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Transcriptional profiling of hematopoietic cell subpopulations has 
helped to characterize the developmental stages of the hematopoietic 
system and the molecular bases of malignant and non-malignant 

blood diseases. Previously, only the genes targeted by expression microar-
rays could be profiled genome-wide. High-throughput RNA sequencing, 
however, encompasses a broader repertoire of RNA molecules, without 
restriction to previously annotated genes. We analyzed the BLUEPRINT 
consortium RNA-sequencing data for mature hematopoietic cell types. The 
data comprised 90 total RNA-sequencing samples, each composed of one of 
27 cell types, and 32 small RNA-sequencing samples, each composed of one 
of 11 cell types. We estimated gene and isoform expression levels for each 
cell type using existing annotations from Ensembl. We then used guided 
transcriptome assembly to discover unannotated transcripts. We identified 
hundreds of novel non-coding RNA genes and showed that the majority 
have cell type-dependent expression. We also characterized the expression 
of circular RNA and found that these are also cell type-specific. These analy-
ses refine the active transcriptional landscape of mature hematopoietic cells, 
highlight abundant genes and transcriptional isoforms for each blood cell 
type, and provide a valuable resource for researchers of hematologic devel-
opment and diseases. Finally, we made the data accessible via a web-based 
interface:  https://blueprint.haem.cam.ac.uk/bloodatlas/. 
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ABSTRACT



Introduction 

Knowledge of the transcriptional programs underpin-
ning the diverse functions of hematopoietic cells is essen-
tial for understanding how and when these functions are 
performed and for resolving the molecular bases of hema-
tologic diseases. Thanks to its accessibility, blood is the 
tissue of choice for the implementation of novel assays in 
primary samples. Indeed, several studies aiming to char-
acterize gene expression profiles in the post-genome era 
have been performed on increasingly purified primary 
hematopoietic cell populations.1-3 These studies used 
expression arrays and thus required prior specification of 
the sequences to be interrogated. The probed sequences 
were often derived from the analysis of a very limited 
number of tissues and cell types,4 despite the early discov-
ery that transcription is widespread throughout the 
human genome.5 The introduction of high-throughput 
nucleic acid sequencing technologies6 has improved the 
assembly of the human genome and the annotation of 
transcriptomes therein, and has enabled a more compre-
hensive analysis of gene expression using transcriptomic 
assembly approaches.7 The BLUEPRINT consortium8 was 
established to characterize the epigenetic state and tran-
scriptional profile of different types of hematopoietic cells. 
Reference datasets for DNA methylation, histone modifi-
cations and gene expression were generated from highly 
purified cell populations using state-of-the-art technolo-
gies, in accordance with quality standards set by the 
International Human Epigenome Consortium.9 RNA-
sequencing data from over 270 samples encompassing 55 
cell types have been made publicly available 
(http://dcc.blueprint-epigenome.eu). A subset of these data 
has been described previously.10,11 Here, we present the 
analysis of 90 total RNA samples obtained from cord and 
adult peripheral blood, each consisting of one of 27 
mature cell types and 32 small RNA samples, each consist-
ing of one of 11 mature cell types. We used a Bayesian dif-
ferential expression analysis approach12,13 to determine 
changes in the expression levels of genes and transcripts at 
lineage commitment stages and to identify cell type-spe-
cific transcriptional signatures. We performed guided tran-
scriptome reconstruction7 using total RNA-sequencing 
reads, identifying 645 multi-exonic transcripts originating 
from 400 intergenic novel genes. The majority of the novel 
transcripts had low protein coding potential and high cell 
type specificity. Additionally, we identified 55,187 circular 
RNA (circRNA), which also displayed high cell type speci-
ficity, highlighting the potential role of non-coding tran-
scripts in hematopoiesis. To enable exploration and reuse 
of the data by the biomedical community, we developed 
a web interface for plotting expression patterns of genes 
and transcripts and downloading normalized expression 
data (https://blueprint.haem.cam.ac.uk/bloodatlas/). 

 
 

Methods 

Ethical approval 
Samples were obtained from National Health Service Blood 

and Transplant blood donors and from cord blood donations at 
Cambridge University Hospitals, following informed consent. 
Ethical approval was obtained for A Blueprint of Blood Cells 
(REC East of England 12/EE/0040). 

