Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 3606068, 25 pages
https://doi.org/10.1155/2022/3606068

Research Article

An Intelligent Proposed Model for Task Offloading in Fog-Cloud
Collaboration Using Logistics Regression

Muhammad Mazhar Bukhari,' Taher M. Ghazal, >’ Sagheer Abbas ,' M. A. Khan®,*
Umer Farooq,5 Hasan Wahbah,® Munir Ahmad ©,! and Khan Muhammad Adnan

'Department of Computer Science, National College of Business Administration and Economics, Lahore 54660, Pakistan
2Center for Cyber Security Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600,
Selangor, Malaysia

3School of Information Technology Skyline University College, University City Sharjah, Sharjah 1797, UAE

*Riphah School of Computing & Innovation Faculty of Computing, Riphah International University Lahore Campus,
Lahore 54000, Pakistan

*Department of Computer Science, Lahore Garrison University, Lahore 54000, Pakistan

®College of Computer Information Technology, American University in Emirates, Dubai, UAE

"Pattern Recognition and Machine Learning Lab Department of Software, Gachon University, Seongnam 13557,

Republic of Korea

Correspondence should be addressed to Munir Ahmad; munir@ncbae.edu.pk and Khan Muhammad Adnan; adnan@gachon.ac.kr
Received 16 September 2021; Revised 25 December 2021; Accepted 7 January 2022; Published 25 January 2022
Academic Editor: Carlos M. Travieso-Gonzalez

Copyright © 2022 Muhammad Mazhar Bukhari et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Smart applications and intelligent systems are being developed that are self-reliant, adaptive, and knowledge-based in nature.
Emergency and disaster management, aerospace, healthcare, IoT, and mobile applications, among them, revolutionize the world
of computing. Applications with a large number of growing devices have transformed the current design of centralized cloud
impractical. Despite the use of 5G technology, delay-sensitive applications and cloud cannot go parallel due to exceeding threshold
values of certain parameters like latency, bandwidth, response time, etc. Middleware proves to be a better solution to cope up with
these issues while satisfying the high requirements task offloading standards. Fog computing is reccommended middleware in this
research article in view of the fact that it provides the services to the edge of the network; delay-sensitive applications can be
entertained effectively. On the contrary, fog nodes contain a limited set of resources that may not process all tasks, especially of
computation-intensive applications. Additionally, fog is not the replacement of the cloud, rather supplement to the cloud, both
behave like counterparts and offer their services correspondingly to compliance the task needs but fog computing has relatively
closer proximity to the devices comparatively cloud. The problem arises when a decision needs to take what is to be offloaded: data,
computation, or application, and more specifically where to offload: either fog or cloud and how much to offload. Fog-cloud
collaboration is stochastic in terms of task-related attributes like task size, duration, arrival rate, and required resources. Dynamic
task offloading becomes crucial in order to utilize the resources at fog and cloud to improve QoS. Since this formation of task
offloading policy is a bit complex in nature, this problem is addressed in the research article and proposes an intelligent task
offloading model. Simulation results demonstrate the authenticity of the proposed logistic regression model acquiring 86%
accuracy compared to other algorithms and confidence in the predictive task offloading policy by making sure process consistency
and reliability.

mailto:munir@ncbae.edu.pk
mailto:adnan@gachon.ac.kr
https://orcid.org/0000-0001-5289-7831
https://orcid.org/0000-0002-6799-0390
https://orcid.org/0000-0002-5240-0984
https://orcid.org/0000-0001-9789-5231
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3606068

1. Introduction

Information and Communication Technology (ICT) plays a
vital role in developing and providing services to several
emerging and contemporary applications like virtual and
augmented reality, smart grid and energy saving, and
wearable cognitive assistance applications [1]. Since these
applications need such devices (virtual glasses, fitness bands,
and Global Positioning System (GPS) tracking belts, etc.)
that require the energy/power to operate, processing ca-
pability, and storage capacity too and to execute within a
given timeframe. Most of these applications are delay-sen-
sitive; they need real-time data processing and require re-
sults in a very short time [2]. The devices, for example, a
robot, having multiple sensors contain a low battery with
light-weight processing capabilities; often, in most cases,
they cannot run for a long period of time or may not make
useful decisions in complex situations due to these limita-
tions. Proper utilization of the Internet of Things (IoT) can
help to overcome the limitations and drawbacks of these
devices. 10T enables things to see and perceive their envi-
ronment, make collaborative decisions, and make corre-
sponding tasks based on the observed data. Normally, the
real-time position of robots can be tracked and a system
administrator can send the control commands in case of
complex situations. Some computation-related tasks such as
complex navigation, natural language processing, and ma-
chine learning-based intelligence applications can be for-
warded to remote cloud servers to facilitate these IoT devices
for performing smooth operations [3]. It may be achieved by
a proxy server that is responsible for collecting data from
these devices, applying some desired processing, and for-
warding it to cloud servers. Cloud Computing, as an on-
demand availability of computer system resources, proves to
be a better solution for providing ICT services anywhere all
the time at a relatively low cost on a pay-per-use basis. It has
been providing its services in respect of introducing a unique
transformation of conventional applications for more than
one decade. It offers not only computing (hardware, soft-
ware, network services, etc.) resources but the structured
models too that are suitable for the range of mid-level to
enterprise-level organizations throughout the world [4].

L1. Cloud and IoTs. With the advent of the Internet of
Things (IoT) and mobile devices, an enormous amount of
data is being generated and ever increased day by day. It is
expected that these devices would be increased in numbers
near about 22 billion and economically ranges from 3.9
trillion dollars to 11.1 trillion dollars per annum till 2025 [5].
Mobile traffic for a smartphone will be expected to be 25 GB
on monthly basis and 95% of data will be generated by
mobile networks; the mobile data flow rate is exceeding the
data flow of static devices by a definite gap, i.e., 66% [6].
These devices have good sensing abilities when communi-
cating and collaborating with other technologies that pro-
duce intelligent outcomes to deliver more values to the users.
They require a prompt response and immediate action from
a remote cloud data center as a cloud possesses a resource-

Computational Intelligence and Neuroscience

rich environment with virtually infinite data storage bulk
task computation and network management support. A
layered architecture is shown in Figure 1 that demonstrates
the interaction of client devices with the centralized cloud.
Apart from these characteristics, limitations such as high
latency, huge energy consumption, delayed response time,
high bandwidth requirements, network load, and opera-
tional cost-related factors get increased due to vast traffic
route toward the cloud specifically due to the IoT and
mobile devices, which is not quite feasible for most of the
IoT-based tasks that need a real-time response from the
cloud servers [7].

