removing redundant (sequence identity > 40%)
structures.

Table 3. Performance of DeepDISE compared with previous methods using PDNA224 [46].

Methods Accuracy Sensitivity Specificity Precision MCC AUC

PreDNA 0.791 0.695 0.798 0.195 0.289 -
EL_PSSM-RT 0.781 0.796 0.780 0.203 0.341 0.865
PDRLGB 0.800 0.833 0.797 0.224 0.383 0.896
DeepDISE * 0.880(0.881) 0.770(0.779) 0.901(0.898) 0.596(0.558) 0.607(0.593) 0.930(0.929)

* The numbers inside the parentheses were calculated after removing redundant (sequence identity > 40%)
structures.
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In order to avoid overfitting during the training process, the training data were split
into a 9:1 training and validation set (see Materials and Methods). The model performs
well overall, with an MCC of 0.584 (Table 1). As expected, it performs slightly better on the
training subset than the validation subset, but the overall performance on the validation
set, with an MCC of 0.558, is still satisfactory. One observation is that the model generally
performs best on “medium”-sized complexes (Figure 1). This may be because the relatively
limited and rugged binding surfaces of small DNA-binding proteins and complexes are
difficult to recognize through deep learning. Moreover, most complexes are in the “medium
size” category, which means that the deep learning model “learns” the patterns of medium
sized proteins the best. It also should be noted that the very large complexes could not be
assigned to the training set but were placed in the validation set due to memory constraints.

Figure 1. The relationship between the number of binding nucleotides and the MCC value of each
complex.

Figure 2 shows the prediction results for the intron-encoded homing endonuclease
I-Ppol (PDB ID 1a73). The prediction outcomes of the deep learning model are continuous
numbers between 0 and 1, colored from blue to red. In the left panel of Figure 2, the heat
map basically located most of the DNA binding surface grids, with a few false positives
and false negatives. To produce binary outcomes and reduce false positives and false
negatives, DeepDISE performs a clustering step. The results for 1a73 are shown in Figure 2.
Although it did not achieve 100% accuracy, the algorithm largely predicted the binding
area and provided hints for further research and drug design.
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2.2. Comparing Performance

In comparison with other methods, DeepDISE was tested against the PDNA62 and
PDNA224 datasets, which have been used by previous studies. As shown in Tables 2 and 3,
DeepDISE outperforms other existing methods in terms of accuracy, specificity, precision
and MCC values, except its sensitivity is lower than that of two other methods. However,
according to the visualization results, the “false negative” grids were not totally undetected
but rather were predicted with relatively lower scores. It also needs to be noted that, unlike
previous studies, our model was trained using another dataset independently of these
two datasets, PDNA63 and PDNA224. Comparing our prediction results, as shown in
Tables 1–3, the prediction performance was very consistent, rather than showing dramatic
decreases from one dataset to another, which demonstrates that our model does not present
the issue of overfitting.

3. Discussion

The key innovation of this study is the use of a network topology that does not require
the standardization of data input. This is accomplished by using a fully convolutional
neural network architecture. Convolutional network layers were originally designed to
address one disadvantage of MLPs when applied to images—MLPs do not share “insights”
with other neurons in the same layer. This means that when applied to images, there will
almost certainly be redundant relationships stored in the network and if patterns do not
appear in the exact location as in the training set, the network will not be able to recognize
them easily. Convolutional layers solve this by using a set of “filters” that are convolved
over the input data, creating (in most cases) an output that is the same dimension/size of the
input except for the feature dimension. Thus, such layers are used in networks like AlexNet.
Moreover, convolutional layers are perfectly capable of solving “segmentation” problems
in which the desired result is a region of points. Given that binding site predictions can
be easily formulated in this way, we proposed that a fully-convolutional network would
likely achieve more desirable results than prior projects.

Deep learning algorithms have been successfully applied to image recognition. Al-
though a few previous methods used both sequence and “structure” features, including
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DSSP (secondary structure), accessible surface area (ASA) and the number of H-bonds and
B-factors, these features are mostly one-dimensional (i.e., features highly related to amino
acid sequence). However, the input data of our model is four-dimensional (3+1, the 3D
coordinates plus the atom type). This exploits the strength of a deep learning algorithm in
3D image processing and leads to the outperformance and robustness shown by DeepDISE
in different datasets. Atom type alone may contain many integrated physicochemical prop-
erties, such as polarity, charge, and hydrophobicity; however, adding secondary structural
information and sequence conservation to the input data may further boost the accuracy of
the prediction.