Cell isolation, RNA extraction and library construction 
The protocols used for cell isolation, RNA extraction and 

library construction are described in the Online Supplementary 
Material.  

Bioinformatic analysis  
An overview of the bioinformatic pipeline is shown in Online 

Supplementary Figure S1. To analyze the expression of known 
genes and transcripts, we trimmed reads with Trim Galore 
(v0.3.7; parameters “-q 15 -s 3 --length 30 -e 0.05”) and aligned 
them to Ensembl v75 of the human transcriptome with 
Bowtie14 (1.0.1; parameters “-a --best --strata -S -m 100 -X 500 -
-chunkmbs 256 --nofw --fr”). Small RNA-sequencing reads were 
also trimmed with Trim Galore (v0.3.7; parameters “-f fastq -e 
0.05 -q 15 -O 3”) and aligned to the miRBase (v21) human 
mature microRNA (miRNA) with RapMap (v 0.4.0) using the 
parameters “quasimap -c -s -z 0.9”. We used MMSEQ12 and 
MMDIFF13 (v1.0.10; default parameters) to estimate gene, tran-
script and miRNA expression levels, and to identify features 
that were differentially expressed across cell types. This choice 
of methodology allowed us to obtain regularized transcript and 
gene-level posterior estimates of expression and the correspon-
ding measures of posterior uncertainty, which could then be 
accounted for in the modeling of differential expression. For 
guided transcriptome assembly, we used STAR (v2.4.1c; param-
eters “--runThreadN 8 --outStd SAM --outSAMtype BAM 
Unsorted --outSAMstrandField intronMotif”) to align trimmed 
reads to build GRCh37 of the reference human genome. We 
sorted the bam files by coordinate and indexed them with sam-
tools (v 1.3.1).15 We performed guided transcriptome assembly 
for each sample using StringTie7 (v 1.3.4; parameters “-p 8 --rf -
G Ensembl_75.gtf -v -l BPSTRG”). We also used StringTie to 
combine these transcriptomes into a single merged transcrip-
tome, which we then compared to the annotations in Ensembl 
75 using Gffcompare.16 We identified intergenic transcripts and 
filtered out the ones overlapping known transcripts annotated 
in Gencode (v19)17 and UCSC (v hg19)18 using the 
GenomicRanges package.19 We assessed the protein coding 
potential of the novel intergenic multi-exonic transcripts using 
the Coding-Potential Assessment Tool (CPAT) (v 1.2.4).20 We 
chose CPAT because of its superior accuracy relative to compet-
ing methods.20 A coding potential >0.364 was considered to dis-
criminate between protein-coding and non-coding transcripts, 
in accordance with the human-specific guidance in the CPAT 
manual (http://rna-cpat.sourceforge.net/). We estimated the 
expression levels of novel genes and transcripts using MMSEQ, 
as described above for known genes and transcripts. We com-
puted the expression specificity parameter Tau21 to compare the 
cell type specificities of novel genes, known long non-coding 
RNA (lncRNA) and known protein-coding genes. We used the 
BioConductor R package “phastCons100way. UCSC.hg19”22 to 
obtain sequence conservation scores of novel genes, known 
lncRNA and known protein-coding genes. A detailed descrip-
tion of the computational methods used to identify circRNA, 
compare their sequences to known sequences and quantify 
expression levels is given in the Online Supplementary Material. 

Data availability 
All data used in this manuscript are available from the European 

Genome-phenome Archive (EGA) (https://www.ebi.ac.uk/ega/dacs/ 
EGAC00001000135I). The dataset identities are listed in Online 
Supplementary Table S1. Links to the datasets at EGA are also avail-
able from the BLUEPRINT data access portal (http://dcc.blueprint-
epigenome.eu/#/datasets). 
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Results 

Transcriptome complexity of hematopoietic cell types 
We isolated 90 samples (Figure 1A and B, Online 