IoT falls under three major categories: consumer IoT,
industrial IoT, and civic IoT [8], and most of the IoT
applications are delay-sensitive; they need real-time data
processing and require results in a very short time. IoT and
cloud work together, IoT devices as heterogeneous in
nature, generate the tasks in different forms; mainly, these
tasks are of three types: data, computation, and application
which is contained in a virtualized form known as con-
tainers that are light-weight virtualization concept as it is
less time and less resource-demanding, so the tasks are
transferred from device to device known as task offloading
or service delegation [9]. Figure 2 shows the challenges
involved in a typical cloud environment that need to be
addressed in order to realize the true benefits and ensure a
successful user experience. The problem arises when a huge
number of data is generated by these devices simulta-
neously; consequently, the network traffic rush becomes
increased, unnecessary bandwidth is consumed, and ulti-
mately other applications especially requiring surrounding
information face network latency due to congestion in the
network. Normally, these devices are located at dispersed
locations as well as at the local level, generate the task, and
then receive the desired results after processing at remote
cloud; reasonably, no need to offload the data unnecessarily
to the cloud; instead tasks must be executed at some local
environment. The current traditional centralized cloud
architecture exhibits the deficiency of fulfilling the un-
derlying problems. The current approach encompasses
moving all required data from the data generated devices to
the data center for data storage; computation or network
services essentially increase the latency and reduce the
response time [10].

Due to the popularity of smart devices, multimedia
content, video streaming, and voice services, higher data
transmission rates are required. Current communication
technologies, i.e., 3G and 4G, are supporting and fulfilling
the requirements of ever-increasing IoT and mobile devices
but to some extent till the limited device mobility and
network coverage. Distributed and heterogeneous data
traffic is going to increase gradually and so rapidly that these
technologies may not handle them appropriately. The ad-
vancement in high-capacity channels, improved latency-
related issues, and better data transfer rate has become the
critical challenges to obtain the QoS to its desired level.
Being an emerging standard, 5G is a promising commu-
nication technology that claims to achieve the desired goal of
enhanced QoS.

Computational Intelligence and Neuroscience

Base Transceher

! Station

PO

Mobile Devices

Web Service

Cloud
Platform

Cloud

FiGure 1: IoT-cloud architecture.

(Delayed (Intermittent
response | connection

No
immediate
response

(Security and
compliance

(High latency)

FIGURE 2: Data processing challenges at cloud data center.

Undoubtedly, 5G performs relatively better than other
technologies in reducing too much latency in sending and
receiving the information over the WAN assisting in devel-
oping and managing applications with ever better devices and
services. Problems arise with delay-sensitive applications that
need a real-time response from the servers to perform their
intended operations as per their resource requirements. These
include Unmanned Ariel Vehicle (UAV), remote surgical
operations, image processing, and natural language pro-
cessing systems. Alternatively, it can be said, IoT and 5G may
go parallel when mentioned issues would have been resolved.
As far as 5G is concerned, imagine, apart from the 100 times
faster technology with improved latency, too many tasks are
offloaded to the cloud would result in network congestion
with increasing bandwidth problem, eventually remaining to
create the latency problem.

The ultimate solution to analyze and process most of the
data is the placement of a middleware entity where the
necessary operations can be performed as per requirements
near the IoT devices. Sensing the problem, other middleware
entities like cloudlet, fog computing, Multiaccess Edge
Computing, Femto-cloud and Delay Tolerant Network
(DTN), etc. were introduced given that a service provider
offers to depend upon the applications’ requirements. The
basic purpose of this middleware is to facilitate the IoT
devices near the origin of the tasks that require local pro-
cessing, so a prompt response may be provided accordingly
[6, 11, 12]. This middleware resides between the IoT devices
and the cloud data center that receives, gathers, analyzes, and
evaluates the tasks by applying dynamic offloading policies
and decides whether the task needs to be processed at some
local levels or at the cloud.

1.2. Middleware Technologies. A cloudlet, mobility-en-
hanced small-scale cloud data center, was introduced by
Carnegie Mellon University (CMU) as a research project
aimed at providing computational and data storage re-
sources to make the devices nearby instead of accessing over
the Internet traditional cloud and proposes overcoming
some of the issues like high latency, substantial response
time, and data loss that mobile cloud computing architecture
faced. In order to make efficient use of IoT resources such
that saving battery, reducing processing power, and keeping
enough storage, mobile users can oftload their tasks to these
cloudlets. Cisco extended this concept by arguing instead of
having just one entity that provides services on a small scale
that is too resource deficient to generate intensive appli-
cations, i.e., machine learning-based intelligent applications,
high-performance computer applications, smart healthcare,
and smart city applications; rather, a resourceful entity is
required, quite reliable whenever it needs to offload; that
entity is available and can perform extensive tasks [6, 12].
For that reason, Cisco proposed a three-layer architecture in

which distant cloud finds its place hieratically at the top level
and IoT devices are located at the physical layer where all
underlying nodes use the applications and services [13]. A
middleware entity would perform the necessary localized
tasks generated by the IoT devices while eliminating and
reducing the delay factor and personalizing the services as
well. If, however, tasks need to offload to distant cloud data
centers, this signifies this paradigm which was not possible
in cloudlets. This new paradigm “fog computing” overcomes
the cloud limitations while providing such a computing
environment where a requesting device can be entertained at
some local level closer to the IoT devices near the data
generated source [14, 15]. Fog, as an emerging computing
paradigm, assists the cloud in handling the huge amount of
data generated by the IoT devices and processing the data
closer to the source where it is generated as well as coping up
with the security challenges. On the other hand, this tech-
nology is perceived at the initial stage and much work needs
to be performed so far. It is quite pertinent to mention that
this new paradigm fog computing is not the replacement of
the cloud; rather, it fulfills the computational requirements
of the devices at the local level where the data is generated
and the processed data may be offloaded to the cloud (if
requires) and back to requested devices [16, 17].

1.3. Fog Computing. Different IoT and mobile applications
need a diverse set of resources to be processed as per their
task requirements. Requiring resources vary from applica-
tion to application; among them, different applications re-
quire computational resources; on the other hand, some
have delay-sensitive characteristics, so in this way, these
applications can be categorized into two classes: one falls
under delay-sensitive applications, and second falls under
computation-intensive applications [18]. For example, in a
smart car parking system, smart cameras are installed in the
parking areas as shown in Figure 3 that sends the captured
pictures to the fog nodes after every five seconds; an image
processing system, implemented at the fog node, acquires
each picture, analyzes it as per morphological processing
measures, identifies the status of the slots, either vacant or
occupied, and updates the actuator accordingly [19]. In a
smart waste management system, Ultrasonic sensors are
equipped with each bin to know the status of the bin level.
The percentage of waste level is measured and data is sent
periodically to the concerned application modules installed
at distributed fog nodes and the placement and commu-
nication mechanism for each waste department is informed
by these modules at the fog level [20].

In a smart mining system, because of the unpredictable
hazardous in nature and a dangerous environment for
human beings even in normal situations, multiple sensors
can be associated with the fog nodes to know the status of the
environment as land sliding may happen anytime or any
harmful unforeseen event that may not be anticipated.