Figure 3 shows the prediction outcomes for 2xma. In this case, DeepDISE achieved
a prediction accuracy of 0.839, sensitivity of 0.624, specificity of 0.963, precision of 0.905
and an MCC of 0.651. The DNA-binding surfaces were mostly correctly identified, with a
wide score range, illustrated by blue and red colors. Although based on the grid count, the
prediction accuracy is far from perfect, the purpose of identifying the DNA-binding site was
achieved. We still need to develop a better clustering algorithm to precisely group adjacent
medium- to high-scored grids together in the proposed binding surface. Moreover, some
false-positive grids on the protein surface may be able to bind or attract DNA molecules
distantly, but the potentially-bound DNA is not shown in the PDB structure because the
interactions are not strong enough to stabilize the binding of the DNA 3′ or 5′- terminals
in the crystalized protein–DNA complex. This issue should be further investigated in
the future.
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4. Materials and Methods

The data pipeline began with a publicly available list of PDB files, containing both
proteins and DNA. Using this source eliminates the need to hand-curate thousands of PDB
files by removing duplicates, low accuracy positions, etc. The PDB files were parsed into
custom format files and those erroneous ones were removed (Figure 4). These intermediate
files were then processed by a C++ program that used the FreeSASA library to determine
which atoms were located on the surface of the protein and to classify them according to
atom types. The resulting outcomes were then fed to a preprocessor Python program that
converted the atoms into a 4D Numpy array (3 spatial dimensions in 1-Å voxels plus a
1-hot encoded vector representing atom type including non-surface). For training purposes,
a 3D “ground truth” array was also generated to indicate whether the locations were the
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binding region or not. These Numpy arrays were ultimately passed into the main Python
program for training or inference using the DeepDISE model, resulting in a final prediction
Numpy array. This prediction array represented a continuous heat map of where the model
predicted the binding region was. For the purpose of calculating the final accuracy, a final
Python program ingested the prediction array and applied k-means clustering to classify
each point as binding or non-binding.
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4.1. PDB Entries

To train our deep learning model and to test and compare its prediction accuracy with
that of other existing methods, we needed two datasets of protein and DNA complexes.
We obtained a PDB list of 560 DNA-interacting proteins from a manually curated database,
ccPDB 2.0 [47]. The 560 PDB files were initially collected via a Python script and we
automatically fetched PDB files from the RCSB database [48]. Then the same package
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allowed us to parse the downloaded file into a Python dictionary object for ease of use later
in the pipeline. The protein complexes were then screened to insure that they contained
only atoms that we could type and which had DNA within them. Finally, 274 PDB files
were then saved in a custom format that allowed for an easy interface with the rest of the
programs in the pipeline. In addition, we also downloaded two datasets, PDNA62 and
PDNA224, consisting of 62 and 224 complexes, as two test datasets in order to test our
model and compare the performance of our algorithm with that of existing ones.

4.2. Atom Classification and Atom Type Assignment

The PDB files were parsed, and passed to a C++/CUDA executable for atom classifi-
cation. During this step, protein atoms were represented in isolation from DNA atoms to
allow for solvent accessible surface area calculations to occur using the FreeSASA library.
Using this process, protein atoms were classified as either surface or non-surface. Next, all
surface atoms were further classified as one of 16 different atom types based on atom and
residue names. These atoms were then recombined with the DNA atoms to export.

