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Abstract: Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid
pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an
enormous array of compounds based on the few intermediates of the shikimate pathway in response
to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated
by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional,
post-transcriptional, and post-translational levels. The pathway genes are involved in the production
of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic
pathway has led to a new plant defense system of which various mechanisms have been proposed
including salicylic acid and antimicrobial mediated compounds. In recent years, some key players
like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have
broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than
ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated
induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that
mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of
the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays
the current progress and challenges for phenylpropanoid pathway-based resistance from the current
prospective to provide a deeper understanding.

Keywords: phenylpropanoid pathway; plant defense; lignin; monolignol pathway; broad
spectrum resistance

1. Introduction

As the first cellular compartment encountered during pathogen attack, it is significant to assume
the functions of cell wall in plant defense [1]. The plant cell wall, being a dynamic and complex
structure, has emerged as an essential component to monitor the defense responses. It is composed
of a complex mixture made up of an intricate network of hemicellulose, cellulose, and pectin with
the secondary cell wall comprised of lignin units [2]. The conventional viewpoint of the plant cell
wall being a passive barrier has advanced to a concept that regards the wall as a dynamic structure,
regulating both inducible and constitutive defense mechanisms and as a source of signaling molecules
that activate immune responses [3]. The coevolution of plants and pathogens cause a series of strategic
developments in attack and defense mechanisms. Perceptions of cell wall related resistance reactions
to endeavored pathogenic attacks were first made over a century ago. Breaching of the plant cell
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wall is the only way for pathogens to gain access to cell components. To overcome the wall barrier,
pathogens use cell wall degrading enzymes that bring changes in wall glycans or hydrolyze the linkage
between glycan moieties, and develop penetration-specific structures, that exert turgor pressure [4,5].
Plants have developed a multi-layered defense network to fight microbial pathogen infection. At the
initial stage, prior to disease establishment, cell wall related defense can stop invading pathogens,
thus, eliminating the possible use of defense responses such as hypersensitive response (HR) cell
death. The initial response to the recognition of various groups of pathogens involves a dynamic
augmentation of the cell wall by depositing cell wall appositions generally regarded as papillae. Pectin
is one of the primary structures to be modified during pathogen intrusion and proof shows that
post-synthetic changes in pectic polysaccharides influence the resistance of plants to pathogens [6,7].
Vogel et al. [8] speculated that adjustment in pectin alteration may bring the discharge of defense
elicitor-dynamic fragments upon degeneration by powdery mildew hydrolytic enzymes. The cell
wall is attached to the cell surface through cell wall biosynthetic machinery, sensory, and structural
proteins [9]. The plant cell wall detecting system has been posited to incorporate molecular network
monitoring for (I) osmo-recognition; (ii) mechano-recognition; (iii) cell wall damage (CWD) recognition;
and (iv) wall-derived ligand–receptor (PRR) recognition [5]. All these sensing frameworks initiate
signal transfers through protein kinases (PKs) or/and calcium-based signaling cascade, stimulating the
production of certain phytohormones. Consequently, downstream genes are regulated for the versatile
changes in cell wall synthesis and structure, which, in turn, initiate the immune responses [10,11].
Recently, it has been shown that plants have evolved complex stress tracking frameworks through
cell wall integrity (CWI) support mechanism [12]. Some portion of such CWI monitoring frameworks
depends on the perception of “danger” alert signs, which offer signaling segments and reactions
with the immune pathways activated by non-self MAMPs. Overall, infection is restricted upon the
perception of pathogen or microorganism associated molecular pattern (PAMPs or MAMPs) by pattern
recognition receptors [13]. The breakdown of cell wall integrity can be understood basically in two
ways i.e., the puncture process by mechanical force propelled by turgor pressure or enzymes that
degrade the cell wall, or both [14]. Experimental proofs have been accumulated over the last few
decades to support the cell wall response for plant defense [15].

Phenylpropanoid pathway providing the lignin-building monolignols is greatly triggered after
the cell wall gets hit by pathogens [16]. The first line defense system has dynamically evolved into
different mode of defense, including deposition of different glycans, callose [17,18], phenolics and
antimicrobial substances, defense papillae formation [19], lignification [20–22], reactive oxygen species
production, and depositions of phytoalexins [23]. Perturbation of the phenylpropanoid and lignin
biosynthesis pathway becomes easy with the induction of mutations or genetic engineering, resulting
in a shift in physical as well as metabolic functioning of the pathway. The gene families coding for
enzymes involved in biosynthesis have significant effects on physiochemical properties of cell wall.
For example, 12 genes putatively involved in phenylpropanoid and monolignol biogenesis pathways
were upregulated [24], and expression of CsCCR was induced after a fungal infection [25]. Similarly,
phenylalanine ammonia-lyase, (hydroxy)cinnamoyl CoA reductase and (hydroxy)cinnamyl alcohol
dehydrogenase activities were enhanced after fungal infection in Lilium usitatissimum [26]. Transcription
factors (TFs) are believed to have an essential function in transmitting pathogen-derived defense
signals either to initiate or repress downstream defense gene expression [27,28]. To accomplish all these,
transcriptional regulator structure is a significant node to adjust the trade-off among development and
defense for ideal distribution of resources and plant survival. In addition, apart from the intermediate
pathway genes, there is the utilization of transcription factors for manipulating lignin contents and
composition of vascular cell walls in various plant species [29–32]. The complex transcriptional
regulation of lignification is a subject of great concern because it has the potential of being utilized in
producing low or high-lignin biomass feedstocks as well as developing resistance in crops to diseases.
The regulation of defense related transcription factors including MYB, bZIP, HD-zip, and WRKY
are accepted by researchers due to its easy binding site of AC-element, which is commonly found
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in phenylpropanoid pathway genes [33]. Genes that encode TFs associated with plant resistance
signaling are likewise transcriptionally controlled by pathogen challenge and treatment with defense
elicitors. Instances of these are the jasmonic acid (JA)-enacted ERF1 and AtMYC2 TFs that regulate JA
reactions [27,28]. Thus, it is suggested that a potential strategy to recognize TFs that function in plant
defense might be to initially distinguish TF genes that show altered transcript levels during the initial
period of the defense response, coupled with the functional analysis of these candidate genes.