Supplementary Table S1) from 72 whole blood and cord 
blood donations, either by magnetic bead separation or by 
flow activated cell sorting (Online Supplementary Methods). 
Total RNA data were generated from the following 27 cell 
types: erythroblasts (EB), megakaryocytes (MK), platelets 
(PLT), eosinophils (EOS), basophils (BAS), neutrophils 
(NEU), monocytes (MONO), non-activated macrophages 
(M0), lipopolysaccharide activated macrophages (M1), 
alternatively activated macrophages (M2), dendritic cells 
(DC), naive CD4 lymphocytes (CD4 naive), central mem-
ory CD4 lymphocytes (CD4 CM), effector memory CD4 
lymphocytes (CD4 EM), regulatory CD4 lymphocytes 
(TREG), naive CD8 lymphocytes (CD8 naive), central 
memory CD8 lymphocytes (CD8 CM), effector memory 
CD8 lymphocytes (CD8 EM), terminally differentiated 
effector memory CD8 lymphocytes (CD8 TDEM), naive 
B lymphocytes (B naive) , memory B lymphocytes (B M), 
class switch B lymphocytes (BCS), natural killer cells (NK), 
blood outgrowth endothelial cell progenitors (BOEC), 
umbilical vein endothelial cells (resting and proliferating; 
HUVEC R and P) and mesenchymal stem cells (MSC). 
Small RNA data were generated from the following 11 cell 
types: EB, MK, NEU, MONO, M0, M1, M2, DC, CD4 
naive, CD8 naive and NK. An overview of the number of 
samples assayed of each cell type by total and small RNA-
sequencing is presented in Figure 1A and B and Online 
Supplementary Table S2. We generated a mean of 91M 75 
bp paired-end reads for total ribosomal RNA-depleted 
samples, except for platelets (PLT), basophils (BAS) and 
eosinophils (EOS), which were sequenced at a comparable 
depth but with 150 bp paired-end reads (Online 
Supplementary Table S1). We also generated a mean of 
4.5M 50 bp single-end reads for small RNA samples 
(Online Supplementary Table S3). Principal component 
analysis of the log expression estimates for both protein-
coding genes and small RNA showed distinct clustering by 
cell type according to their ontology along the first two 
principal components, which explained approximately 
40% of the variance in expression of both types of RNA 
species (Figure 1C and D, Online Supplementary Figure S2A 
and B). This correspondence was also apparent by hierar-
chical clustering of samples using Spearman rank correla-
tion (Online Supplementary Figure S2C and D). 

The GTEx project23 showed that whole blood has a very 
low gene expression complexity compared to that of other 
tissues, as 60% of all blood transcripts emanate from three 
hemoglobin genes.24 However, a low complexity of a het-
erogeneous tissue may mask a high complexity of some of 
its component cell types. We therefore analyzed transcrip-
tome complexity in different types of blood cells. After 
excluding mitochondrial genes from the analysis to 
account for their considerable variation in steady-state 
expression across individuals,25 the number of protein-
coding genes contributing 50% of total expression ranged 
from only 14 in PLT to 600 in BAS. The number of protein-
coding genes contributing 75% of total expression ranged 
from 168 in PLT to 2,422 in resting HUVEC (Figure 2A, 
Online Supplementary Table S4, Online Supplementary File 1). 
With the exception of PLT, the sets of genes yielding 75% 
of total expression in each cell type showed enrichment 
for gene ontology (GO) terms only for functional cate-

gories related to general biological processes, such as 
translation or transcription. Thus, cellular integrity and 
basic cellular functions are supported at the transcriptional 
level even in mature cell types, some of which have short 
half-lives. In PLT, however, we found an enrichment for 
GO terms related to the core functions of platelets (i.e., 
hemostasis, wound healing, coagulation, platelet degranu-
lation), while more general processes featured less promi-
nently (Online Supplementary Table S5). The corresponding 
analysis of the small RNA data showed a very low com-
plexity:  between one and seven miRNA accounted for 
50% of total expression and fewer than ten miRNA 
accounted for 75% of the expression in each of the 11 cell 
types (Figure 2B, Online Supplementary File 2). 