Various application modules in the mining system need
to be created at fog nodes to receive and process the data
instantaneously as per their processing requirements. Sup-
pose that sensors including gas, chemical, and surrounding

Computational Intelligence and Neuroscience

sensors are used to identify the status or presence of natural
resources; fog modules will take into account the values
captured by the sensors and process and generate a response,
respectively [21]. Because data is generated, analyzed, and
transferred at different levels in all three above-mentioned
scenarios, concerning applications, modules play their
intended roles with the data and produce the desired results
that could not be possible at the device level. Hence,
computation-intensive applications can be entertained at the
fog level. It is worthwhile that these devices need the re-
sponse with respect to their current location and the sce-
narios demonstrate the benefits of fog computing; tasks are
not required to send to a central cloud since these tasks can
be handled at the fog level effectively and efficiently, within
the proximity of IoT nodes and computational resource in
fog; hence, the reduction in latency and communication cost
is achieved for computation-intensive applications and
services [22]. These fog nodes can send the processed data to
the cloud for either permanent storage, analysis purpose, or
further centralized processing, etc. Task response time be-
comes improved due to the immediate availability of fog
nodes [23].

1.4. Advantages of Fog Computing. Fog computing is based
on such computing architecture where fog servers (nodes)
are providing a diverse set of services like cooperation, the
interaction of technological components, and communica-
tion services among connected vehicles, patient monitoring
systems and traffic signals, etc. ubiquitously in a distributed
manner. Instead of contacting the centralized cloud, fog
enables the client devices to utilize its resource pool at the
edge of the network with the scalability characteristics in
ever-increasing IoT and mobile devices [24-26].

1.5. Fog-Cloud Collaboration. Although fog computing has
proved to be a promising standard paradigm that provides
services to various IoT and mobile devices at the network
edge, a lot of research challenges need to be addressed as the
topic of the day. In view of the fact, fog is heterogeneous in
nature by means of node’s capabilities while residing inside
the IoT domain, reaching the desired performance level,
computing resource provisioning in terms of task offloading,
and optimal response time with improved latency are some
of the exemplary research challenges [27].

It is worthwhile to mention that all these research
challenges reflect the Quality of Service (QoS). Besides, it is
admitted reality that the current network topology and
approaches in a traditional remote cloud computing para-
digm for managing the data are no longer feasible to deal
with such huge data. Research in these areas is being carried
out in a quite recent in which fog architecture is reviewed
with the integration of ICT characteristics and support.
Nonetheless, the challenges of offloading, resource man-
agement, and performance level achievement could not be
addressed effectively as all the above-mentioned challenges
directly affect the QoS. If needed to achieve so, a formal and
optimal approach is required to deploy accordingly. How-
ever, improving QoS seems to be a critical challenge,

Computational Intelligence and Neuroscience 5

LTE Mobile oe il _ |
Base Station P (‘)
@) N@®) g Feg B
\Af \A/ o nodes L,
g P = </
W
. s
\\\ ‘0“ \3
«** " Roadside u Lo
¢ = = &
Vehicles :—S\l_. Infrastructure N\ *

-\

LTE + ITS-GS
Onboard Unit

LTE + ITS-GS
Onboard Unit

’)

LTE + ITS-G5
Onboard Unit

FIGURE 3: Smart car parking system.

particularly when a massive amount of raw data is being
generated by mobile and IoT devices that need to be pro-
cessed within a given period of time but then again what,
where, and how. As it is depicted in Figure 4 that an ideal
cloud data center contains virtually infinite resources, this
massive amount of raw data may be offloaded to the cloud;
then, latency-related problems will arise. In case the task is
offloaded to the fog environment, the aforementioned
problems would be solved due to the existence of fog nodes
in the proximity of data-generating devices [28]. Since fog
nodes have a limited number of resources, some data and
computation-intensive applications may not be entertained
at all due to the limitations of fog resources. Here, cloud and
fog intersect each other; cloud overtakes in terms of delay
performance. It seems that it is dependent upon certain
parameters like task length, the computation required, fog
capacity, etc. It depends on the priority of the applications
whether these applications are delay-sensitive or compu-
tation-intensive. There would be a point that distributes the
task offloading between two network entities, i.e., cloud and
fog. It offloads some tasks to the fog and the rest of the tasks
to the cloud. If it is comfortable, then, it is fine; otherwise, fog
needs to be enhanced in terms of capabilities.

It is observed that the data generated by IoT can be
processed at three levels: local level (on the edge of the
devices where it is generated), fog level, and the cloud level.
Some processing may be done at a device level, but the
fundamental problem is what could be a suitable computing
offloading model to improve the QoS at the fog-cloud
paradigm that still needs to resolve. Problem scenarios may
exist, the first problem is raised what to oftload: data,
computation, or application, second, where to offload the
task, either at fog or cloud level as some tasks really need to
be processed at either fog or cloud server(s) but they offload
to a wrong computing platform, and third, how much to
oftload. Usually, the offloading decision is based on certain
parameters like task size, instructions per second, uploading,
downloading bandwidth requirements, burst (computation)
time, etc. These relevant parameters shall be incorporated in

Improg disaster management

&

Intelligent computations

Computational I

and analytical
processing

Big datajanalysis, business intelligence and
visualization

L 4

ldenﬁfiztion of unsafe events to protect
-valu and deters crime

FiGure 4: Computational and analytical processing.

respect of these offloading decisions; on the basis of these
parameters, an intelligent task offloading model is proposed.
After taking the offloading decision at the fog level, which
fog server will be responsible for providing the resources to a
particular task also represents a question mark.

1.6. Task Offloading. The requirements from the IoT and
mobile devices are highly unstable and volatile that may not
be expected or anticipated straight away associated with the
uncertainty of the fog resources; therefore, the problem
needs to be addressed. The basic purpose of this research is
to propose such cost-effective offloading and resource
scheduling predictive model to optimize the given cost of
these devices running their applications to use resources for
oftloading a task, so here all three above-mentioned prob-
lems will be addressed in this research article; we bring the
recommendations of how to resolve them. Furthermore,
some tasks share the same fog resources; the result

encompasses resource conflict in certain scenarios that may
lead to deadlock, and some tasks face delayed response or
there may be the possibility that new tasks will not acquire
resources at all; hence, latency makes its place there. It must
be resolved to enhance the fog performance by offloading
certain tasks to nearby nodes to make sure of the fair uti-
lization of the underlying resources [29].

Some criteria/key reasons for offloading the tasks are
depicted in Figure 5. Keeping in view, in spite of these
criteria, many other factors like energy constraints, limited
bandwidth, not enough computation capability of the
servers, insufficient storage space, and task size are also
responsible for occurring the offloading process. An off-
loading management system (OMS) will be responsible for
receiving, analyzing, transferring, and monitoring the whole
process in this proposed model.

When an application needs to perform certain opera-
tions on the tasks being generated, often it requires com-
putation power more than the capability of its source device;
certain tasks must be offloaded to a comparatively resource-
rich device [30]; for example, a GPS enabled mobile ap-
plication needs the services of the global map located at the
cloud data center.