More recently, a link has been established for the role of key players from the phenylpropanoid
pathway in broad spectrum disease resistance. A noteworthy example is the PAL genes which are
found reliable for cell wall mediated immunity and involved in broad spectrum disease resistance. [34].
The race specific and quantitative resistance in plants provide either short term or incomplete protection
against many diseases. The major objective for plant pathology is to develop the resistance without a
compromise in yield of crop. Plants solely rely on innate immunity to perceive and ward off potential
pathogens [35]. The progress in resistance (R) genes is limited to the race specific resistance to adapted
pathogens and their durability is a major concern for researchers. The multiple gene incorporation is
technically tedious and a time-consuming job, and it could compromise the production and productivity
of the crop.

However, the protective function and mechanisms, contributing to this immune homeostasis in
different species are still uncovered and detailed information is required to validate the hypothesis
to consider key players for a broad spectrum disease resistance (BSR) based approach to reduce
yield penalties.

The objective of this review is to provide detailed information about the progress and challenges
in understanding the role of the major genes and transcriptome network probably involved in the
biosynthesis pathway of the lignin/phenylpropanoid pathway for plant disease resistance mechanism
and also provide brief information about the current hypothesis as well as open questions for future
prospects in this direction. Additionally, an attempt has been made to bring all the information together
for pathway based emerging players in disease response and possible models have been provided for
various resistance mechanisms.

2. Phenylpropanoid Pathways—Biochemistry to Genetics

The phenylpropanoid pathway has been constantly redrawn in recent decades, but now appears
to be well established (Figure 1) [36–38]. The lignin biosynthesis pathway can be divided into two
major groups: (1) the general phenylpropanoid pathway, comprising of several conversion steps from
Phenylamine to feruloyl-CoA and (2) the monolignol-specified pathway that includes conversion
of feruloyl-CoA to different monolignols [37]. Phenylalanine (Phe) acts as the initial substrate in
almost all the species except grasses [39]. The pathway is a combination of deamination, methylation,
hydroxylation, and two consecutive monolignol side chain reduction. These reactions are mediated
by at least 11 enzymes including phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase
(C4H), (hydroxy)cinnamyl alcohol dehydrogenase (CAD), caffeic acid (5-hydroxyconiferaldehyde)
O-methyltransferase (COMT), caffeoyl CoA O-methyltransferase (CCoAOMT) (hydroxy)cinnamoyl
CoA reductase (CCR), 4-coumarate: CoA ligase (4CL), hydroxycinnamoyl-CoA shikimate/quinate
hydroxycinnamoyl transferase (HCT), p-coumarate3-hydroxylase (C3H), caffeoyl shikimate esterase
(CSE) (Figure 1).

The conversion activity of PAL and ammonia lyase of Phe into cinnamic acid and p-coumaric
acid kick start the general phenylpropanoid pathway [36]. The biosynthesis of hydrocyanic alcohols
is triggered by the reduction of carboxylic acid and, for coniferyl and sinapyl alcohols, the aromatic
ring is methoxylated (Figure 1). This part commonly involves PAL, C4H, and 4CL and is sometimes
referred to as a general phenylpropanoid pathway. Hydroxylation and O-methylation of the aromatic
ring of precursors at the level of hydroxycinnamic acids, with p-coumaric acid, ferulic acid, and sinapic
acid are subsequently activated to their respective CoA thioesters and then reduced by CCR and CAD
to yield p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, respectively [40]. The enzyme CCR
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helps in reducing hydroxycinnamoyl CoA thioesters to hydroxycinnam aldehydes and then with the
aid of CAD enzyme is eventually converted to hydroxycinnamyl alcohols [41]. Overall, lignin G units
and caffeoyl alcohol are generated by enzymes HCT, CCR, C3H, and CAD. An alternate branched
pathway leads to sinapyl alcohol and S units via the action of F5H, COMT, and CAD (Figure 1).
The CSE enzyme has recently been added into the well-established lignin biosynthesis pathway due
to its action on caffeoyl shikimate [42]. Apart from this general pathway, a new study in a model
grass carried out by Barros et al. [39] proposed a new monolignol biosynthesis process. The tyrosine
pathway is a shortcut to producing the monolignol by eliminating the steps of catalyzation by C4H. In
this process, the tyrosine is converted into p-coumarate by a bifunctional phenylalanine and tyrosine
ammonialyase (PTAL).Pathogens 2020, 9, x FOR PEER REVIEW 4 of 25 
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Figure 1. Phenylpropanoid and monolignol biosynthesis pathway in higher plants.
Enzymes: PAL, phenylalanine ammonia lyase; PTAL, phenylalanine tyrosine ammonia
lyase; C4H, cinnamic acid4 hydroxylase; CAD, (hydroxy)cinnamyl alcohol dehydrogenase;
HCT, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase; C3′H, p-coumaroyl
shikimate3′ hydroxylase; 4CL, 4-hydroxycinnamoyl-CoA ligase; CSE, caffeoyl shikimate esterase;
CCR, cinnamoyl-CoA reductase; F5H, coniferaldehyde/ferulate5 hydroxylase; COMT, caffeic
acid/5-hydroxyferulic acid O-methyltransferase; CCoAOMT, caffeoyl-CoAO methyltransferase.