Transcriptional signatures correspond to  
hematopoietic cell functions 

As the most highly transcribed genes in a given cell type 
are in general not enriched for GO terms describing that 
cell type's specific functions, we reasoned that these func-
tions must be encoded primarily by other more lowly 
expressed genes. The expression levels of these genes 
should in principle correlate with cell type in order to 
ensure function specialization. To determine which genes 
form the transcriptional signature of each cell type, we 
grouped cell types into functional categories (Online 
Supplementary Table S2) and then identified heteroge-
neously expressed genes over these categories through a 
Bayesian comparison of two statistical models: one in 
which the gene under consideration had a global mean 
expression parameter and another in which the gene had 
a different mean expression parameter for each category. 
Both models included a binary covariate accounting for 
the source of the blood samples (venous or cord). Using 
this approach, we found that 19,861 (59.5%) of HUGO 
Gene Nomenclature Committee (HGNC)-annotated 
genes had a posterior probability of differential expression 
>0.8. Over half of these differentially expressed genes had 
a mean log expression across samples >0. In contrast, only 
3.5% of the non-differentially expressed genes had a 
mean log expression >0, indicating that the number of 
ubiquitously expressed housekeeping genes in 
hematopoiesis is a few hundred. The differentially 
expressed genes were then classified by the cell type in 
which their expression was greatest. To ensure that the 
classification recapitulated cellular functions specific to 
the mature blood cells in this atlas, rather than functions 
of shared progenitors from which they originate, we only 
classified the 16,572 genes whose maximum log expres-
sion level was at least 0.1 (i.e., 10.5%) greater than that 
found in the cell type with the second greatest expression 
(Online Supplementary Methods, Online Supplementary Table 
S6). For example, VWF was assigned the endothelial cell 
(EC) label because, firstly, its expression varies across cell 
types (posterior probability of differential expression 
approximately = 1), secondly, VWF is most highly 
expressed in EC (log expression estimate = 6.0) and, third-
ly, the second highest expressed category (MK/PLT, com-
bined because PLT are the immediate anucleated descen-
dants of MK) has a log expression estimate (averaged over 
MK and PLT) of 2.2, which is smaller than 6.0 by more 
than 0.1 units (Figure 3A). The number of genes assigned 
to each category ranged from 186 in CD8 T lymphocytes 
(CD8TC) to 3,502 in MK/PLT (Figure 3B). Using these 
groups of genes, we found enrichment for GO terms 
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Figure 1. Dataset description and principal component analysis of total and small RNA expression. (A) Graphical representation of the cell types included in the 
dataset. (B) Heatmaps of the number of samples for each cell type used for total RNA (above) and small RNA (below) sequencing. (C) Scatterplot of the first (PC1) 
versus the second (PC2) principal component of the expression of genes with a log expression estimate greater than zero in at least one sample. (D) Scatterplot of 
PC1 versus PC2 of the expression of the various small RNA with a unique read count >10 in at least one sample. MSC: mesenchymal stem cells; BOEC: blood out-
growth endothelial cell progenitors; HUVEC (R): resting human umbilical vein endothelial cells; HUVEC (P): proliferating human umbilical vein endothelial cells; PLT: 
platelets; MK: megakaryocytes; EB: erythroblast; BAS: basophils; EOS: eosinophils; NEU: neutrophils; MONO: monocytes; M0: macrophages; M1: lipopolysaccharide-
activated macrophages; M2: alternatively activated macrophages; DC: dendritic cells; CD4 naïve: naïve CD4 lymphocytes; CD4CM: central memory CD4 lymphocytes; 
CD4EM: effector memory CD4 lymphocytes; CD8 naïve: naive CD8 lymphocytes; CD8CM: central memory CD8 lymphocytes; CD8EM: effector memory CD8 lympho-
cytes; CD8TDEM: terminally differentiated effector memory CD8 lymphocytes; T reg: regulatory CD4 lymphocytes; B naïve: naive B lymphocytes; BM: memory B lym-
phocytes; BCS: class switch B lymphocytes; NK: natural killer lymphocytes.
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B 
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reflecting the primary functions corresponding to all cell 
type categories (Online Supplementary Table S2) except 
BAS, M0 and MONO, at a family-wise error rate <5% 
(Online Supplementary Table S7). Figure 3C illustrates the 
results of the enrichment analysis for the MK/PLT and DC 
categories. 

