
molecules

Review

Therapeutic Potential of Polyphenols-Loaded
Polymeric Nanoparticles in Cardiovascular System

Olga Pechanova * , Ezgi Dayar and Martina Cebova

Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences,
81371 Bratislava, Slovakia; ezgi.dayar@savba.sk (E.D.); martina.cebova@savba.sk (M.C.)
* Correspondence: olga.pechanova@savba.sk; Tel.: +421-911-938-910

Academic Editors: Iwona Cicha and Alejandro Baeza
Received: 31 May 2020; Accepted: 17 July 2020; Published: 22 July 2020

����������
�������

Abstract: Numerous studies document an increased production of reactive oxygen species (ROS)
with a subsequent decrease in nitric oxide (NO) bioavailability in different cardiovascular diseases,
including hypertension, atherosclerosis, and heart failure. Many natural polyphenols have been
demonstrated to decrease ROS generation and/or to induce the endogenous antioxidant enzymatic
defense system. Moreover, different polyphenolic compounds have the ability to increase the
activity/expression of endothelial nitric oxide synthase (eNOS) with a subsequent enhancement of
NO generation. However, as a result of low absorption and bioavailability of natural polyphenols,
the beneficial effects of these substances are very limited. Recent progress in delivering polyphenols
to the targeted tissues revealed new possibilities for the use of polymeric nanoparticles in increasing
the efficiency and reducing the degradability of natural polyphenols. This review focuses on the
effects of different natural polyphenolic substances, especially resveratrol, quercetin, curcumin,
and cherry extracts, and their ability to bind to polymeric nanoparticles, and summarizes the effects
of polyphenol-loaded nanoparticles, mainly in the cardiovascular system.

Keywords: hypertension; atherosclerosis; heart failure; ROS; nitric oxide; polymeric nanoparticles;
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1. Introduction

Scientific research in recent years has placed significant focus on exploring the beneficial effects
of natural polyphenols in the prevention and treatment of cardiovascular and neurodegenerative
diseases and, in particular, cancer [1–3]. Polyphenols belong to a group of powerful antioxidants
that supplement and enhance the function of endogenous antioxidants and enzymes involved in
defensive action against the increased oxidative load caused by overproduction of reactive oxygen
species (ROS) [3,4]. Moreover, many polyphenolic compounds have been shown to increase the
activity/expression of endothelial nitric oxide synthase (eNOS) with subsequent enhanced nitric oxide
generation [5,6].

Serious findings suggest that overproduction of ROS and oxidative stress accompany different
cardiovascular diseases, including hypertension, atherosclerosis, and heart failure (for a review,
see Reference [7]). Thus, reducing oxidative stress may protect and improve cardiovascular and
metabolic functions through different cellular and molecular mechanisms. A number of articles assert
that increased superoxide generation with subsequent decreased nitric oxide (NO) bioavailability is
the most important cause of endothelial damage and impaired endothelium-dependent relaxation,
which leads to hypertension, atherosclerosis, and heart failure [8,9].
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2. ROS/NO Disbalance in Cardiovascular Diseases

2.1. Hypertension

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, namely, Nox1, Nox2, Nox4, and
Nox5 isoforms, have been identified as the main sources of ROS in vascular cells during hypertensive
conditions [9–11]. Both pharmacological inhibition and genetic deletion of NADPH oxidase lead
to lowering blood pressure in the animal models of hypertension [7,11,12]. Nox5 seems to play
an important role in human health, and disease in particular [10]. In addition, further potential
sources of enzymatic ROS production, e.g., xanthine oxidase, mitochondrial electron transport
chain, lipoxygenase, cyclooxygenase, peroxidases, hem oxygenases, and uncoupled endothelial
NO synthase (NOS), have been documented to significantly contribute to the oxidative stress in
hypertension [7,9,13]. Superoxide-mediated oxidation of BH4, and deficiency of the substrates
l-arginine and S-glutathionylation, have been described as the main molecular mechanisms of NOS
uncoupling [14–16]. Similarly, decreased activity of antioxidant enzymes like superoxide dismutase
(SOD), catalase, glutathione peroxidase, or glutathione reductase importantly contributes to oxidative
stress during increased blood pressure [7,17].

ROS may also activate proinflammatory nuclear factor kappaB (NF-κB)-dependent pathways
and increase levels of cytokines, such as interleukin 1 (IL-1) and tumor necrosis factor (TNF)-α,
with subsequent phosphorylation of tyrosine kinases and inhibition of eNOS activity (for a review,
see Reference [18]). On the other hand, activation/delivery of eNOS to different hypertensive modes
may prevent or reduce increased blood pressure [9,19]. Moreover, NO has been shown to antagonize the
vasoconstrictor and proliferative effects of angiotensin II (Ang II), while it decreases sodium excretion
and the expression of the angiotensin-converting enzyme (ACE) and angiotensin AT1 receptor [20].
Recently, platelet-derived NO was demonstrated to play an important role in the regulation of platelet
function and the adhesive process in hypertensive patients [21].