3. Phenylpropanoid and Lignin Pathway associated Genes in Plant Defense

The phenylpropanoid pathway entails the biogenesis of various number of phenolics polymers
and lignin, and these compounds contribute to various disease resistance mechanisms [43–46]. The
intermediate metabolites and phenylpropanoid compounds produced during lignin biosynthesis
pathway display antimicrobial activities and are involved in plant defense. The genes involved in
shikimate pathways are known and facts about their response regarding initial access to cell walls
are demonstrated in some studies [36,47]. Lignin is most abundant ubiquitous biopolymer after
cellulose and accounts for 30% of organic carbon in the biosphere [48]. The number of genes from
phenylpropanoid pathways are found to be highly expressed in biotic and abiotic stress conditions,
resulting in an increase in the accumulation of corresponding enzyme and boost in enzymatic
activities [49,50]. Sinapyl alcohol and coniferyl monolignol are the major building blocks of lignin and
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they generate syringyl (S) and guaiacyl (G) units of lignin polymers, respectively [51,52]. The minor
monolignol unit which is deposited more in monocots is the p-hydroxyphenyl (H) unit derived from
p-hydroxyphenyl. Lignin plays various roles in different kinds of stress conditions. The flux disruption
in the phenylpropanoid pathway could be the reason for some resistance mechanism because this
pathway generates various compounds (phenolic phytoalexins, stilbenes, coumarins) [53–55] besides
monolignols which have also been implicated in plant defense [56]. Disruption in the gene families
in lignin pathway can bring some unpredictable responses towards the disease resistance and the
amount and ratio of lignin can influence its physico-chemical properties. For example, a shift in S/G
lignin subunit ratio does not influence any morphological changes, but changes in the sequestration
of molecules involved in defense signal in the cell wall matrix, and hence, the transcript levels of
genes responsible for response to stress [57]. Previous studies indicated that some alternations were
positively regulated towards the resistance. The disease response was studied in Arabidopsis thaliana by
either silencing or deletion of functional mutations of genes in regulatory pathways. These studies
were mainly focused on some gene families such as PAL, F5H. C4H, COMT, 4CL, CCR, CAD, HCT,
C3H, CSE, and CCoAOMT. Some recent results related to the major genes in monolignol pathways
for defense are listed in Table 1. After analyzing the findings, it can be concluded that alteration in
pathway genes can cause a shift in the part of metabolic flux with monolignol units and, in this way,
many things can be altered [58]. It is very hard to predict the function of genes/gene families against
disease response because the regulation is mostly dependent on the crop and disease, moreover, the
pathogen type and crop are also major factors which influence the mechanism. Overall, responses also
revealed that a single gene disruption can cause different effects on crops and diseases [59]. Lignin
pathway alteration may influence the response of pathogens through either increased susceptibility [37]
or, paradoxically, increased resistance [59]. The latter may perhaps be related to the trigger of multiple
defense pathways (detailed discussion in Section 5.).

Table 1. Response of phenylpropanoid pathway genes against plant disease.

Gene Name Crop Pathogen Tested Expression Immune
Response References

PAL

Linum
uslerotiorum Multiple pathogens [26]

Triticum
aestivum Powdery mildew Suppression S [60]

Nicotiana
tabacum Cercosporanicotianae Overexpression R [61]

Arabidopsis
thaliana Pseudomonas syringae S [62,63]

Brachypodium Magnaporthe
Fusarium cuimorum Knockdown S [63]

Glycine max Pseudomonas syringae Silencing S [64]

Capsicum
annum Xanthomonas Suppression S [65]

C4H Glycine max Phytophthora sojae Overexpression R [66]

4CL Oryza sativa Rice blast S [67]

HCT
Arabidopsis

thaliana
Colletotrichum

trifolli [68]

Medicago sativa Multiple pathogens [69]

CCR Camelina sativa Sclerotinia sclerotiorum [70]
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Table 1. Cont.