Differential expression of microRNA 
We applied the same differential expression modeling 

described above to the small RNA data for which biologi-
cal replicates were available (MK, NEU, MONO, M1, M2 
and CD4TC samples). Of 2,588 miRBase-annotated26 
miRNA, 603 had a posterior probability of differential 
expression >0.8, of which 573 were classified as cell type-
specific. The mean expression of miRNA was strongly 
associated with having at least one validated target among 
the 29,920 validated miRNA-messenger RNA (mRNA) 
interactions in the mirecords, mirtarbase and tarbase data-
bases27 (P<2 x 10-16, effect size = 0.16, logistic regression). 
For example, 46 of the 50 miRNA (92%) having the great-
est mean expression had at least one validated target, 
while only 458 (18.2%) of the remaining 2,508 miRNA 
had a validated target. The miRNA with the greatest 
expression in their assigned cell type (Online Supplementary 
Table S8) have been previously linked to relevant cellular 
functions in that cell type. For example, hsa-miR-21-5p 
(the most highly expressed M1-specific miRNA) is 
involved in resolution of wound inflammation28 and 
macrophage polarization;9 hsa-let-7g-5p, hsa-miR-26a-5p, 
hsa-miR-150-5p and hsa-miR-146b-5p (the most highly 
expressed CD4TC-specific miRNA) are important modu-
lators of CD4+ T cells;30,31 and hsa-miR-126-3p (the most 
highly expressed MK-specific miRNA) plays a role in 
MK/PLT biogenesis.32,33 However, using the existing data-
bases of miRNA-mRNA interactions, we did not find any 
correlation between the expression of miRNA and the 
expression of their targets, which is consistent with 
miRNA being only one of a diverse set of molecular play-
ers in transcriptional regulation of hematopoietic cells and 
is in agreement with the results of other studies showing 

that miRNA induce translational repression without 
mRNA destabilization.34 

De novo transcriptome assembly identifies novel long 
non-coding RNA 

Several studies have shown that almost two-thirds of 
the genome is pervasively transcribed,35 mostly because of 
the transcription of various types of unannotated non-cod-
ing RNA (ncRNA).36 Among the ncRNA, lncRNA com-
prise a heterogeneous class of single or multi-exon RNA 
genes, with crucial roles in controlling gene expression 
during developmental and differentiation processes.37 The 
proportion of RNA species encoded in a genome which 
are of the lncRNA type increases with developmental 
complexity, hinting at the importance of RNA-based con-
trol mechanisms in the evolution of multicellular organ-
isms.38 To identify novel transcripts, we assembled sam-
ple-specific transcriptomes from read alignments to the 
reference genome using guided transcriptome assembly,39 
which we then merged into a consensus transcriptome. To 
avoid the assembly of artefactual sequences originating 
from pseudogenes, we used a conservative approach that 
filtered out intronless transcripts and transcripts intersect-
ing any of the transcripts present in Ensembl 75, GEN-
CODE 19 or RefSeq40 (Online Supplementary File 3). This 
unified filtered transcriptome contained 645 multi-exonic 
transcripts originating from 400 novel genes. Using the 
expression values of the subset of 368 novel genes having 
a log expression >0 in at least one sample, we were able to 
cluster the samples by cell type (Figure 4A), suggesting 
that these novel genes might play a role either in the deter-
mination of cellular identity or in performing cell type-
specific functions. 

The vast majority (348 out of 400) of the novel multi-
exonic genes had a coding potential below the standard 
CPAT20 threshold (0.364) used to discriminate potentially 
coding genes from non-coding genes. However, the 52 
potentially coding genes had other characteristics suggest-
ing that they were also non-coding. Firstly, the proportion 
of their nucleotides overlapping transposon-associated 