Proteins are generally made of a few elements (i.e., carbon, nitrogen, oxygen, sulfur
and hydrogen). Simply classifying protein atoms into different element groups ignores
their bonding and chemical environment. A common approach designed to augment the
prediction performance is to label atoms not based on element alone, but also by other
features such as bond order, (partial) charge, parent residue, etc. In previous studies, we
developed an atom type classification scheme to describe protein–ligand interactions with
a total of 23 atom types, of which 14 were for protein atoms and 20 for atoms on other
ligands, with many of them shared by both [49,50]. In order to improve the performance
of this classification scheme to avoid assigning chemically dissimilar atoms into the same
atom type (e.g., nitrogen located on the main chain and the histidine side chain), we made
some modifications and used it as the basis to create a new nucleic acid prediction method.
As shown in Table 4, the atom types are identified by a 3-code or a 3-letter name for those
that do not need to be further classified, because they are relatively rarely observed in our
datasets of protein-ligand complexes (i.e., metals and phosphorus). Some general rules
for the 3-code names were as follows: the 1st code is the name of the element (C, N, O,
and S) and the 2nd and 3rd codes indicate the surroundings and electrostatic properties of
the atom. The 2nd code can be 2, 3, R, or C, which, respectively, correspond to sp2 or sp3
hybridization or inclusion in an aromatic ring or conjugated system. The 3rd code can be
N, P, V, or C, which respectively correspond to a nonpolar, polar (can be a hydrogen bond
donor or acceptor), variable or charged atoms. The “variable (V)” code is associated with
the atom type NRV, which is used primarily for the two nitrogen atoms on the imidazole
ring of a histidine, as both of the nitrogens can be either protonated (hydrogen bond donor)
or deprotonated (hydrogen bond acceptor). For simplicity, the nitrogen of tryptophan,
which is more infrequently seen than histidine, especially in the active sites, was also
assigned the atom type NRV. We developed an algorithm which automatically assigned an
atom type to each protein atom. To assign an atom type to each atom on a binding complex,
we need to know the element, the bond orders that connect the atom to others, and which
atoms it connects to. Based on our knowledge about the nomination system and structure
of common amino acids, we had all the bonding information we mentioned above as long
as we knew the atom names and residue names and compiled them in a PDB file.
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Table 4. Atom types and descriptions.

Atom Type Description

C2P C, SP2, Polar
C3N C, SP3, Nonpolar
C3P C, SP3, Polar
CRP C, Aromatic, Polar
CRN C, Aromatic, Nonpolar
CCP C, Conjugated/resonating, Polar
N3C N, SP3, Charged
NRV N, Aromatic, Variable
NCC N, Conjugated/Resonating, Charged
NCP N, Conjugated/Resonating, Polar
O3P O, SP3, Polar
OCC O, Conjugated/Resonating, Charged
OCP O, Conjugated/Resonating, Polar
S3N S, SP3, Nonpolar
PHO Phosphorus
MET Metal

4.3. Preprocessing

After determining the atom types of all protein atoms, final preprocessing was per-
formed. Upon ingestion, the script constructed a 4D Numpy array, where the dimensions
corresponded to spatial dimensions x, y, and z, and an additional atom type dimension
was constructed. The array was designed to be 3 Å in all 3 directions and was subdivided
into 1-Å voxels. After the array was allocated, the script iterated over all the protein atoms
and populated the voxel which was closest to the center position of the atom with its
type, which was recorded into the array. For training purposes, distance calculations were
performed to determine the binding region and generate a corresponding 3D mask. In
this case, the binding region was defined as the up to 6-Å region between the center of a
protein atom and a DNA atom. All voxels within this region were set to 1 and all voxels
not in this region were set to 0. Finally, both the input and mask arrays were rotated into
24 unique 90◦ 3D rotations and were saved to a Numpy compressed archive with PDB and
rotation IDs in the file name.

4.4. Model

The DeepDISE model project is a fully convolutional neural network written with
Pytorch Lightning. Any model of which the input and output are in the form of arrays can
be executed using traditional CPUs or much faster GPUs.

4.4.1. Architecture

The high-level architecture of DeepDISE was based on a fully convolutional neural
network called UNET [51]. Under this architecture, data entered the network and passed
through a series of blocks composed of convolutional layers. For the first half of the network,
the output of each block was down-sampled using pooling layers, before being passed
on to the next block in the sequence. The last half of the network up-sampled the output
of each block by the same ratio as the previous layer’s down-sampling. The final output
of the network was the same size as the input, which led itself very well to segmentation
problems, in which the output needed to act as a mask on the input. It has been theorized
that UNETs perform well relative to other architectures since they have multiple scales for
the convolutional operations to act on, in contrast to ResNets, and multiple pathways for
the gradient to flow through, in contrast to simple feedforward networks.

Within each block of the network, a separate architecture was implemented based
on the DenseNet architecture [52]. Each layer in the DenseNet architecture was a single
convolutional layer paired with an MISH activation function [52]. Under this architecture,
the input of each layer was the concatenated sum of the initial input and all the outputs of
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the previous layers. This architecture worked under a similar assumption as the UNET
models—they were more easily trained because the optimizer had clear paths through the
gradients of the initial layers. In the DeepDISE model there are 4 such layers.