Gene Name Crop Pathogen Tested Expression Immune
Response References

CCoAOMT
Triticum
aestivum Powdery mildew [60]

Zea mays Multiple pathogens R [71]

COMT Triticum
aestivum Rhizoctonia cerealis Silences S [72]

Triticum
aestivum Powdery mildew [60]

Arabidopsis
thaliana

X. campestris, P. syringae,
Hyaloperonospora R [73]

Alternaria brassicicola
B. cinerea, Blumeria

graminis,
S [74]

Nicotiana
tabacum Agrobacterium tumefaciens Antisense R [75]

Sorghum bicolor F. thapsinum, F. proliferatum, R [76]

CAD Triticum
aestivum Powdery mildew S [49]

Linum
usitatissimum F. oxysporum RNAi [77]

Arabidopsis Pseudomonas syringae S [78]

Sorghum bicolor

Alternaria alternate
F. verticillioides,
F. proliferatum,

Fusarium thapsinum,

R [76]

F5H Arabidopsis
thaliana

Verticillium longisporum
Sclerotinia sclerotiorum

S
S [79,80]

Italics: R-enhanced resistance; S-enhanced susceptibility.

4. Transcriptional Regulation for Phenylpropanoid Pathways

It is generally assumed that transcriptionally activated genes involved in varied biosynthetic
pathways result in the emergence of phenylpropanoids metabolites during the response of plants
to infection (Table 2). However, it must be noted that this assumption, in most cases, is deduced
from measuring the stable state transcript levels. The measurement of the stable state transcript level
does not differentiate between a rise in mRNA stability and increased transcription [56]. Nonetheless,
several studies have revealed a direct link between the induction of infection and a surge in the rate
of transcription of phenylpropanoids pathway genes, which was estimated using nuclear transcript
run-on assays [81,82], and there is an appreciable interest in describing various transcription factors for
synchronizing upregulation of pathways involved in defense response.

Many prediction methods including cis-regulatory elements of monolignol biosynthesis pathway
genes have helped reveal the mystery of transcriptional regulation of phenylpropanoid pathways.
Promoter and electrophoretic mobility shift assay (EMSA) analysis have supported the prediction and
concrete results for complex transcriptional networks. There is a regulatory mechanism exhibited
by the phenylpropanoid pathway at the transcriptional, post-transcriptional, and post-translational
levels [83]. The promoters of genes in the lignin biosynthesis pathways have specific binding locations
for MYB, LIM, ERF, and KNOX transcriptional factors [84,85].

The key findings of the existence of AC elements in the promoters from various studies are widely
accepted. Deep functional analysis of promoter region of the genes in the phenylpropanoid pathway
revealed their modular organization and identified AC elements as central coordinator elements.
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Studies show that AC-rich elements correlating with the MYB transcription factor-binding motif are
essential for coordinated pathway genes [30,86,87]. It has been revealed that that the promoter region
analysis of most of the phenylpropanoid pathway genes like PAL, 4CL, C3H, CCoAOMT, CCR, and
CAD provides sufficient proof of the presence of AC elements. However, genes involved in S-lignin
biosynthesis did not carry the AC-rich element and were not regulated by lignin specific transcriptome
factors. Instead, they had a good linkage with NST3 (SND1) [88], which regulates MYB factors [89].

The role of MYB family is highly linked as an activator in the monolignol biosynthesis pathway.
MYB46 and its homologous MYB83 were discovered to not only actively participate in lignin
biosynthesis but redundantly activate the formation of secondary cell wall [90,91]. The proposed
model to date shows NST genes and MYB46/MYB83 can be activated by the biogenesis of secondary
cells, and in depth NST genes are directly linked to MYB46 and its homologous genes. The first
active transcriptional factors from MYBs were identified in differentiating xylem. Patazlaff et al. [92]
conducted an experiment on Pinus taeda lignifying tissue and discovered PtMYB4. In tobacco plant,
the overexpression of PtMYB4 resulted in an increased expression of C3H, COMT, CCR, CCoAOMT,
and CAD with the expression of 4CL and C4H genes reportedly unaffected but resulted in a decline
in the expression of PAL genes. Moreover, the case was a little different in transgenic tobacco plants.
Transgenic tomato plants did not respond to the PAL, C4H genes but there was a significant increase
in expression of the monolignol-specific coding genes. Some transcriptional factors are found to
act as repressors of lignin biogenesis [93–96]. The current knowledge about the repressors shows
that the discovered repressors belong to a subgroup of the R2R3-MYB transcriptional factor family,
which is the most common MYB transcription factor in plants and can be categorized into a general
phenylpropanoid and lignin group and a flavonoid group. However, bHLH-binding domain is
common in both types of repressors [97]. The overall mechanism of transcriptome regulators involved
in lignin-based defense are illustrated in Figure 2.

Table 2. Classes of transcription factors that regulate phenylpropanoid pathway biosynthetic genes
potentially involved in defense.

Class TFs Gene Pathway/Enzyme
Gene Crop Reference

MYB AtMYB4 Sinapate esters Arabidopsis thaliana [93,98,99]
AtMYB32 Reduction of lignin, CoMT Arabidopsis thaliana [100]
AtMYB15 Lignification Arabidopsis thaliana [101]

AmMYB330 Lignin and increased G/S
ratio 4Cl, CAD Antirrhinum majus [96]

PvMYB4 Reduced lignin, PAL
CCoAOMT Panicum virgatum L. [102]

ZmMYB8,
ZmMYB11,
ZmMYB31,
ZmMYB42

Reduced lignin, COMT, PAL
and 4CL

Zea
mays/Arabidopsis

thaliana
[103–105]

PtMYB14 4CL Pinus taeda [106,107]

CsMYB4a Reduced lignin content
And phenylalanine

PAL, CCoAMT, 4CL, COMT

Camellia
sinensis/Nicotiana

tabacum
[108]

SmMYB39 Reduced 4-coumaric acid,
PAL. 4CL Salvia miltiorrhiza [109]

LlMYB1 Reduced lignin PAL, 4CL Leucaena
leucocephala [110]

TaMYB4 Reduced lignin CCD, CCR Triticum aestivum L. [111]
AtMYB052/
AtMYB054/
AtMYB069

Cell wall thickening Arabidopsis thaliana [112]

EjMYB1 Activate lignin biosynthetic
genes Eriobotrya japonica [113]

PtoMYB216 Lignin biosynthetic pathway Populus tomentosa [114]
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Table 2. Cont.