A task offloading and scheduling problem is presented in
[31] where Rahbari et al. addressed the NP hard problem.
They proposed a novel Module Placement method by CART
(MPCA) algorithm. Task offloading decision takes place on
the basis of the following parameters:

(i) Authentication
(ii) Confidentiality
(iil) Integrity
(iv) Availability
(v) Capacity
(vi) Speed
(vii) Cost

No doubt, the response time and performance would be
improved; however, this approach contains some draw-
backs. A decision made to offload the task to either fog or
cloud is taken at the fog level, which severely affects the
performance of latency-sensitive applications that require
the least delay. Moreover, when no fog device executes the
module, then the task is oftloaded to the cloud because the
current status of fog devices has not been observed prior to
which fog device(s) is busy. Does a fog node contain ade-
quate resources a task is supposed to use in order to fulfill its
computing requirements? Likewise, there is no provision if
the task may be offloaded to the cloud in case of using cloud
resources afterward.

Park et al. proposed a dynamic task offloading model in
[32] using deep reinforcement learning (DRL) based algo-
rithm. The proposed algorithm is intended for joint opti-
mization of delay and energy-efficient communications. The
article focuses on both delay and energy consumption at
each terminal device using the offloading parameters in-
cluding processing and transmission delay as well as the
processing and transmission energy at both terminal and

Computational Intelligence and Neuroscience

edge servers for the reduction in execution delay and im-
proved energy consumption while satisfying tolerance delay
and a trade-off between execution delay and energy con-
sumption. Keeping in view the fact that the tasks generated
by these devices exhibit diverse characteristics like device
connection, data sensing, data transport and access, etc. may
not need the same computing resources all the time. More
training would be required in this ever-changing and digital
transformational environment but too much reinforcement
learning may result in spoiling the working performance of
the model; moreover, the proposed solution needs more data
and significant computational power for the agent to learn a
close optimal policy, which increases the cost and com-
plexity of the model correspondingly.

Even though the paper improves the task offloading
performance by employing DRL using two parameters, i.e.,
delay and energy consumption, other significant commu-
nication-related performance improvement factors such as
latency, bandwidth, response time, and cloud communi-
cation are not discussed. In case the proposed solution is
directly set up at a fog-cloud collaborative system, the de-
sired performance would not be achieved due to the lack of
mentioned parameters along with the absence of a cloud
data center. The reasons include changed environment
settings or reward decision parameters that are required to
be updated periodically. Various factors need to be taken
into account like network allocation, network status, and
resource availability as well as the hybrid nature and scope of
heterogeneous devices with the real-world implementation.
Since edge computing is a centralized solution for providing
better task offloading and data processing, on the contrary,
the underlying devices are located at some scattered remote
geographical locations; therefore, it is strongly recom-
mended and pragmatic that the computing environment is
configured in a distributed manner.

There is no doubt that reinforcement learning is a
machine learning framework employed to solve various
sequential decision-making problems that enable an agent to
evaluate the current environment to maximize returns; too
much reinforcement learning may lead to an overload of the
states that diminishes the training results. Some limitations
are found in terms of the offloading decision at the device
and mobile edge computing (MEC) level. When the off-
loading process occurs, the tasks are offloaded to MEC
servers regardless of the current status of the MEC network.
For example, edge servers either are busy or do not contain
adequate resources and how it is possible for the offloaded
tasks to be entertained at which server and/or rest of the
tasks may be oftloaded to some other entity say cloud data
center, etc. that contains enough resources required by that
particular task.

Another task partition and scheduling algorithm (TPSA)
is proposed by Li et al. in which an Artificial Intelligent (AI)
based collaborative computing mechanism is proposed,
which is based on deep deterministic policy gradient using
deep reinforcement learning technique [33]. Computational
cost and failure of service can be reduced along with im-
proving the reliability and allocation of workload and
scheduling the order of execution of task offloading in

Computational Intelligence and Neuroscience

Implementation of

Resource Constraints

security, privacy and

Computation time

protection

Network Latency

Load Balancing

Data analysis &
evaluation

Saving bulk data

Energy consumption

Other criteria

FiGure 5: Task offloading criteria.

vehicular networks. On the other hand, the proposed al-
gorithm does not provide the solution to assess or compute
the optimal computing strategy. Furthermore, it does not
cater for computational-intensive applications that, in case,
cannot be entertained at some edge servers and may be
denied before or during the execution process.

In order to maintain the interactive and streaming na-
ture, delay-sensitive applications like patient monitoring
systems, voice over IP, disaster management applications,
and multimedia hosting services, where the process is only
possible on the basis of live streaming, require a low end-to-
end delay. Hence, the set of tasks or part of the task must be
oftfloaded to a certain environment residing nearer to the
proximity of the devices where the whole task or the contents
of the task can be processed within an acceptable timeframe
[34, 35].

1.7. Research Contribution. The underlying research article
concentrates on the task offloading in a fog-cloud system
with the intention to enhance the user experience and QoS
together with making the best use of the resource utilization
by employing the best policy practices. The proposed work
will achieve significant-factor efficiency in respect of com-
putation time, latency, energy consumption, bandwidth, and
total network utilization. The intelligent oftloading manager
is responsible for taking offloading decisions based on the
policy it contains; it predicts in terms of anticipated oper-
ations in the whole setup. As a key note of this research
article, the contributions would be as follows:

(i) An intelligent task oftfloading model is proposed in
fog-cloud collaboration based on logistic regression,
a machine learning algorithm, which predicts the
task offloading and the status of resource utilization.
Multilevel task offloading, in which the process is
performed at (i) IoT and mobile devices layer,
means no offloading, (ii) device-to-fog layer off-
loading, and (iii) device-to-cloud layer oftloading.

(ii) Dynamic Offloading Model will solve the problem
intelligently what to offload: data, computation, or

application, where to offload the tasks: fog or cloud
platform, and how much to offload.

(iii) Work performance, anomalies (if any), and the
rationale of how significant the operational func-
tionality of the proposed framework exhibits will be
evaluated.

(iv) The proposed model is a three-layered architecture
where the offloading process is classified into three
levels and the rules of the offloading process begin
when a device cannot find the desired resources to
perform its intended tasks at a specified layer.

As a proof of concept, the proposed model is imple-
mented by employing a simulated environment using a
machine learning-based solution to fully demonstrate the
success and realization of the proposed solution of the task
offloading for fog-cloud resource utilization -efficiently
maintaining load balancing while reducing the overall la-
tency, energy consumption, response time, bandwidth,
network load, and operational cost to the maximum. Sim-
ulation results will prove the significance of the robustness of
the proposed model demonstrating the potential to maxi-
mize fog computing prospects.

The rest of the article is organized as follows. In Section
2, the related work (literature review) is reviewed. The
proposed model is presented in Section 3 with a machine
learning-based intelligent offloading mechanism and results.
Section 4 presents interpretation of results. Finally, in
Section 5, the article is concluded and presents the future
research directions.