BLUEPRINT hematopoietic transcriptomes atlas

haematologica | 2021; 106(10) 2617

Figure 2. Complexity of genes and miRNA transcriptomes.  (A) Cumulative distribution of the fraction of total transcription contributed by non-mitochondrial protein-
coding genes when sorted from most to least expressed in each cell type. The x axis is on the log10 scale. (B) Cumulative distribution of the fraction of small RNA 
transcription contributed by mature miRNA when sorted from most to least expressed in each cell type. The x axis is on the log10 scale. Abbreviations as in Figure 1. 
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regions and other repetitive or low complexity regions 
was higher than that of known coding genes and similar 
to that of novel non-coding genes (Online Supplementary 
Figure S3A). Secondly, their exons had low conservation 
among vertebrates, with scores resembling those of anno-
tated lncRNA (P>0.05, Wilcoxon rank sum test) and novel 
non-coding genes (P>0.05, Wilcoxon rank sum test), and 
lower than those of protein coding genes (P≤0.0001, 
Wilcoxon rank sum test) (Figure 4B). Thirdly, their median 
expression was similar to that of annotated lncRNA and 
novel genes classified as non-coding by CPAT (median log 
expression levels: annotated lncRNA, 0.02; novel poten-
tially coding, 0.03; novel non-coding, 0.02; protein-coding 
genes, 1.2) (Figure 4C). We therefore concluded that all the 
novel genes, including those with a CPAT score >0.364, 
were likely to be lncRNA.  

Additionally, the novel genes differed from known 
lncRNA and protein-coding genes in that they had a high-
er tissue specificity (median Tau: annotated lncRNA, 0.78; 
novel potentially coding, 0.95; novel non-coding, 0.94; 
protein-coding genes, 0.49) (Figure 4D). Low expression 
levels combined with high tissue specificity may explain 
why these transcripts have not been identified previously. 
The genomic coordinates of these novel transcripts are 
provided in Online Supplementary File 3.   

Circular RNA in mature hematopoietic cells 
CircRNA are single stranded RNA molecules of which 

the ends are covalently joined by a backsplice mechanism. 
Some circRNA have been shown to regulate transcrip-
tion41 or act as miRNA sponges,42,43 but the majority of 
circRNA have no known function. Peripheral blood con-
tains thousands of circRNA.44 We identified backsplice 
junctions in the total RNA-sequencing dataset using five 
methods43-46 and excluded backsplices detected by fewer 
than three of these methods in order to mitigate method-
ological biases. In addition, we excluded backsplices over-
lapping known segmental duplications,47 multiple genes or 
Ensembl 75-annotated readthrough transcripts. We thus 
obtained a list of 91,866 consensus backsplices (Online 
Supplementary Table S9). We further removed junctions 
observed only in one sample, as they are likely to be spu-
rious, notwithstanding that this may tend to filter junc-
tions specific to cell types with a small number of repli-
cates. In total, 55,187 backsplices were retained for down-
stream analyses. The majority (81.64%) of these back-
splices were exonic and utilized annotated canonical 
splice sites (Figure 5A), which is consistent with previous 
reports.43,48 Almost half (44%) of the backsplices matched 
structures in circBase49 exactly and a further 30% shared 
one of their two splice sites with structures in circBase. 
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Figure 3. Cell type-specific transcriptional signatures. (A) VWF expression estimates and posterior variances. (B) The number of differentially expressed genes clas-
sified into each cell type grouping types. (C) Graphical representations of the Gene Ontology term enrichments for the MK/PLT and the DC groups. Note that, as PLT 
are the immediate anucleated descendants of MK, a gene was assigned to the composite MK/PLT group if it was maximally expressed in either cell type. The nodes 
represent terms, which are colored green if they are enriched and light blue if they are ontological ancestors of enriched terms, and the edges represent ontological 
relations. Abbreviations as in Figure 1.
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In comparison to other RNA species, circRNA have a 
low rate of formation, but can accumulate inside the cell 
because they are resistant to exonuclease activity.50 To 
investigate the expression patterns of circRNA in 
hematopoietic cells, we performed hierarchical clustering 
using Spearman correlations of normalized PTESFinder 
read counts. This grouped samples by cell type and line-
age, showing tissue-specific patterns of circRNA abun-
dance (Figure 5B).  