Class TFs Gene Pathway/Enzyme
Gene Crop Reference

PtoMYB156 Repress phenylpropanoid
biosynthesis Populus tomentosa [115]

WRKY PtrWRKY19 Negatively regulate pith
SCW Populus trichocarpa [116]

StWRKY8 Phenylpropanoid
metabolites Solanum tuberosum [117]

VvWRKY2 Affect S/G ratio. Vitis vinifera L [118]

HD-Zip popREVOLUTA
(PRE) Secondary vascular tissues Populus trichocarpa [119]

POPCORONA
(PCN) SCW lignification Populus tremula ×

alba [120]

EcHB1 Lignin and hemicellulose
content

Eucalyptus
camaldulensis [121]

SWN PtrSND1-A2
(PtrWND1B) Cell wall thickening Populus trichocarpa [122,123]

PtoVNS11 Regulate lignin deposition Populus tomentosa [124]

ERF PsnSHN2 Negatively regulate lignin
biosynthesis

Populus simonii ×
nigra [67]
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Pathogens 2020, 9, 312 9 of 25

5. Mechanism of Player Genes in Defense Response

The compounds generated by the phenylpropanoid pathways are one of the important reasons
for its defensive functions. The genes in the phenylpropanoid pathway code for various compounds.
Defensive properties are not only restricted to any class of phenylpropanoid, but are regulated by
hydroxycinnamic acids and monolignols through various complex spectra of mechanisms. The genes
responsible for the defensive compounds have been cloned in many crops. The biosynthesis pathway
is governed by gene families, but the function of specific members is yet to be determined. The set
of genes involved in biosynthesis pathways have some mechanisms of defense, including the role
from lignification, utilization of secondary metabolites to elicitors and defense singling regulations.
Important defense mechanisms are discussed below:

5.1. Lignification

The basal defense mechanism starts with the lignification of the cell wall innate response to
plant diseases apart from its contribution to structural integrity [125]. Composition of lignin in the
woody cell wall biomass contributes to 30% and this aromatic polymer has multidimensional functions.
The lignification process includes the deposition of lignin into intercellular voids between cell wall
polymers [126]. The process of lignification being a non-random process is governed by many factors.
However, as compared to biosynthesis, the processes of monolignol lignification and polymerization
remain largely unclear. The build-up of lignin or lignin biosynthesis phenolic compounds are known to
counter pathogenic diseases. From the aspect of plant development, lignification is the last process of
secondary cell wall (SCW) biosynthesis. Lignification increases the resistance capabilities of the cell wall
by generating mechanical pressure during fungal attack and penetration [127]. Lignification can act in
several ways, such as establishment of a mechanical barrier to pathogen attack, chemical modification
for wall-degrading enzymes, increasing resistance to wall by diffusion of toxins, production of toxic
precursors, and free radical production. In addition, lignification may restrict pathogen invasion
process through protecting the cell wall from degradation by pathogen secreted enzymes. [83].

Heterogeneity and nature of monolignol linkages make it difficult to degrade and is reported to
function as a barrier to limit the colony development or penetration process by pathogens, representing
the basal defense mechanism. [44,128]. After an immediate hit on the plant cell wall by pathogens, the
process of lignin deposition is initiated [129]. Biochemical analysis indicates that lignified material is a
major component of cell wall appositions [130,131].

Furthermore, lignin-based compounds may hamper the multiplication and movement of
pathogens [37,132]. Mandal et al. [133] discovered a higher concentration of lignin in tomato
genotypes that were resistant to bacteria. The expression of lignin related genes was recorded to be
influenced directly by pathogen infection processes. Expression of AtCAD5 was recorded higher in
roots with lignification during the pathogen infection [134]. DIRs (dirigent genes) were involved in
lignin deposition in Capsicum annuum L. [131] and Gossypium hirsutum during pathogen infection [135].
Additionally, the HCT gene was upregulated in maize and binding with NLR Rpl protein caused
an increase in lignin accumulation [136] and the decreased accumulation of lignin resulted in an
increase in sensitivity against rice blast [137]. The difference in level of lignin and other metabolites of
phenylpropanoids has been suggested to be linked with the CCoAOMT gene in maize for resistance to
multiple pathogens [71].