2. Literature Review

Cloud-based computing presents certain service and de-
ployment models that transform software integration,
strategic accessibility, and synchronization. While reducing
the IT cost, it participates in business continuity, the flexi-
bility of work practices, and access to automatic updates.
More specifically, intelligent and accurate resource man-
agement provided by significant contemporary technologies

like AI attracts the interest of the research community
serving in various fields using cloud computing. On the
contrary, there is no doubt that IoT and mobile devices
enhance the computational capability and service range with
the assistance of these contemporary technologies in busi-
ness automation, smart decision-making, improved cus-
tomer experience, research and data analytics and medical
research, etc. However, some key challenging issues have
been raised with the advent of these devices as an enormous
amount of data is being generated on a continuous basis that,
preferably, need to be processed promptly and these devices
are resource-constrained like power hungry having low
computational power, less storage capacity, and delay in-
tolerant portable devices which is not enough appropriate to
resource utilization [2]. Tasks need to be performed, for
example, at some nearby network’s edge in a close proximity
to these devices. Many researchers have proposed different
models for task offloading in their respective field of interest.

For solving the task offloading problem, a four-tier ar-
chitecture is proposed in [5] with the game theoretical
approach on the basis of time (delay) and energy con-
sumption as parameters. Since the analysis of this game is
performed in the form of an evolutionary game, the May-
nard replicator dynamics has been employed as the dynamic
routine for the proposed evolutionary game. As a real
dataset, tasks are collected using Python scripts and simu-
lated multiple scenarios in MATLAB. It is a good contri-
bution to the task offloading process; on the contrary, a delay
gets increased due to the increasing number of tasks that
need to be improved.

Aazam et al. proposed architecture in [11], which
consists of three layers with a global gateway: fog only, fog-
cloud integration, cloud only (F/FC/C), and GG by evalu-
ating three-tier COT architecture taking into account var-
ious applications using real datasets based on three scenarios
for offloading: fog-only, cloud-only, and fog-cloud collab-
orative. As far as cooperation mechanism in fog computing
is concerned, all servers in fog cooperate with each other and
then decide who will perform certain tasks. Even in the
presence of a gateway, power consumption and unnecessary
load would be increased.

Liu et al. optimize the max-min fairness of energy
balance, which aims to achieve the fairness of the energy
among multiple IoT devices by optimizing communication,
computation resources, and computing mode selection in
[15], and adjust the frequency of CPU according to the
nature and scope of IoT devices. There are three layers in the
proposed model with the divisible task offloading process. If
offloading often takes place, then latency would be reduced
as well as the reduction in energy of the devices accordingly.
Wireless-powered hierarchical fog-cloud computing net-
work is studied where IoT devices are charged by a Hybrid
Access Point (HAP) as well as processing their computation
tasks. A Generalized Benders Decomposition (GBD) based
solution method is presented at first to find the globally
optimal solution. It uses a three-tier system model consisting
of IoT devices, Hybrid Access Point (HAP), and cloud
center. (HAP contains the Fog devices: servers, etc.). All
offloading including fog and cloud will be done via HAP and

Computational Intelligence and Neuroscience

HAP provides Wireless Power Transfer (WPT) to IoT de-
vices. Research work lacks how to distribute the tasks at
different servers in fog, cloud, or both fog-cloud collabo-
ration. Moreover, the criteria of the poor, worst, good, and
best channel gain are not mentioned.

Josilo and Dén addressed the problem in [27] of how
devices can improve their performance by offloading their
computational tasks at a nearby device or edge cloud. Their
contribution involves the analysis of fog computing systems
and coordinating collaborative computation oftfloading with
low signaling overhead. They proposed an efficient decen-
tralized algorithm based on an equilibrium task allocation in
static mixed strategies. To compute an equilibrium task
allocation in static mixed strategies, a game-developing
model was employed using variational inequality theory. A
decentralized algorithm is proposed in this paper for allo-
cating the computational tasks to the desired locations that
will be demonstrated by the simulation process. The algo-
rithm is compared with a myopic algorithm. Two models are
presented: Communication and Computation Models. Tasks
oftfloading depends upon certain parameters, e.g, execution
time, transmission time, waiting time, response time, la-
tency, size, and complexity of the tasks. A problem in this
research work includes the following: standards/metrics or
range of these parameters are not mentioned; acceptable
time for computation and energy cost of offloading have not
been considered in this research work. Output delay is not
catered as it was assumed that it could be very small; that is
why it might be ignored.

The problem relates to task offloading and resource
allocation, based on energy and time-efficient computation
in terms of how to optimize the computing/completion time
and energy consumption of application requests from IoT
devices at the same time, e.g, computation offloading se-
lection and transmission power allocation. Sun et al. in [28]
proposed the IoT-fog-cloud architecture that demonstrates
the advantages of fog and cloud. In order to improve the
energy consumption and completion time of application
requests, an algorithm of energy and time-efficient com-
putation offloading and resource allocation (ETCORA) is
proposed that is simulated at the paper end to verify the
algorithm in reducing energy consumption and completion
time of requests. It improves the energy consumption and
completion time of application requests. The values of the
computing offloading parameters (input data size, task
deadline, computing time, transmission power) are not
provided; rather, their mathematical equations are
mentioned.

With the aim of reducing the vehicular networks service
latency as well as improving the reliability, allocation of
workload, and scheduling the order of execution of task
offloading, a task partition and scheduling algorithm (TPSA)
is proposed in [33]. In order to ascertain the policy for
vehicle task offloading, an Al-based collaborative computing
mechanism, deep reinforcement learning technique, i.e.,
deep deterministic policy gradient, is devised. By employing
this mechanism in collaborative computing, the cost of
service and plenty of service failure can be reduced. They
claim that the proposed TPSA will be recommended to

Computational Intelligence and Neuroscience

comply with the low latency and reliable services to the users
even in a multifaceted urban transportation network
structure. However, the algorithm may not provide the
solution to figure out the optimal computing strategy and is
left for another research work.

A dynamic task offloading mechanism is proposed in
[34] for software-defined networks. In this research, mul-
tihop access points are used with fog nodes. In order to
present an Interlinear Programming formulation of the
problem, Misra et al. employed a linearization technique by
proposing a greedy heuristic-based mechanism. Their ex-
periments demonstrated that energy consumption and the
average delay are relatively reduced by 21% and 12%, re-
spectively. A problem exists in their work with a static
network topology as mobile access points exist in real to-
pologies which they have left for future work. The proposed
scheme seems to be a good solution for reducing the average
delay as well as energy consumption in the entire network.
Changing factors, such as the increasing number of tasks,
heterogeneous and dynamically distributed locations of the
devices, and accessing gateways/access points to create the
additional overall delay, must be incorporated and
addressed.

Deep Q Network (DQN) based dynamic oftloading al-
gorithm is proposed in a mobile edge computing system in
[35]. Since the proposed algorithm is based on deep rein-
forcement learning (DRL), therefore, it improves its per-
formance on the basis of DQN. It is designed for the joint
optimization of both delay and energy-efficient communi-
cations. In so far as the performance evaluation of the
proposed algorithm is concerned, simulation results prove
that this algorithm achieves the desired performance spe-
cifically in case the environment exhibits changes/im-
provements in its computational strength. In order to
perform performance evaluation as well as real-world
implementation, other parameters like computational
overhead, bandwidth, and energy efficiency should be in-
corporated in mobile edge computing. As far as the pro-
posed algorithm is concerned, it seems good; however, it
does not qualify for providing scalable computing charac-
teristics. Design and implementation of distributed com-
puting are left for future work that would contribute to the
scalability and practicality of the whole network.