2.2. Atherosclerosis

The atherosclerotic process in the arterial wall is characterized by ROS-mediated oxidation of
low-density lipoproteins (LDL) cholesterol to oxidized (ox) LDL cholesterol [22,23]. Products of lipid
peroxidation, such as malondialdehyde, oxidized phospholipid, and 4-hydroxynonenal, belong to
highly reactive species and lead to the generation of oxidation-specific epitopes (OSEs) [24]. ROS may
potentiate OSE sensing by increased expression of endothelial TLR2, TLR4, and lectin-like oxidized LDL
receptor-1 [24,25]. Damage to the arterial wall is characterized by excessive fibrosis of the intima and
fatty plaque formation due to LDL/oxLDL cholesterol accumulation, proliferation of smooth muscle
cells, and infiltration and/or migration of monocytes, T cells, and platelets. Penetration of the cells into
the vascular wall is conditioned by the expression of leukocyte and chemokine adhesion molecules,
in which the transcription is performed by NF-κB. Proinflammatory molecules, such as interleukin 6
(IL-6), interleukin 18 (IL-18), and TNF-α cytokines, adhesion molecules, matrix metalloproteinases
(MMPs), and C-reactive protein (CRP) produced by monocytes, macrophages, and/or adipose tissue
further potentiate microinflammation and the oxidative load [26,27].

Endothelial NO has the opposite role in this process, decreasing expression of the adhesion molecule
and inhibiting endothelial–leukocyte interaction and cytokine-induced NF-κB activation [28,29].
Activation/targeted delivery of endothelial NOS and SOD to endothelial cells decreases leukocyte
adherence, inhibits NF-κB activation, and reduces adhesion molecule expressions in different in vitro
and in vivo experiments [30,31]. Similarly, platelet-derived NO may significantly contribute to the
reduction of the adhesive process [21].

2.3. Heart Failure

Increased NADPH oxidase activity has also been demonstrated during conditions leading to heart
failure. The most common causes of increased NADPH oxidase activity include enhanced production
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of Ang II, endothelin-1, or TNF-α, and increased mechanical stretch [32–34]. Nox2 and Nox4 have been
identified as the main isoforms in cardiomyocytes in heart failure. Nox4, localized primarily within the
mitochondria, seems to be mainly responsible for increased ROS generation [34]; however, diaphragms
from patients with heart failure have shown Nox2 expression and p47phox phosphorylation highly
associated with elevated protein oxidation [35]. Moreover, aldosterone-dependent activation of Nox2
significantly contributes to the profibrotic effect of Ang II in the heart [33]. Deficiency of NADPH
oxidase has been shown to protect the heart from left ventricular remodeling and dysfunction after
myocardial infarction [36]. Uncoupled eNOS has also been shown to further increase ROS production,
leading to left ventricular remodeling, left ventricular dilatation, and contractile dysfunction [37].

In contrast, the functional dimer of eNOS with normal NO production may improve contractile
function and decrease interstitial fibrosis in the impaired myocardium [38,39]. Indeed, organic nitrates,
including nitroglycerin (GTN) and isosorbide mono (ISMN) and dinitrate (ISDN), have been used in
cardiovascular medicine for 150 years. These drugs reliably ensure vasodilator activity necessary for
the treatment of coronary artery disease and heart failure [39]. It was also demonstrated that nebivolol,
belonging to the third generation of β-blockers with NO-dependent properties, and the NO donor
LA-419 may improve left ventricular function and reduce left ventricular hypertrophy at doses that do
not affect arterial blood pressure [9,39,40].

3. Effects of Natural Polyphenolic Substances on ROS/NO Disbalance

Natural polyphenols generally have low bioavailability and different kinetic restrictions; thus,
the direct free radical scavenger activity of these substances is very limited. There are a number
of studies documenting the rather indirect antioxidant effect of polyphenols. Many polyphenols
have been demonstrated to modify expression of different genes and to induce the endogenous
antioxidant enzymatic defense system [41–43] (Figure 1). For example, treatment with chlorogenic
acid, a dietary polyphenol, has been shown to decrease NADPH oxidase activity in spontaneously
hypertensive rats (SHR) [44] and to prevent decreased activity of SOD, catalase, glutathione
peroxidase, and glutathione-S-transferase in isoproterenol-induced myocardial oxidative stress in the
rat myocardium [45]. Similarly, the beneficial cardioprotective effect of malvidin by restoring catalase,
SOD, and glutathione peroxidase has been documented in a similar model of myocardial infarction [46].
On the other hand, kaempferol improved cardiac function via the activation of extracellular
signal-regulated protein kinases 1 and 2 (ERK1/2) and the inhibition of p38 and C-jun N-terminal
kinase (p38/JNK)/TNF-α/NF-kB/p65 pathways in the model of myocardial ischemia-reperfusion
injury [47]. Another well-known polyphenol, quercetin, has the ability to attenuate postconditioning
myocardial ischemia/reperfusion injury in rats through the activation of the phosphatidylinositol
3-kinase (PI3K)/Akt pathway [48].