5.2. Coumarins, Flavonoid, Phytoalexins Naringenin (Metabolites)

The phenylpropanoid pathway is generally related with the production of flavonoids, monolignols,
phenolic acids, stilbenes, phytoalexins, and coumarins and these compounds (Figure 3) are directly
and indirectly involved in plant development and disease response [138]. These secondary metabolites
have their specific mechanism to counter the disease response [139]. In recent decades, the responses
against disease have been studied to understand the critical regulations and mechanism.
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5.2.1. Coumarins

Plant derived compounds which are involved in plant disease defense mechanisms are either
phytoanticipins or phytoalexins. In recent decades, coumarins got the attention of plant scientists
for their role as phytoanticipins or phytoalexins in the plant defense system [140]. Coumarins are a
group of compounds present in wide range of plants and derived from phenylpropanoid pathway.
The phenylpropanoid pathway gene CCoAOMT was recorded to be involved not only in synthesis of
lignin but also in production of coumarins. Knock out of the gene that encodes for CCoAOMT1 led
to a decline of coumarin scopoletin in A. thaliana roots [141]. Coumarins are also known to be iron
mobilizing compounds. Research in different plants supported the fact that coumarin accumulation
initiates in plant tissue during plant–pathogen interaction processes. Scopoletin and its glucosylated
form scopolin are the general coumarins reported to have antimicrobial and antioxidative properties in
disease resistance [142–144]. Coumarins may also be engaged in the accumulation of reactive oxygen
intermediates (ROI), one of the important processes during the early stage of cell death. The antisense
plants of tobacco were used for coumarin response and enormous ROI build-up relative to the control
plant was recorded [144]. The accumulation of coumarins were reported higher during the infection of
tobacco mosaic virus (TMV) in tobacco leaves [145]. A similar observation was recorded in rubber
plant after Phytophthora palmivor infection [146]. Some more relevant recent studies for role of coumarin
in plant–disease interactions are listed in Table 3.
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Table 3. Recent studies demonstrating the coumarin accumulation during plant-pathogen infection.

Plant Plant Tissue Disease Coumarins Reference

Hevea brasiliensi Leaves Phytophthora
palmivora Scopoletin [146]

Pisum sativum Leaves Uromyces pisi Scopoletin [147]

Brassica oleracea Leaves Xanthomonas
campestris Coumarin [148]

Solanum
lycopersicum Leaves Tomato yellow leaf

curl virus Scopoletin [149]

Nicotiana
tabacum Leaves, roots Botrytis cinereal Scopoletin, Esculin,

Fraxetin [150–152]

Arabidopsis
thaliana Leaves, roots

Paeni
bacilluspolymyxa

Pseudomonas
fluorescens

Pythium sylvaticum

Scopoletin, Esculin,
Esculetin

[153]
[100]
[154]

5.2.2. Flavonoids

Plants have ability to synthesize many important compounds which prominently function to
protect the plants [155]. The main types of secondary metabolites namely phenolics, flavonoids,
terpenes, and nitrogen/sulphur containing compounds are generated in plant systems. Flavonoids
are important compounds derived from phenylpropanoid pathway in plants and they are extensively
utilized to treat microbial diseases. The defense related flavonoids can be divided into two groups
“preformed” and “induced” on the basis of their mode of action. The “induced” compounds are
synthesized after stress and “performed” flavonoids are synthesized during general development
of plants [155]. It is also known that flavonoids have potential to target multiple sites in bacterial
cells [156,157]. While some flavonoids restrict the cytoplasmic function, sophotaflavanone and catechins
are reported to have a direct impact in damaging the bacterial membrane [158]. For example, flavanone
phytoalexin, sakuranetin has been reported as important for rice blast disease resistance [159].

5.3. SA-Mediated Resistance

Beside the mechanism discussed above, it has been proposed that plant infestation initiates a
rise in the activity of PAL, a key enzyme from the phenylpropanoid pathway. In plants, it is believed
that SA formation is attained either through the isochorismate synthase (ICS) or the PAL catalyzed
steps. SA is a key player in conferring resistance to disease and pathogens in various crops. SA
dependent signaling regulates the activation of plant defense thereby warding off microbial pathogen
attacks [160–162] and as such making SA a key component of the defense of plants to various pathogens.
SA mediation of plant defenses against pathogens could be the most promising avenue used by plants
from the phenylpropanoid pathway by activating the precursor enzymes of SA directly or indirectly.
For example, in soybean, Shine et al. [64] revealed that the aftermath of PAL knock-down resulted
in SA biosynthesis shutdown and abrogation of pathogen resistance. In maize, PAL contribution to
resistance against sugarcane mosaic virus is highly linked to the positive regulation of salicylic acid
build-up [163]. Similarly, in A. thaliana, the production of SA precursors was a major function of PAL
during Peronodpora parasitica infection. The effect of PAL2.1 (GmPAL 2.1) was checked on soybean after
Phytophthora sojae infection and it was found that the SA level was regulated by the PAL genes [164].
Apart from the direct link with disease resistance and involvement of phenylpropanoid pathways
with SA mechanism, studies carried out by Peng et al. [165] showed a rapid build-up of a high level
of SA after tomato leaves were exposed to cotton bollwarm, a kind of chewing pest and potential
carrier of disease. Furthermore, Verticillium wilt, a serious cotton disease was found to be associated
with WATs (Walls Are Thin gene) for lignin deposition resistance modulated by SA biosynthesis [166].
Duan et al. [167] revealed a dramatic surge in PAL expression after small brown plant hopper (SBPH)
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sucking, leading to SA synthesis and a noticeable alternation in SA content in rice. It suggests the SA
mediated signaling pathway is one of the crucial defense mechanisms in conferring resistance in rice.