In [36], using the notion of game theory, two QoS-aware
distributed algorithms are proposed. For Industrial Internet
of Things (IIoT) devices, a Multihop-Communication Co-
operative Model (MCCM) and the QoS-aware computation
offloading and routing problem are devised as a Multihop
Cooperative computation offloading Game (MCCG). In
order to restrain the underlying devices acting as relays as
well as used potential game theory to prove that the game
achieves a Nash Equilibrium (NE), Zicong Hong et al.
designed two QoS-aware distributed algorithms that can
reach an NE and proved the convergence of the algorithms.
Finally, the simulation results demonstrate the working
functionality of the proposed algorithm. The proposed al-
gorithm not only balances properly as the IoT device size
increases but is more stable and performs better than
existing algorithms under a variety of parameter settings.

In order to minimize energy consumption and service
latency, keeping an eye on critical challenges of wide de-
ployment of Vehicular Fog Computing (VFC), Yadav et al.
proposed an energy-efficient dynamic computation off-
loading and resources allocation scheme (ECOS) in [37].
While satistying the vehicular node mobility and end-to-end
latency deadline constraints, the ECOS problem is addressed
as a joint energy and latency cost minimization problem. On
the basis of resource utilization, a computational offloading
selection policy is devised that offloads the tasks from an
overload cloudlet node. A heuristic approach is proposed
between the vehicular node and selected IoT-related tasks
that resolve the resource allocation problem. It is claimed
that the proposed scheme can effectively minimize the
energy consumption and service latency; however, the
process of obtaining overall computational capability, re-
source availability, and communication cost of a particular
cloudlet node have not been examined. Moreover, if in-
coming tasks demand more computation beyond the ca-
pability of cloudlet, then the task cannot be processed at all.
It is important in view of the fact that the current status of
cloudlet nodes needs to be distributed across the network as
it becomes more specific in a heterogeneous environment.
The mechanism of intercommunication among vehicular
nodes is also missing and left for future work.

3. Proposed Research Methodology

In this section, the proposed model and the interaction
among its components with the essential interfacing re-
quirements are demonstrated. The proposed model consists
of three layers in respect of intelligent task oftloading in fog-
cloud systems. It is composed of both fog and cloud servers.
This underlying fog-cloud environment is comprised of
distributed resources that are heterogeneous in terms of
network hierarchy start from the very basic physical layer of
a network to the centralized cloud environment. Hetero-
geneous means these devices are dispersed at different
geolocation and not stationery. The host servers, which
perform as computing resources, intended for providing
services to various application tasks, are enriched with a
diverse set of resources. It is based on two types of appli-
cations, i.e., delay-sensitive applications and computation-
intensive applications.

3.1. Fog-Cloud Intelligent Task Offloading Model. The ar-
chitecture consists of three layers and an intelligent task
offloading management system (OMS) as shown in Figure 6.
The following are the brief details of each layer:

(i) IoT/physical layer
(ii) Fog layer
(iii) Cloud layer
Each layer is composed of different devices, nodes, and
servers, respectively. All IoT and mobile (sensors, actuators,
and other data generation) devices are located at a physical

layer. The fog layer contains a set of servers, normally called
fog nodes. The cloud layer contains the set of servers (virtual

10

Computational Intelligence and Neuroscience

Remote Cloud
Data Center

Intelligent Offloading
Managment System

Lapheanon
c

Analyze

-

e o iy

o Cloud Layer
A : "i U=
=
= e =
x Nodes
- - g Fog Layer 3
Internet of Things)
/i
o & N in
S e P o
T et e 7 = o
c = waweond = D =
B Sracrode B > B
! e O . & e "7 o1 Layer

FIGURE 6: Proposed fog-cloud intelligent task offloading model.

machines). The proposed model can be understood as a
hierarchal model that contains three offloading modes. No
offloading mode is performed at the physical layer provided;
the devices contain sufficient storage and computation
power and run the application on their own. The offloading
process begins when a device cannot find the desired re-
sources to perform its intended tasks; initially, an intelligent
offloading management system (OMS) is an entry point in
an offloading process.
The following are the brief details of each layer.

3.1.1. IoT/Physical Layer. The physical layer is a low-level
layer in the hierarchy of the proposed model that consists of
all interconnected heterogeneous IoT and mobile devices
that generate the data. Data will then be offloaded to the
upper layers of the model. For simplicity’s purpose, all
devices are named that generate the data as sensors, and the
devices that provide the results are named as actuators. In
this way, the same device may be a sensor or actuator
depending on its working behavior. In a smart city, various
types of trackers, cameras, LCDs, buzzer alarms, virtual
glasses, etc. act as sensors and actuators that enable things to
see and perceive their environment, make collaborative
decisions, and make corresponding tasks based on the ob-
served data.

3.1.2. Fog Layer. The fog layer is located in the middle of the
hierarchy in the proposed model as shown in the middle
layer of the model. It is a distributed network environment
closely related to both the physical layer (bottom) and cloud
layer (top). This layer contains multiple servers called nodes
that are distributed across the network. These fog nodes
contain the adequate set of resources that an IoT device may
demand including data storage, computation, application
execution, and placement services. Since it is required to
enhance the overall efficiency and reduce the data being
routed toward the cloud, therefore, several fog nodes are

deployed in this proposed model setup. In so far as the fog
layer is concerned, it is meant to improve the overall effi-
ciency of the network, so every task that needs to be pro-
cessed is expected to be handled at this level. This improves
the QoS by lowering down the latency and network response
time. Tasks are assigned such node(s) that contain adequate
computing resources by fair utilization of these resources.

3.1.3. Cloud Layer. The cloud layer is located at the top of the
hierarchy in the proposed model; that is, unlike fog com-
puting, the cloud data center is centralized in nature. As is
mentioned above, a typical cloud server has virtually infinite
computing resources; all resources are assigned that an IoT
task can demand. The servers located at the cloud layer can
run extensive applications like machine learning-based
contemporary applications, natural language processing, big
data analytics, etc.

3.2. Offloading Management System. An entry point in an
offloading process that possesses four main characteristics:

(i) Custodian of Offloading Policy Repository
(ii) Hold the recent status of fog snapshot
(iii) Receive-analyze-oftload the tasks
(iv) Prediction construct

Brief details of the characteristics of the offloading
management system are described hereinafter.

3.2.1. Custodian of the Repository: Task Offloading Policy.
Conventionally, an OMS contains the policy details about
the whole offloading criteria. Which task needs to be oft-
loaded to which network and based on some criteria as well
as what strategy would be implemented in which situation
and how as it is a complex process to perform with the
underlying decisions?

Computational Intelligence and Neuroscience

3.2.2. Hold the Recent Status of Fog Snapshot. An OMS is
linked with the master node of a fog layer in an asymmetric
environment which knows the status of all fog nodes and the
availability of the free resources. The master server sends the
OMS about the details after a specified interval of time. The
master server distributes the tasks among fog nodes
according to the resources they contain and return them
back to the OMS after receiving from the fog nodes.