Resveratrol has a variety of cardiovascular-beneficial effects. In SHR, it has been shown to
decrease both NADPH oxidase activity and overexpression of Nox2, Nox4, and p47phox [49]. It has
been identified as a direct and indirect sirtuin 1 (SIRT1) activator [50,51] with an increasing effect
on SIRT1 expression as well [52]. Resveratrol has been shown to activate nuclear factor erythroid
2-related factor (Nrf2) indirectly [53] and upregulate miRNA-21, thus exerting cardioprotective
effects in cardiac remodeling and apoptosis [54]. Moreover, it has been shown to activate eNOS by
stimulating the membrane estrogen receptor [55]. Specifically, a subpopulation of estrogen receptor
(ER) α activated by resveratrol is bound with caveolae in the endothelial membrane and coupled
to the eNOS through a G protein [56]. The diarylheptanoid, curcumin, also has important vascular
protective effects. Curcumin treatment significantly delayed the onset of stroke and increased the
survival of stroke-prone spontaneously hypertensive rats independently of blood pressure reduction.
Upregulation of the NO pathway has been identified as a mechanism responsible for this preventive
process [57]. Moreover, curcumin reduces NF-κB, affecting gene regulation, and decreases the
TNFα-induced expression of intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant
protein-1 (MCP-1), and IL-8 mRNA, characteristic of the atherosclerosis process [58]. Similarly, extracts
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from different cherries have been documented to be capable of favorable interactions with the risk
factors of atherosclerosis. Besides their positive effects on the lipid spectrum and glycemia, reduction of
ROS and improvement of endothelial dysfunction (Figure 1) have been demonstrated in both in vitro
and in vivo experiments [59,60]. Recently, a new inverse molecular docking approach was used to
identify potential human protein targets of curcumin and resveratrol, which could provide further
insights into molecular mechanisms of antioxidant and anti-inflammatory actions of polyphenolic
compounds [61,62].
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Figure 1. Cardiovascular diseases, including hypertension, atherosclerosis, and heart failure are
accompanied by increased production of reactive oxygen species (ROS), also via enhanced nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase activity, with subsequent decreased nitric oxide (NO)
generation, leading to endothelial dysfunction. Many natural polyphenols like resveratrol, quercetin,
or curcumin are able to fight endothelial dysfunction by their ability to decrease ROS generation, induce
the endogenous antioxidant enzymatic defense system, and increase activity/expression of endothelial
NO synthase (eNOS).

Thus, the effects of polyphenolic compounds and their molecular actions in the cardiovascular
system are different depending on both the type of polyphenol and respective cardiovascular disease.
The absorption and bioavailability of natural polyphenols are, however, too low, and can be a
serious obstacle for the beneficial actions of these substances. To remedy the low bioavailability,
low solubility, and rapid degradability of polyphenols, different approaches have been developed
with the aim to transport the respective polyphenolic substance throughout the gastrointestinal tract
and deliver it to the targeted tissue. Recent progress in delivering polyphenols to the targeted tissues
is characterized on three carrier levels, namely liposomes, microemulsion, and nanoparticles (for a
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review, see Reference [42]). Among them, biopolymeric nanoparticles represent a promising strategy
for the protection and effective targeted delivery of natural polyphenolic substances.

4. Polymeric Nanoparticles

Recently, the use of polymeric nanoparticles has been based on nonbiodegradable polymers, such
as polyacrylamide, polystyrene, and poly (methyl) methacrylate [63]. For such particles, inflammatory
responses and chronic toxicity were observed, and therefore, research has focused on biodegradable
polymeric nanoparticles with reduced toxicity, higher biocompatibility, and a better ability to regulate
drug release kinetic patterns. With the exception of natural polymers like chitosan, albumin, alginate,
and gelatine, the synthetic polymers mainly include poly (lactide) (PLA), poly (lactide-co-glycolide)
copolymers (PLGA), poly (ε-caprolactone) (PCL), and poly (amino acids) [64–67]. These biodegradable
synthetic polymers should fulfil two major requirements: performance and safety. They have to
have the maximum biocompatibility to have a therapeutic effect, and biodegradation in a timeframe
compatible with the healing of the target system or tissue. At the same time, they should be safe, which
means not inducing in vivo toxicity and not promoting an inflammatory response in the immunological
system [68].