5.4. Signaling and Elicitor Based Pathway

In comparison with other resistance mechanisms, elicitor mediated signaling is of great importance.
The whole sensing system relays via protein kinase or calcium depended signaling systems. It has
direct relation with activation of phytohormone pathways, which in turn govern the activation of
immune responses. For example, in a yeast-based experiment system, the involvement of defense
regulating Rac family was found to interact with OsCCR, which is a lignin pathway regulator [168]. In
a different case study, NH1-mediated resistance for Xanthomonas was governed by the CCR-like gene
and SNL6, which have an effect on lignin content of rice [169].

6. Virulence Pathogen Regulates Phenylpropanoid Pathway

Generally, after penetration, pathogens exploit the metabolism of host cell penetration of the
cell wall [138] and virulence pathogens also adopt some mechanisms to suppress host defenses
for promoting their growth. Many pathogens use effector proteins to modulate host immunity
and physiology [170]. Specifically, for fungi, various means have been harnessed by pathogens,
involving induction of molecules which inhibit defense-inducing molecules in hosts [171,172]. The
effectors from the AvrE family were found to suppress SA pathway, callose deposition, and PR1
expression [173,174]. The common means adopted by plant in defense against fungal pathogen is by
depositing phenolic compounds in the cell wall [175]. Phenylpropanoid metabolism results in the
generation and production of different varieties of metabolites [176] and turns out to be the major
target and focus of phytopathogenic bacteria and various pathogens of plants. For example, P. syringae
disturbed the expression of major enzymes of the phenylpropanoids pathways and also downregulated
the ability of A. thaliana to photosynthesize [177]. In maize, Ustilago maydis, a biotrophic fungus and
causal agent of smut disease, tends to deploy effector proteins that repress the production of SA [178]
and similarly, during bacterial wilt of tomato PopS effectors were utilized by Ralstonia solanacerum to
overcome SA mediated defense [179]. It was also revealed that P. syringae Type III Effector (T3E), HopI1
impedes SA production by attacking the chloroplast localized chaperone [180]. In similar fashion,
Zhou et al. [181] revealed that variant of P. syringae T3E, HopZ1b, represses the phytoalexins precursor
production by targeting a soybean (Glycine max) 2-hydroxyisoflavanone dehydratase. In apple, Venisse
et al. [182] showed that fire blight pathogen is capable, specifically in susceptible genotypes, to
precisely block gene expression that encodes enzymes of the pathway of phenylpropanoids metabolism.
This ability is linked to the bacterial functional Hrp-secretory apparatus. A similar finding was
reported for the AvrE superfamily of T3E involved in suppression of plant immunity [183]. Moreover,
phenylpropanoid metabolism disruption was recorded in maize by the AvrE family T3E from Pantoea
stewartia [184].

7. PALs: Emerging Key Players in Broad Spectrum Disease Resistance

Crops are prone to attack by different pathogens causing various diseases and so the quest to
breed for crops tolerant to diseases has never been more urgent and tasking till now. Diseases lead to
an overall yield loss of about 16% globally [185]. The utilization of a single R gene in the long run
results in a resistant breakdown to the pathogen. Adopting the strategy of pyramiding R genes seems
plausible but time consuming and technically demanding [35]. There is, therefore, a need to breed for
crop varieties that confer broad spectrum resistance to pathogens.

The vast majority of the phenylpropanoids have been shown to confer broad spectrum antimicrobial
activity and also help plants defend against microbial diseases [55]. For example, in plants, SA plays the
role of activating S key signals responsible for disease resistance in plants. Therefore, when the defense
signaling pathway against pathogens is activated, this would result in the accumulation of SA. In order
to achieve systemic resistance, conferring resistance to a broad spectrum of pathogens, the movement
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of methylated derivates of SA from local infected tissue to proximal tissues initiates [186]. Oryzae
Ssativa genome consists of nine OsPAL genes. Most of the OsPAL genes experience an upregulation
during resistance interaction with R. solani, M. oryzae, and X. oryzae. Eight of the OsPAL genes are
co-localized with QTLs responsible for resistant to multiple pathogens in rice. However, OsPAL9
shows no association with any QTL for resistance. For example, OsPAL1, OsPAL2, OsPAL3, and OsPAL4
are within the bounds of three QTLs associated with resistant for sheath blight qSB-2, qSBR2-2 [187],
OsPAL5, and OsPAL6 are within the bounds of a QTL linked with bacterial blight resistance [188],
and a single QTL associated with rice blast resistance, CQAC2 [189]. Using IR64 genetic background,
Tonnessen et al. [190] identified OsPAL4, a mutant line bearing a deletion in the OsPAL4 gene was
linked to a rise in susceptibility to three pathogens, X. oryzaepv. oryzae, R. solani, and M. oryzae. This
revealed that contribution of OsPAL4 to broad spectrum resistance is achieved by the QTL located on
chromosome no. 2, which is responsible for disease resistance in rice. In addition, OsPAL4 mutant
showed an increase in susceptibility to both X. oryzaepv. Oryzae and M. oryzae as compared to the
wild type, confirming that OsPAL4 mutant affects resistance to disease in a negative fashion through
altering expression of other OsPAL genes, such as OsPAL6 [190]. Duan L. et al. [167] used the wild-type
Zhonghua 11 genetic background and found that OsPAL6 is involved in the regulation of M. oryzae
resistance invaded from roots by promoting phytoalexins and SA synthesis, which then turns out
to be influential in JA- and ethylene-dependent signaling. Furthermore, beside the contribution of
OsPAL06, it is likely that OsPAL1, OsPAL2, OsPAL3, OsPAL4, OsPAL5, OsPAL7, and OsPAL8 participate
in the rice—M. oryzae interactions. Following the rice yellow mottle virus infection, there was an
increase in the synthetization of OsPAL1 and OsPAL2 proteins During rice–Xanthomonas oryzae pv.
oryzae interactions, OsPAL01 also showed distinctive expression [191–193]. These findings suggest
that OsPALs do not just play a part in reactions involving resistance but also play a role in susceptible
reaction and diverse OsPALs take part during various points of rice–pathogen interactions. It is
suggested that OsPAL may play a key role in broad spectrum resistance. The adaptation of M. oryzae
is carried out in such a way that its virulence proteins cannot be identified by the resistant gene
product [194]. Since the functions of OsPAL1 and OsPAL6 in rice are downstream of defense-responsive
pathogen species or race-nonspecific resistance, it can also be suggested that resistance mediated by
PAL may be durable due to the fact that its product does not involve pathogen recognition [193,195].