4.4.2. Training

The DeepDISE model was trained using a curated set of PDBs with proteins binding
to DNA. The PDB records were preprocessed and split into a 9:1 training and validation
set. Although the training set is not totally non-redundant, the all-against-all pairwise
sequence alignment results (see Supplementary Material) showed that less than 1% of pairs
of sequences were homologs. Any complexes that were too large to be trained on using a
Nvidia 2070 Max-Q GPU were also added to the validation set. In the training set, each
protein-DNA complex was rotated 24 times to generate 24 structural files with different
orientations. Among the 24 orientations, 2 were added to the validation set to better track
the model’s performance while training, but they were removed prior to the final statistical
calculations for this paper. The model was trained over the course of 48 h using the Ranger
optimizer and binary cross entropy for the loss function. The Ranger optimizer was chosen
as it has been shown to produce good results in other applications and was essentially the
combination of AdamW and LookAhead. While training, real-time statistics were exported
in the TensorBoard format via a Pytorch Lightning callback so that we could determine
the model’s overall convergence and spot issues without need to wait for training to be
fully completed.

In Figures S1 and S2 (see Supplementary Materials), there is a raw representation
denoted by light blue and a “smoothed” representation denoted by dark blue in each
image. The training error essentially converged, but the validation error slowly decreased
over time. This was expected, as the training data points represent individual proteins,
whereas the validation data points represent the full validation set, thus averaging out the
perceived variance.

Training was stopped after roughly 2.5 epochs of going through the training data
(validation was calculated every 1/8th epoch). The final binomial cross-entropy score
across both the training and the validation sets together was 0.02358, compared to 0.69315
if the model had only predicted non-binding for the full dataset (the most common true
prediction for points).

4.5. Clustering and Final Prediction

The DeepDISE model creates a continuous output. For applications where a binary
classification is needed, an additional step to generate the final prediction is required.
Initial experiments with linear classification were explored, but ultimately the accuracy
did not seem to align with the qualitative results of the model output. Because of this,
we decided to use a system based on k-means clustering. This allowed for the binding
site determination not only to leverage the prediction score given by the model, but also
the spatial location relative to other scores as well. To arrive at a binary classification,
two rounds of clustering were used. In the first round, n clusters were generated, where
n equals the number of atoms divided by 1000, rounded up to the nearest integer. The
clustering algorithm was then shown the list of points comprising the prediction, where all
the values were first standardized then the score dimension was increased by 5× to bias
the clustering towards it. The n clusters were then passed to a second round of clustering,
where the algorithm was only given the average score of each cluster and was required to
cluster them into 2 clusters. Finally, the cluster of clusters with the highest average score
was labeled the binding cluster and all points within it were assigned to the binding region.

4.6. Assessment of the Binding Site Prediction

The final statistics were computed on a per-grid basis, where each grid represented
a 1-Å voxel within the complex. Ground truth was determined by labeling each voxel as
either binding or non-binding as a function of its proximity to both a DNA atom and a
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protein atom. For each voxel, the algorithm first iterates over each protein atom in the
complex. If the atom is within 6 Å of the voxel, the algorithm then checks if the voxel is
within 6 Å from a DNA atom. If this is the case, it finally checks to see if that DNA atom is
also within 6 Å of the protein atom from the first step. If this is the case, the voxel is labeled
as part of the binding site.

5. Conclusions

In this study, we have developed a deep learning-based method to model and predict
the DNA binding sites on target proteins. Due to its robustness, this model can be applied
to different datasets to identify the potential DNA-binding sites of most of the target
proteins successfully. We have also demonstrated that by using only the 3-dimensional
protein structures plus the assigned atom type on the surface atoms, we were able to train
a deep learning model to predict DNA binding sites. This approach should be also applied
to create models to predict other binding partners of a target protein, such as medical
compounds or other proteins. When we build up all these prediction models and integrate
them together, we will be able to detect all the functional patches on a target protein and
further reveal the recognition mechanism of our proteome.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22115510/s1, Figure S1: The trajectory of the loss function of the training dataset, Figure S2:
The trajectory of the loss function of the validation set.
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