Firstly, polyethylene glycol (PEG)-coated synthetic copolymers conjugated with active mediators
have been shown to yield drug delivery systems with positive properties [69,70]. PEG coatings form a
hydrated ring which prevents protein interactions and reduces opsonization, resulting in an increased
circulation time and lower activation of the immune system [71]. Furthermore, a conjugation of
glycoprotein Ib (GPIb) to PLGA nanoparticles has been shown to increase nanoparticle adhesion to
the targeted surface, cellular uptake of nanoparticles, and controlled release of the active substances
(for a review, see References [72,73]). PLA is relatively hydrophobic, which allows it to be used for
implants like stents, screws for bone fixations, but also for drug delivery systems [74]. Polymeric
nanoparticles have been reported to cross the intestinal barrier after oral administration and therefore,
it is effectively used for oral drug delivery. It is generally accepted that the cells predominantly
involved in the capture of nanoparticles administered intravenously are the macrophages of liver and
spleen and circulating monocytes. The polymeric nanoparticles, along with toxins and unmetabolized
nutrients, are passed through the kidney and taken up by the glomerular or peritubular capillaries,
and eventually eliminated from the body by renal clearance [75].

Nowadays, targeted nanoparticle delivery systems in the field of cardiovascular disease are
under intensive investigation. Minimizing the side effects while maximizing the drug effectiveness by
targeted delivery poses a challenge not only in atherosclerosis, but also in hypertension, myocardial
infarction, and heart failure (for a review, see References [72,73]). First, a liposome drug delivery
system has been proven to be a successful option for the treatment of angina pectoris. Encapsulated
amiodarone, an anti-arrhythmic drug, in conventional liposomes demonstrated a reduced morality rate
due to arrhythmia and negative hemodynamic changes in rat models of cardiac ischemic/reperfusion
procedure [76]. Later, treatment of aliskiren (a renin inhibitor)-loaded PLA nanoparticle decreased the
blood pressure of SHR much more significantly than the powdered form [77]. Similarly, nanostructured
lipid carriers and solid lipid nanoparticles improved the oral bioavailability of a calcium channel
blocker, nisoldipine [78]. PLGA and PCL seem to be effective delivery systems for nifedipine and
felodipine since they significantly reduced blood pressure in hypertensive rats [79,80]. Innovative
NO-releasing polymeric nanomaterials are among the new potential solutions in the development
of qualitatively new antihypertensive drugs [81]. Osako et al. demonstrated that the PEG–PLGA
copolymer is able to deliver a NF-κB decoy oligodeoxynucleotide, which is directed against the
NF-κB binding site in the promoter region [82]. This copolymer has been demonstrated to prevent
monocrotaline-induced NF-κB activation in a rat model of monocrotaline-induced pulmonary arterial
hypertension [83].

Still, the key problem with using nanoparticles is their toxicity. The small size and large surface
area to volume ratio makes them very reactive. Nanoparticles may even generate ROS and other
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free radicals, resulting in an increased oxidative load and inflammation [84]. Recently, natural
polyphenols-loaded nanoparticles have been the focus of interest thanks to their antioxidant properties,
which additionally may exceed the prooxidant effects of some nanoparticles. Among them, resveratrol,
quercetin, curcumin, and cherry extracts are the most frequently studied.

5. Therapeutic Effects of Polyphenols-Loaded Polymeric Nanoparticles

5.1. Effects of Resveratrol-Loaded Nanoparticles

Resveratrol (3,5,4′-trihydroxystilbene) belongs to non-flavonoid polyphenolic compounds,
specifically, to the stilbenoid group [85,86]. Resveratrol has two structural isoforms—cis and trans.
Trans-resveratrol is known as the most abundant and active form of resveratrol [86,87]. This, a natural
plant-derived polyphenol, is contained mainly in red grapes and wine [87], berries, peanuts, and
soy [88,89].

Preclinical studies have demonstrated that resveratrol has beneficial and protective effects on
cardiovascular diseases, but also on diabetes, obesity, cancer, and neurodegenerative diseases. As a
result of its pharmacological activities, resveratrol is classified as an antioxidant with anti-inflammatory,
anti-carcinogenic, anti-aging, and cardioprotective properties [86,88]. Resveratrol has been shown
to decrease the oxidative load by affecting antioxidant enzymes such as SOD, catalase, glutathione
reductase, glutathione peroxidase, glutathione transferase, and oxidoreductases. Moreover, it increases
eNOS production, inhibits lipid peroxidation [86,90], mitogen-activated protein (MAP) kinases and
iNOS activities [91], and has anti-inflammatory effects through the downregulation of proinflammatory
mediators like COX-1 and COX-2 [92]. Increased eNOS activity/expression is the main protective effect
of resveratrol against vascular damage in cardiovascular diseases. Moreover, in endothelial cells, iNOS
expression is regulated by NF-κB, which is inhibited by resveratrol [93]. Furthermore, resveratrol
can also protect the cardiovascular system by modulating lipoprotein metabolism, inhibiting platelet
aggregation [94,95], regulating vascular smooth muscle cell proliferation [91], inhibiting TNF-α [96],
and upregulating tumor suppressor p 53 [86].