3.2.3. Receive-Analyze-Offload the Tasks. IoT and mobile
devices are supposed to send the tasks to the network for
processing purposes. That task may consist of data that needs
to be sorted, stored, video streamed, or rendered. It may
need computation to be processed accordingly. A task may
be an application that needs to be offloaded at some nodes.
After receiving the tasks from a device, OMS is responsible
for offloading the tasks to the concerned computing plat-
form, so according to the policy it follows, the whole pro-
cedure of task oftloading is explained briefly in Figure 7.

3.2.4. Prediction Construct. Usually, a large number of re-
curring tasks are generated, which are similar in their resource
requirements, frequently needing to be decided from scratch
for offloading process would be causing unnecessary delay in
offloading decision-making. The traditional offloading mech-
anism is not quite suitable for the success of the entire process
in terms of assurance of QoS. Machine learning is a form of an
automated data analysis for developing analytical models [38].
That is why it enables the task offloading process to access
hidden patterns, trends, and insights of the received tasks. It
improves its working functionality continuously from the past
data. Being a predictive analysis machine learning algorithm,
logistic regression is used in this article to classify the tasks
based on probability. Application scenarios are continuously
changing with the usage and the scope of their tasks becoming
updated gradually; it is quite feasible for an OMS to be trained
as it improves the learning capability of the overall network.
Although it has been observed in presenting offloading deci-
sion process by employing some traditional machine learning
algorithms, deficiencies in the current machine and deep
learning methods include slow learning speed, may not cope up
with the ever-changing environment, and input data from
diverse sources, together with simplifying and integrating
offloading scenarios and testing protocol. Due to ever-changing
scenarios and requirements, logistic regression is used in the
proposed model in the IoT-fog-cloud environment to perform
the actions relevant to predicting the offloading decision. The
objective is set for this so-called offloading manager to choose
actions that maximize the throughput within a given amount of
time.

3.3. Categories of Task Offloading. The entire process is ac-
tivated by the intelligent OMS. Its formation consists of
offloading policy repository, organization, and monitoring
oftfloading process, a recent snapshot of fog capability and
availability, and knowledge base. It organizes each task and
analyzes and offloads according to the optimization policy.

11

Figure 8 depicts the four formal categories of task offloading.
The following section explains the proposed categories of
oftloading process.

3.3.1. No Offloading. A task offloading process is not re-
quired when the task is no longer supposed to offload and
obtains the desired resources from the task generating de-
vice. For example, a simple comparison between two values
does not need to be processed at some remote location;
rather, it would be performed at the device by utilizing the
resources of the same device. Normally, no offloading is
quite appropriate for nonsharing datasets that can be
handled at the device level.

3.3.2. Device-to-Fog Offloading. The offloading process
starts when the task needs to send to some remote location
or a local device cannot find the required resources to
process the task data itself. The task is offloaded to either fog
or cloud in the setup and it would be done using an OMS
installed at the entrance of the fog environment.

(1) Node-to-Node Offloading. Once the fog network is selected
for offloading the task, it becomes significant to which node
that specific task needs to oftload since several fog nodes are
providing their services in a typical fog layer exhibiting dif-
ferent diverse resource provisioning capabilities. It falls under
load-balancing characteristics too in terms of offloading the
tasks to such nodes that have not been considered for assigning
the tasks while other nodes are busy with the processing of
already assigned tasks. It is significant to assign the tasks to such
nodes that conform to the resource availability for that specific
task(s). Hence, certain criteria may be taken into account as the
current location of the node, service status, rating of processing
the tasks, required resources-richness, low latency, improved
response time, etc. Furthermore, if the task is dividable, then
the task may be offloaded to various nodes.

OMS contains the updated status of all fog nodes in
respect of mentioned parameters. Whenever the current
system state is changed periodically, the concerned node is
intimate to the OMS about its transitional situation
accordingly.

(2) Fog-to-Cloud Offloading. In some cases, when tasks are
processed at the fog level, it is required to offload the re-
sultant data to the cloud level for performing further op-
erations on that processed data or storing permanently. The
cloud analyzes the data after receiving it from fog nodes and
processes it accordingly by either sending back the responses
to fog nodes or storing them correspondingly.

3.3.3. Device-to-Cloud Offloading. Tasks may be offloaded
directly to the cloud. The rationale involves here encom-
passing and storing the data permanently without requiring
the fog resources (reasons may be not enough storing and/or
computational capacity). Security and privacy issues are
considered to be important factors for IoT device-to-cloud
offloading process.

12

Computational Intelligence and Neuroscience

Receiving the tasks from
a device'

Analysis of the task to
know the required
resources

Weight up the desired
resources to the
resources of the

available servers at fog

and cloud data center

Offload the tasks
successfully

FIGure 7: Task offloading procedure.

Device-to-Cloud

No offloading offloading
o

Device-to-Fog

offloading

« Node-to-Node

offloading

« Fog-to-Cloud

offloading

Multi-Fog
offloading

FiGure 8: Task offloading categories.

3.3.4. Multifog Offloading. Multifog offloading occurs when
a task needs to offload to a specific fog network and it is busy
or may not comply; then, the fog-to-fog offloading process is
activated providing a nearby fog network which is available
and permissible. The tasks of autonomous vehicles, drones,
and mobile devices usually need such offloading to perform
their intended operations.

3.4. Simulation Setup. Apparently, it seems that the
method that is performed in [11] using SFogSim simulator
is a traditional way to tackle the task offloading problem.
On the contrary, as far as the delay-sensitive specifically
AR/VR and real-time applications are concerned that
need a prompt response within a prescribed range of time,

such mechanism is required that fulfills the true re-
quirements of these applications efficiently. Requirements
include low latency, improved response time, enough
bandwidth, and less energy consumption. The machine
learning simulation environment is performed to assess
and appraise the proposed fog-cloud intelligent task
offloading model. The simulation has been performed
using Anaconda Python which is a data science platform
for data scientists, IT professionals, and business leaders.
It is a distribution of Python, R, etc. The model is trained
using a set of machine learning algorithms which include
logistic regression algorithm, K-Nearest Neighbor
(KNN), Naive Bayes, Decision Tree, Support Vector
Machine (SVM), Multilayer Perceptron (MLP) while lo-
gistic regression algorithm is the proposed algorithm.

Computational Intelligence and Neuroscience

The dataset is obtained from [11] comprising the tasks
that are heterogeneous in nature containing high variability
in terms of data types, configuration, and format. Since it is
not relatively easier with traditional methods to predict or
anticipate this heterogeneous data to meet the intended
requirement of delay-sensitive and real-time applications,
the dataset contains the necessary parameters that partici-
pate in the task offloading decision intelligently, hence
maintaining the QoS efliciently while enhancing the user
experience. Tuples are classified as abrupt, bulk, large, lo-
cation-based, medical, multimedia, and small textual data
type that contain various time features like Tuple Elapsed
Time, Tuple Initiates Time, Tuple Propagation Time, In-
ternal Processing Time, and Total Time Taken by a tuple.
Devices, which are located at some distributed places and as
mentioned above generate heterogeneous data, are of var-
ious types including actuators, dumb objects, mobile, node,
and sensor through which these tuples are being generated.
In case the task can be entertained at some fog level, it will
offload to the fog node providing the given policy accord-
ingly; the target label IsServedByFC would possess the value
as 1; otherwise, 0 if the task will be offloaded to cloud data
center.