Next, we assessed the variation in the contribution of 
circRNA abundance to the transcriptional output of each 
gene. For each sample, we computed the abundance pro-
portion (AP) of a gene as the number of backsplice reads 
in that gene divided by the total number of spliced reads 
of any kind across all genes. We summarized the AP of 
each cell type as the mean AP over genes and replicates. 
This cell type-specific summary of AP ranged from 1.02% 
in resting HUVEC to 12.45% in PLT, which is the only 
anucleated cell type in our dataset (Online Supplementary 
Figure S4A, Online Supplementary Table S10). Elevated AP in 
PLT is consistent with the absence of steady-state tran-

scription in PLT and the lower rate of decay of circRNA 
relative to linear molecules.51  

We performed differential expression analysis of 
circRNA between all pairs of functional categories of cell 
types (Online Supplementary Table S2). We identified 5,993 
statistically significant differences in circRNA expression, 
comprising 929 distinct backsplices (<2%) that were dif-
ferentially expressed in at least one pairwise comparison. 
These circRNA originated from 698 genes, of which 678 
were protein-coding and 20 were non-coding. The maxi-
mum number of differentially expressed circRNA in any 
pairwise comparison was 372 and the median number 
was 15 (Online Supplementary File 4). The expression pat-
terns of differentially expressed circRNA clustered sam-
ples by functional category (Figure 5C). To investigate 
whether the clustering could, in part, be attributed to 
shared mechanisms of transcription between circRNA and 
their linear counterparts, we inferred pairwise differential 
expression of the genes corresponding to the differentially 
expressed circRNA. There was strong correspondence 
between the signs of the log fold changes between the 
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Figure 4. Properties of the identified novel genes.  (A) Heatmap of the Spearman rank correlation (rho) matrix computed from the expression estimates of the 368 
novel genes expressed (i.e., with a log expression estimate >0) in at least one sample. The dendrogram was computed using complete-linkage clustering with dis-
tance specified as one minus the correlation coefficient. (B) Violin plots and overlaid box plots of sequence conservation (UCSC phastCons 100) values for known 
long non-coding (lnc)RNA, novel non-coding genes, novel potentially coding genes and coding genes annotated in Ensembl 75. The phastCons scores were obtained 
from multiple alignment of the human (hg19) sequences to the sequences of 99 other vertebrate species.  (C) Violin plots and overlaid box plots of expression esti-
mates (expressed as log2(m+1), where μ is the real scale expression estimate) of known lncRNA, novel non-coding genes, novel potentially coding genes and coding 
genes annotated in Ensembl 75. (D) Violin plots and overlaid box plots of the expression specificity of known lncRNA, novel non-coding genes, novel potentially coding 
genes and coding genes annotated in Ensembl 75. (B-D) Pairwise comparisons for which the Wilcoxon signed-rank test yielded P<0.05 following Bonferroni adjust-
ment are highlighted. Abbreviations as in Figure 1

 A                                                                                                                    B

C 
 
 
 
 
 
 
 
 
 

D



two species of RNA (P<2 x 10-16, odds ratio: 2.31, 95% 
confidence interval: 2.08–2.57; Fisher exact test) (Figure 
5D). Of the 2,122 gene-level comparisons with a posterior 
probability of differential expression >0.8, over 70% had 
a log fold change sign in the genes matching that identified 
in the corresponding circRNA. Although circRNA are typ-
ically generated co-transcriptionally, the remainder may 
reflect cell type-specific competition in their biogenesis 
with canonical splicing of linear RNA.52 Several mecha-
nisms of action have been discovered for ncRNA, but only 
a handful of circRNA have been experimentally verified as 
functional.41,43 Furthermore, their functions are distinct 
from those of their host genes, preventing functional infer-
ences from the analysis of the GO terms of host genes. 

Data visualization and download 
We have developed a website (https://blueprint. 

haem.cam.ac.uk/bloodatlas/) for generating graphical repre-
sentations of the data and downloading expression values. 
Its functionality is showcased in Online Supplementary 
Figure S5. 

 
 