The limitations associated with the pharmacological use of this polyphenol are poor water
solubility, the short biological half-life, chemical instability, and rapid metabolism [86,97]. Thus,
nanoparticle delivery systems represent an ideal way to transport resveratrol to target tissues
and ensure sufficient bioavailability [86,98]. Resveratrol-loaded polymeric nanoparticles are no
bigger than 100 nm, so they can easily pass through the membrane and be internalized by cells.
Resveratrol-loaded polymeric nanoparticles provide controlled drug release, increased drug solubility,
drug targeting, and drug protection from degradation [86,89]. In the study by Singh and Pai [99],
resveratrol-loaded PLGA nanoparticles had better oral bioavailability and absorptivity in rats in
comparison with the pure drug [99]. Similarly, Siu et al. [100] documented that resveratrol-loaded
galactosylated PLGA nanoparticles had better bioavailability and in vitro anti-inflammatory activity
in rats and lipopolysaccharides-induced macrophage cell line RAW 264.7 cells, respectively [100].
Using carboxymethyl chitosan to prepare resveratrol-loaded nanoparticles provoked improvements
in resveratrol antioxidant activity and bioavailability after oral administration in rats. Compared to
the pure drug, resveratrol-loaded nanoparticles exhibited increased in vivo absorption, prolonged
duration of action, and increased relative bioavailability by 3.5 times [101]. Oral administration of
resveratrol loaded into N-trimethyl chitosan conjugated with palmitic acid nanoparticles in Balb/c mice
provided a 3.8-fold increase in resveratrol bioavailability compared to the pure drug. This increase was
attributed to the muco-adhesive and high absorption effects of the polymeric nanoparticles, as well as to
the ability to prevent resveratrol degradation [89]. Cheng et al. [102] reported that dual-shell polymeric
nanoparticles, multistage continuous targeted drug delivery carrier (MCTD)-NPs, which utilize a
multistage continuous targeted strategy to deliver ROS scavengers specifically to the mitochondria of
ischemic cardiomyocytes, increased the distribution of resveratrol in the ischemic myocardium and
reduced infarct size in myocardial ischemia/reperfusion injury in rats [102]. Hardy et al. [103] used
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resveratrol-loaded multifunctional poly (glycidyl methacrylate) (PGMA) nanoparticles to study the
effect in Langendorff I/R heart preparation. They reported that exposure of hearts to resveratrol-loaded
nanoparticles was able to delay the release of creatine kinase and lactate dehydrogenase, the markers of
an injured myocardium [103], (Table 1). Thus, resveratrol-loaded nanoparticles represent a promising
tool for supportive treatment in cardiovascular diseases.

5.2. Effects of Quercetin-Loaded Nanoparticles

Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a powerful antioxidant, belongs to the flavonoid
family, and it is generally present as quercetin glycoside, especially in plants [104–106]. Quercetin is
bound to mono- or oligo-saccharides through the glycosidic bonds with the 3′ hydroxyl group on the
oxygen-containing ring [106]. Quercetin is widely contained in grapes, berries, apples, cherries, citrus
fruit, red wine, black tea, onions, and tomatoes. Concentrations of quercetin may vary depending on
the plant or even on the parts of the same plant [107]. Like other polyphenols, quercetin has limited
water solubility. The bioavailability of the water-soluble derivative of quercetin is only 20% [108].
However, quercetin glycoside has a higher bioavailability than quercetin rhamnoside or quercetin
galactoside [107].

Quercetin has important cardio-protective effects, including antioxidant, anti-inflammatory,
anti-atherosclerotic, and anti-hypertensive effects. It also has preventive effects in dyslipidemia,
endothelial dysfunction, and platelet aggregation [109]. Quercetin exerts its anti-inflammatory
effects by inhibiting cyclooxygenase and lipoxygenase and decreasing prostaglandins and C-reactive
proteins [110,111]. In diabetic rats, quercetin has been shown to improve dyslipidemia, decrease serum
glucose levels, and reduce oxidative stress [112] by scavenging ROS and modulating antioxidant
enzymes [113]. In spontaneously hypertensive rats, quercetin lowered blood pressure [114], reduced
transcription of NF-κB [115], and decreased IL-6, IL-1ß, and TNF-α [116]. Dietary quercetin may
modulate blood NO concentrations and inhibit NADPH oxidase activity [117].

The use of quercetin as a therapeutic target is, however, limited considering its poor aqueous
solubility, instability in the physiological medium, and low bioavailability [107,118]. Therefore,
polymeric nanoparticles are a good tool to increase bioavailability and reduce degradation of this
flavonoid. Quercetin-loaded PLA nanoencapsulation demonstrated a higher water solubility and
sustained release of the drug, leading to better bioavailability and stability of quercetin. On the
other hand, the antioxidant capacities of the PLA-encapsulated quercetin and pure quercetin were
almost the same [119]. Comparison of quercetin and catechin-loaded PLGA nanoparticles showed
that quercetin was more slowly released from PLGA, probably due to the carbonyl and carboxyl
interactions of the polymer and flavonoid molecules. Moreover, quercetin showed a higher radical
scavenging activity compared to catechin [120]. Ghosh et al. [121] suggested that oral treatment
with quercetin-loaded PLGA might play a protective role against oxidative damage in ischemia
reperfusion induced in young and aged rats [121]. Wang et al. [122] layered a bioactive polymer
(PLGA layers) onto superparamagnetic SiN to control the medication discharge profile. The PLGA
layer on the outside of SiN can act as a gate-keeping layer to direct the medication discharge from
SiN. They demonstrated that SiN@QC-PLGA nanobio-composite properties improve the practical
similitude to the local myocardium, permitting cell enlistment, attachment, expansion, and articulation
of heart proteins, which can be utilized in anticipation of atherosclerosis and other cardiovascular
diseases [122] (Table 1). In addition, a novel system of polymeric PLGA nanoparticles loaded with
quercetin and fabricated via the electrohydrodynamic atomization process may have great potential in
the prevention of atherosclerosis and other relative cardiovascular diseases [118].