The PAL gene family consists of three to four genes in pepper plant (Capsicum annum). The R
gene-mediated and basal resistance to infection by Xanthomonas campestris pv. vesicatoria is contributed
by the activity of PAL in pepper plants. A study carried out by Kim et al. [65] showed that the CaPAL
gene is necessary for inducing SA-dependent defense signaling activities in plants [65]. This result
suggests that in response to avirulent and virulent Xanthomonas campestris pv. vesicatoria infection,
CaPAL1-silenced pepper plants displayed an increase in susceptibility. Likewise, in A. thaliana, there
was an increase in resistance against Hyaloperonospora arabidopsidis and Pseudomonas syringaepv. tomato
(Pst) and in plants with overexpression of CaPAL1 suggesting SA build-up in the course of Pst infection
was upregulated by the constitutive overexpression of CaPAL1 in Arabidopsis. In a recent study,
Shine et al. showed that SA functions in conferring resistance against oomycete pathogen P. sojae and
bacterial pathogens P. syringae and the build-up of phenylalanine substrate was as a result of silencing
GmPAL with ICS-catalyzed and PAL catalyzed reactions playing a combined role in soybean defense.

The first report of PAL gene was done in 1961 and over a decade, the number of studies in different
plants have shown the wide distribution of PAL gene families in higher plants, and is also reported
in yeast and some bacteria [196]. The PAL gene family is a small gene family with 1–20 members in
different plant species. In recent years, structure, evolution, and resistance mechanisms to biotic and
abiotic stress were studied in number of plant species. For example, we have eight putative PAL genes
in the genome of Brachypodium with BdPAL1 and BdPAL2 both playing a major role in the biogenesis of
lignin and also both being expressed at a higher rate in stem tissues that form lignin as compared to
the other six BdPAL genes. The knockdown of BdPAL lead to a surge in susceptibility to M. oryzae and
Fusarium culmorum [63].
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Interestingly, various genes involved in BSR have been discovered in crops [197], only a few have
been utilized due to consequent yield penalty [35,198] and none of the BSR genes formerly identified,
coding for proteins possessing RNA-binding activity by [108,199–201]. However, Zhou X. et al. [202]
identified broad spectrum resistance Kitaake-1 (bsr-k1) mutant conferring BSR against X. oryzae pvoryzae
and Magnaporthe oryzae with no consequent effect on yield in rice. It was revealed that the mRNAs
of OsPAL genes which are associated with defense in plants was bounded by bsr-k1 protein, thus,
promoting their turnover. Furthermore, the OsPAL mRNA build-up in the bsr-k1 mutant was a result
of decline in mRNA turnover due to the loss of function of bsr-k.

8. Research Questions and Future Prospects

The phenylpropanoid pathway is an important center of attraction because of its importance in the
production of defense related compounds and also because it has great involvement against pathogen
attempts of cell wall weakening strategies. Advances in the last decade have supported that pathway
engineering in plants can bring satisfactory solutions, keeping broad spectrum disease resistance and
yield security in parallel. The plethora of available research on the phenylpropanoid pathway continue
to show evidence of its importance and efficiency. In this review, we discussed all the possible aspects
related to the phenylpropanoid pathway which could be important elements for disease resistance
mechanisms (Figure 4) including involvement of transcriptome factors, metabolites derived from the
pathway, novel gene families, and effects after engineering. Furthermore, we highlighted the emerging
key players (PALs) in plant science from the phenylpropanoid pathway for concrete solutions for broad
spectrum and yield penalties. In addition, from the previous investigations, we have noted some
unsolved mysteries like (1) what is the importance of altering the lignin pathway for basal defense?
(2) What are the candidate genes of the transcription factors, regulating multiple functions? (3) What
are the key families from the phenylpropanoid pathway that putatively contribute to plant defense?
The information available to us from the defense point of view is still fragmentary. It is elusive to the
predict the function after alteration in phenylpropanoid pathway from the plant defense point of view.
A deeper investigation is required to solve the mysteries raised above, which could provide valuable
insights to aid engineering strategies for profitably tailoring plants.
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