Discussion 

We explored the coding and non-coding transcriptional 
landscapes of 90 samples comprising 27 different mature 
hematopoietic cell types (Figure 1A and B). Our aim was 
to determine how these cell types achieve their unique 
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Figure 5. Circular RNA expression in blood cells. (A) Bar plot of the mean number of backsplices identified in each cell type. Each bar is color-coded to indicate the 
number of backsplices originating in different types of genomic regions: exonic_known: the backsplice corresponds to known splice site; exonic_novel: the backsplice 
utilizes only one known splice site; intronic: the backsplice is internal to an annotated intron; intergenic: the backsplice junctions do not overlap any annotated exons 
or introns; antisense: the backsplice is antisense to annotated exons or introns. (B) Heatmap of the Spearman rank correlation (rho) between the backsplice junction 
counts in each sample. Lowly expressed circular (circ)RNA (having <20 reads in all samples) were excluded. (C) Heatmap of z-scores of the expression estimates for 
each of the differentially expressed backsplice junctions across cell types. (D) Box plot of the posterior expected log fold-change of the genes corresponding to the 
significantly differentially expressed circRNA, stratified by the sign of the circRNA log fold change. The posterior expected log fold changes were computed as the log 
fold changes conditional on differential expression multiplied by the corresponding posterior probabilities of differential expression. The center mark and lower and 
upper hinges of the boxplots indicate, respectively, the median, 25th and 75th percentiles. Outliers beyond 1.5 times the interquartile range from each hinge are 
shown. The y-axis covers the range (-3,3). Abbreviations as in Figure 1. FC: fold change.  
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functional roles in the hematopoietic system. We estimat-
ed the transcriptome complexity of each cell type, as it 
had previously been reported that whole blood is one of 
the least transcriptionally complex tissues.24 We found 
that, out of a mean of ~10,000 expressed protein-coding 
genes, the number accounting for 75% of each transcrip-
tome ranged from 168 in PLT to 2,422 in resting HUVEC. 
These genes displayed an enrichment for GO terms relat-
ing to basic cellular functions, rather than for terms relat-
ing to the different functional phenotypes or identities, the 
only exception being PLT (Figure 2). These findings indi-
cate that the genes allowing each cell type to perform its 
functions have a wide range of expression values and they 
form a unique, although partially overlapping, transcrip-
tional signature. They also suggest that basic cellular func-
tions are maintained even in those cell types with an 
extremely short half-life, such as neutrophils (Online 
Supplementary Table S5).  

To identify the unique gene expression signatures of 
each cell type, we classified genes according to their cell 
type specificity after grouping the most similar cell types 
into functional categories because otherwise they would 
mutually erase their signals (Figure 3, Online Supplementary 
Table S2). Perhaps not surprisingly given the uniqueness of 
their function in the coagulation process, the largest signa-
ture belongs to the MK/PLT category with 3,502 genes. 
The smallest signature (186 genes) belongs to the CD8TC 
group largely due to the overlap with the CD4TC group 
(Online Supplementary Table S7). As expected, the identi-
fied signatures showed GO-term enrichment correspon-
ding to the core functions of each cell type, with the 
exception of BAS, M0 and MONO. This is likely due to 
the considerable overlaps between the gene expression 
programs in many of these cell types, which causes the 
genes to which the primary functions of these cells are 
ascribed to, not to be selected. Overall, we found that 
almost 60% of known genes are differentially expressed in 
the hematopoietic system. Half of these have a high mean 
expression (log expression >0), whilst only a minority 
(3.5%) of the non-differentially expressed genes have high 
mean expression.  

The annotation-agnostic nature of RNA-sequencing led 
us to identify novel genes using guided transcriptome 
assembly. This approach allowed us to identify 645 multi-
exonic novel transcripts from 400 novel genes. The prop-
erties of these novel genes, such as their overlap with 
transposons and repeat elements, low conservation, low 
expression levels, and high cell type specificity (Figure 4), 
are in agreement with observations in known lncRNA, as 
previously shown by Schwarzer and colleagues.53  The 
high cell type specificity, in particular, most likely explains 
why these transcripts have not been identified previously 
using more coarsely fractionated samples. Moreover, the 
nature of the library preparation (ribo-depletion, inde-
pendent of poly-A tail) allowed us to expand the catalog 
of circRNA transcribed in blood and show that these 
ncRNA display high levels of cell type specificity (Figure 

5). Our findings support the notion that some lncRNA and 
circRNA may have roles in determining cell fate and func-
tions in hematopoiesis,53,54 in line with findings in other 
tissues and organs.55 However, further work is needed to 
understand the underlying mechanisms. Finally, to allow a 
wider access to these data, we created a web-based appli-
cation (https://blueprint.haem.cam.ac.uk/bloodatlas/). Here, 
expression values at gene and transcript levels, as well as, 
expression values for microRNA, novel genes and 
circRNA can be visualized. Moreover, publication-ready 
graphical representations, together with expression values 
can also be downloaded. 
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