5.3. Effects of Curcumin-Loaded Nanoparticles

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), also called
diferuloylmethane, is a polyphenolic compound contained in turmeric of the ginger family [123,124].
It is responsible for the intense yellow turmeric color. The rhizome of turmeric contains between
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1.5% and 3% of curcumin [125]. The chemical structure of curcumin is composed of two aromatic
ring systems including o-methoxy phenolic groups connected by α,β-unsaturated β-diketone
moiety. Curcumin displays enolic and diketonic forms due to tautomerism between enol and keto
structures [126,127].

Curcumin exhibits various beneficial physiological activities, including antioxidant,
anti-inflammatory, and anti-proliferative effects. As a result of these therapeutic properties,
curcumin has been shown to protect the heart against the development of cardiac hypertrophy,
cardiotoxicity, and heart failure. It has beneficial effects in the atherosclerotic process and in
diabetic cardiovascular complications [128]. Curcumin may improve oxidative stress, mitochondrial
dysfunction, and inflammation through regulating various cell signaling pathways, including cytokines,
chemokines, and growth factors and their receptors [123,129]. Curcumin exerts its anti-inflammatory
effects via downregulation of NF-κB, resulting in decreased expression of TNF-α, IL-1, and IL6.
Furthermore, curcumin inhibits the mitogen-activated protein kinase (MAPK) pathways [130] and
activates lipoprotein lipase, peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and
PPAR-alpha [131,132]. The anti-proliferative effect of curcumin is supposed to be associated with its
ability to induce heme-oxygenase-1 expression in vascular endothelial cells, vascular smooth muscle
cells, and human aortic smooth muscle cells [133,134]. In atherosclerotic conditions, curcumin has
been shown to reduce the serum levels of triglycerides, total cholesterol, LDL-cholesterol, and free
fatty acids [135]. Curcumin can also prevent the activation of 3-hydroxy-3-methylglutaryl-coenzyme a
reductase (HMG-CoA) via a transcriptional mechanism [136].

Like other natural polyphenolic compounds, clinical use of curcumin is limited because of its low
bioavailability, poor absorption, and rapid metabolism [128]. Only 30–40% of the orally administered
drug can be absorbed and most of the ingested curcumin is excreted in feces, unchanged. The absorbed
curcumin is rapidly metabolized and only less than 0.02% of the metabolites are recovered from the
liver, kidney, and body fat [137,138]. Several preclinical and clinical studies have proposed that the
route of curcumin administration is an important factor in terms of its serum and tissue levels [138].
Curcumin-loaded polymer nanoparticle systems are therefore intensively studied [139,140].

The studies are focused on improving the solubility of the hydrophobic drug in the water,
optimizing its stability, enhancing the pharmacokinetics, designing controlled release, preventing
the drug from degradation, and targeting the organs. Using curcumin-loaded PLA–PEG copolymer
nanoparticles, El-Naggar et al. [141] demonstrated that curcumin-loaded nanoparticles had better
anti-inflammatory and antioxidant effects in a streptozotocin-induced diabetes model than pure
curcumin [141]. In a similar model, curcumin-loaded chitosan nanoparticles promoted diabetic
wound healing [142]. Carlson et al. [143] studied the cardio-protective effects of a combination of
curcumin and resveratrol co-loaded into polymeric micellar in a cell model of doxorubicin-induced
cardiotoxicity. The combination has been shown to markedly reduce apoptosis and ROS formation in
the above cell model [143]. Similarly, curcumin-loaded copolymer PEG-Poly (ethylene glycol) methyl
ether-block-poly (d, l lactide)-block-decane strongly inhibited apoptosis, lipid peroxidation, and
production of NADPH-derived superoxides induced by exposure of cardiomyocytes to palmitate [144].
Curcumin-loaded to the same copolymer has been demonstrated to activate the AMP-activated
protein kinase (AMPK)/mammalian target of the rapamycin complex-1/p-p70 ribosomal protein S6
kinase signaling pathway and regulate the expression of downstream proteins [145]. In a study by
Nabofa et al. [146], the formulated curcumin-nisin-based PLA nanoparticles provided a significant
level of cardio-protection in a guinea pig myocardial infarction model [146]. Curcumin encapsulated in
carboxymethyl chitosan nanoparticles conjugated to a myocyte-specific homing peptide and successfully
delivered to pathological myocardium was able to reduce cardiac hypertrophy and apoptosis in a rat
model [147], and most importantly, in a double-blind randomized placebo-controlled clinical trial,
nanocurcumin significantly decreased the levels of TNF-α, high-sensitivity C-reactive protein (hs-CRP),
and IL-6 compared to placebo [148] (Table 1). Thus, using curcumin-loaded nanoparticles seems to
have a prospective clinical future.
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Table 1. An overview of polyphenol-loaded polymeric nanoparticles and their possible effects.

Polyphenol Model of the Study The Type of Polymeric Nanoparticle The Effect of Polyphenol-Loaded Nanoparticle

Resveratrol

Male wistar rats RSV-loaded PLGA NPs Improve oral bioavailability of RSV [99]

Sprague dawley rats
Lipopolysaccharides-induced RAW 264.7 cells RSV-loaded galactosylated PLGA NPs

Increase:
Oral bioavailability

Intestinal permeability
Anti-inflammatory activity in RAW 264.7 cell model [100]

Male sprague Dawley rats RSV-loaded carboxymethyl chitosan NPs
Increase:

Bioavailability and water solubility of RSV
Antioxidant activity [101]

Male balb/c mice RSV-loaded N-trimethyl chitosan conjugated
with palmitic acid NPs

Increase bioavailability
Prevent RSV degradation

[89]
MI/RI injury rats RSV-loaded dual-shell MCTD-NPs Reduce infarct size [102]
Male wistar rats

Landerdorff I/R heart
RSV-loaded multifunctional poly (glycidyl

methacrylate) (PGMA) NPs Delay the release of the injured myocardium markers; creatine kinase and lactate dehydrogenase [103]

Quercetin

Different solutions Que-loaded PLA NPs

Increase:
Bioavailability

Stability
Water solubility

Sustain release of Que [119]

C3-BAS cell system Que-loaded PLGA NPs
Decrease release of Que

Increase radical scavenging activity
[120]

I/R induced rats Que-loaded PLGA NPs Increase protective role of oxidative damage [121]
H9C2 cell SiN@QC-PLGA Increase biodegradation and water solubility of Que [122]

Curcumin

STZ-induced diabetes model Cur-loaded PLA-PEG copolymer NPs
Increase:

Anti-inflammatory effect
Antioxidant effect [141]

STZ-induced diabetes model Cur-loaded chitosan NPs Promote diabetic wound healing [142]

Cell model of doxorubicin-induced cardiotoxicity Cur and RSV co-loaded polymeric micellar
Reduce:

Apoptosis
ROS formation [143]

H9C2 cardiomyocytes Cur-PEG-PDLLA

Inhibit:
Apoptosis

Lipid peroxidation
NADPH oxidases [144]

H9C2 cardiomyocytes Cur-PEG-PDLLA Activate AMPK/mammalian target of rapamycin complex-1/p-p70 ribosomal protein S6 kinase
signaling pathway [145]

Myocardial infarction model of guinea pig Cur-nisin based PLA NPs Cardio-protection
Decrease levels of H2O2, MDA, ROS [146]

Cardiac hypertrophy rat model Cur-loaded carboxymethyl chitosan NPs
Reduce:

Cardiac hypertrophy
Apoptosis [147]

Double-blind randomized placebo-controlled clinical
trial in obesity Nano-curcumin

Decrease:
TNF-α
hs-CRP

IL-6 [148]

Resveratrol: RSV, polymeric nanoparticles: NPs, myocardial ischemia-reperfusion injury rats: MI/RI rats, Quercetin: Que, poly (lactide): PLA, poly (lactide-co-glycolide) copolymers:
PLGA, Ischemia-Reperfusion: I/R, Super magnetic nano-silica@Que-loaded PLGA: SiN@QC-PLGA, Streptozotocin: STZ, Curcumin; Cur, Polylactide-poly (ethylene glycol): PLA-PEG,
Reactive oxygen species: ROS, Curcumin-loaded copolymer PEG-Poly (ethylene glycol) methyl ether-block-poly (d, l lactide)-block-decane: Cur-PEG-PDLLA, hydrogen peroxide: H2O2,
malondialdehyde: MDA, tumor necrosis factor α: TNF-α, high sensitivity C-reactive protein: hs-CRP, interleukin-6: IL-6, human umbilical vein endothelial cells: HUVECs.
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5.4. Effects of Cherry Extracts-Loaded Nanoparticles

Cherries are a rich source of polyphenolic compounds, especially anthocyanins, phenolic acids,
and flavonols. Cyanidin-3-glucoside and cyanidin-3-rutinoside are the major anthocyanins in both
sour and sweet cherries. The major phenolic acids in cherries are neochlorogenic acid, chlorogenic acid,
and p-coumaric acid derivatives. The amount of flavonol quercetin-3-rutinoside is also significant.
The concentrations of anthocyanins and phenolic compounds can vary depending on the cultivar,
stage of ripening, storage conditions, and harvest time. Cherry fruit also contains several organic
acids, including malic, citric, ascorbic, and fumaric acids [149–151]. It is a good source of carotenoids,
potassium, tryptophan, serotonin, and melatonin [150].

Cherry fruit has been widely studied for its nutritional properties and beneficial effects. Because
of the high content of anthocyanins, phenolic acids, and flavonols, cherries have antioxidant,
anti-inflammatory, and vasodilatory properties. In vitro studies have demonstrated that natural
polyphenol-rich sweet cherry extracts are able to protect endothelial cells from oxidative stress [152].
Cherry extracts and their bioactive components can improve cardiovascular performance. The potential
cardioprotective effects of cherry extracts or isolated anthocyanins have been demonstrated by
their ability to increase NO production and antioxidant status, reduce lipid oxidation, and inhibit
inflammation [153–155]. Furthermore, the cornelian cherry that contains a high amount of polyphenols
has anti-atherosclerotic properties mainly based on its ability to curtail the inflammation process and
improve endothelial dysfunction [59]. Dayar et al. [156] documented that different types of cornelian
cherries have better beneficial effects than the powerful antioxidant coenzyme Q10 in obese Zucker rats.
In contrast to coenzyme Q10, cornelian cherries decreased cholesterol, LDL levels, and ROS production,
while increasing eNOS activity/expression [156]. In a randomized controlled trial, Chai et al. [157]
showed that tart cherries can lower the systolic blood pressure and LDL cholesterol levels in older
adults. Moreover, plasma levels of C-reactive protein, malondialdehyde, and oxLDL levels were
significantly decreased after 12 weeks of tart cherry consumption [157].

However, the low bioavailability of polyphenols contained in cherry extracts is the major problem
in terms of their use for therapeutic purposes. They have a poor intestinal absorption because of
oxidation in the intestinal tract and rapid metabolic degradation in the liver. Thus, studies focused on
targeted transport have been at the center of research [158]. The encapsulation of cherry extracts in
nanoparticles based on chitosan derivatives improved the intestinal absorption of cherry polyphenols
and enhanced their antioxidant and anti-inflammatory activity in an in vitro model based on human
umbilical vein endothelial cells (HUVECs) [152]. HUVECs have also been used to investigate the
effects of Crognola (Prunus avium L.) cherry-extract-loaded nanoparticles based on two different
chitosan derivatives. Cherry extract loaded into S-protected thiolated derivative has been shown to
have a much more efficient protective effect on H2O2-induced oxidative stress and a reduction in
ROS production. Generally, the nanoparticles with protected thiol groups have demonstrated higher
protective effects [159]. On the other hand, PLGA-based cherry extract encapsulation showed similar
antioxidant activity as compared with the free extract. PLGA nanoparticles, however, demonstrated a
low cytotoxicity and could allow for the administration of higher cherry extract doses [160]. To maintain
the quality of sweet cherries and improve their antioxidant properties, Ma et al. [161] proposed a
new delivery and protective system by immersing sweet cherries in nitric oxide-releasing chitosan
nanoparticles (GSNO-CS NPs). GSNO-CS NPs were able to reduce ROS and glutathione and increase the
antioxidant enzyme activities and the levels of ascorbic acid [161]. It seems that cherry-extract-loaded
nanoparticles represent a promising tool not only in clinical studies, but in the food industry as
well. Although the data concerning the cherry extracts loading on nanoparticles are interesting and
promising, all other polyphenols have been used as pure compounds, so the evaluation/comparison of
loading capacity and efficacy between the different types of particles requires further studies and is
currently not possible.
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6. Conclusions

Different cardiovascular diseases, including hypertension, atherosclerosis, and heart failure,
are accompanied by an increased production of ROS with subsequent decreased NO generation,
leading to endothelial dysfunction. Many natural polyphenols are able to fight endothelial dysfunction
through their ability to decrease ROS generation, induce the endogenous antioxidant enzymatic defense
system, and increase activity/expression of eNOS. Different nanoparticles, including biodegradable
polymeric nanoparticles, are able to increase the efficiency and reduce the degradability of natural
polyphenols, thus increasing their beneficial abilities in the target tissues. Resveratrol, quercetin,
curcumin, or cherry-extract-loaded polymeric nanoparticles have been shown to markedly reduce ROS
formation, the inflammatory process, apoptosis, lipid peroxidation, cardiac hypertrophy, and even to
delay myocardium injury due to ischemia/reperfusion. Nowadays, different copolymers and polymeric
nanobio-composites are being developed with the aim of decreasing nanoparticle reactivity, toxicity,
enhancing pharmacokinetics, and designing controlled release. They represent a promising tool for the
delivery of natural polyphenols to target tissues and enhance their desirable effects, which is useful in
the treatment of various diseases, including cardiovascular diseases.
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