Once the prediction process is finalized in respect of the
fog network, the offloading management system (OMS)
oftloads the task to the designated fog node. On the other
hand, according to the mentioned policy, a task would be
offloaded to the cloud data center if the underlying task
cannot be offloaded to the fog network due to the limitation
of the computing resources desired by that particular task.
The description of the underlying attributes and their types
is mentioned in Table 1.

3.4.1. Cloud Data Centers. A number of servers exhibiting
different hardware and software specifications are available
at the data centers that are used in the setup as shown in
Table 2 which create virtual machines and provisioning of
computing resources as services accessed and availed by
those tasks that might not be handled at some fog level.

3.4.2. Fog Nodes. A number of 5 fog nodes are used in the
simulation process. Table 3 contains the hardware specifi-
cation of these nodes. As mentioned above, cloud servers
present virtually infinite computing resources as virtual
machines process the tasks on the resources that are virtual
in nature too, which have been reserved generally, so the
tasks that could not be processed at fog level will be pro-
cessed at cloud data center accordingly. Upon completion of
the process, the response would be sent back to the OMS for
further operations.

3.4.3. Simulation Steps. Dataset requires some preprocess-
ing operations where details are mentioned below. Data is
divided into two main categories, one is intended for
training purposes, and the rest of the data is used in the
testing and validation process. Approximately 70% of data is
used for training purposes. The proposed model is logistic

13

regression by which the model will be trained and predicted
accordingly. The symbols used in the simulation are defined
in Table 4.

The following are the necessary steps that are performed
during the whole simulation process. These steps are in
formal nature and must be performed in a predefined se-
quence of steps.

(1) Knowledge Discovery in Data. As far as the discovering
and finding of data is concerned, it includes data selection
and retrieval, data analysis, and pattern recognition. Table 1
contains 34 features (input variables) and one label (target
variable). The target variable contains binary values as 1 and
0. One of the binary values 1 represents that task would be
oftfloaded to fog network, otherwise to cloud data center.
Figure 9 depicts the segregation of rows that correspond to 1
consisting of 4326 (43%) instances; 5674 (57%) instances are
of 0 values in respect of output (label) variable.

The algorithm shows the pseudocode of the task off-
loading process. It explains the entire process of finding the
probability of whether the task is oftloaded to either fog or
cloud. It checks and verifies the values of certain parameters
and constructs the prediction process. (Algorithm 1).

4. Result Interpretation

Upon observing the dataset carefully, it comes to know that
approximately 25% of tasks are offloaded to fog whose size
ranges from 80 to 120, 50% of tasks are offloaded to fog
ranging from 170 to 300, and the rest of the tasks are off-
loaded to cloud data center. Tasks are going to be offloaded
to both fog and cloud depending on the task requirements
and availability of resources for that task specifically. Fig-
ure 10 depicts that bandwidth is going to increase with the
task size when it is offloaded to the cloud; on the contrary, it
is the opposite in case a task is offloaded to fog and
bandwidth is getting reduced. Less bandwidth means re-
duced delay that improves the response time; hence, net-
work usage and congestion become lower down. On the
other hand, memory usage and burst time may not be re-
duced or affect either task that is offloaded to fog or cloud. A
large task needs relatively more CPU burst time compared to
a moderate task.

4.1. Data Preprocessing. Data preprocessing include feature
engineering and feature selection and dimensionality re-
duction. Feature engineering implicates data transforma-
tion, imputation or handing missing/null values, removing
outliers, preventing overfitting, dummy variables, standard
scaling, etc.

Feature selection and dimensionality reduction is the
process of automatically retaining or reduction of the di-
mensionality of the set of features into the moderate level so
that these features can be modeled.

4.1.1. Feature Engineering. Observing the dataset used in the
simulation process, it contains missing/null values that need
to be handled effectively. As it is not advisable to remove or

14 Computational Intelligence and Neuroscience
TaBLE 1: Description of dataset attributes.

Sr Attribute Description Type Missing
values

1 ID Uniquely identified tuple identification number Text 0

2 Size Size of a tuple Numeric 0

3 Name Name of a tuple Text 0

4 MIPS Million instructions per second Numeric 0

5 NumberOfPes Number of processing elements Numeric 0

6 RAM How much memory is required Numeric 0

7 BW Bandwidth of a tuple required Numeric 0

8 Source Tuple originating source Numeric 10,000

9 Destination Tuple processing server/node Numeric 10,000

10 Delay Tuple delay details Numeric 0

11 Priority Urgency/importance of a tuple Categorical 0

12 CloudleftSche_duler/ Scheduling information of a tuple Numeric 0

PreviousTime

13 CloudletScheduler/CurrentMips Scheduling and sharing information Numeric 10,000

14 CurrentAllocatedSize Size of a tuple allocated at the time Numeric 0

15 CurrentAllocatedRam Amount of RAM allocated to a tuple Numeric 0

16 CurrentAllocatedBw Amount of bandwidth allocated Numeric 0

17 CurrentAllocatedMips Amount of MIPS allocated to a tuple Numeric 0

18 BeinglInstantiated Status of a tuple Categorical 0

19 GeoLocation/latitude Latitude location of the tuple source Numeric 0

20 GeoLocation/longitude Longitude location of the tuple Numeric 0

21 DataType Data types of tuples, i.e., abrupt, bulk, large, location based, medical, etc. Categorical 0

22 DataPercentage Data size Numeric 0

23 Tuple_Reversed Tuple reversed from fog to cloud Categorical 0

24 IsServerFound If tuple found any server to be Numeric 0

25 IsCloudServed Is tuple served at cloud data center Categorical 0

26 IsServed Is tuple served by any server Categorical 0

27 DeviceType Actuators, dumb objects, mobile, node, sensor Categorical 0

28 Service Is tuple being served Numeric 0

29 QueueDelay If tuple finds delay while in queue Numeric 0

30 InternalProcessingTime Time taken to be processed Numeric 0

31 FogLevelServed If tuple is served at a fog node Numeric 0

32 IsServedByFC_Cloud If tuple is served at a cloud server Numeric 0

33 BurstTime Total burst time of a tuple Numeric 0

34 BurstTimeDifference Difference of burst time Numeric 0

35 IsServedByFC (output) Tuple serves at cloud server Categorical 0

TaBLE 2: Cloud data centers used in the setup.

DC Geolocation Memory (MB) Storage (MB) MIPS BW (kbps) Arch oS Status

USA data center 37.422421, —2.0866703 51200 1000000 500000 50000 x86 Linux Live

Singapore data center 1.277911, 103.849662 51200 1000000 500000 50000 x86 Linux Live

TaBLE 3: Fog nodes used in the setup.

Sr Name Size MIPS RAM UpBW DownBW Processor burst time

1 PakFog-0 25000 110000 16384 2500 1700 25

2 PakFog-1 10000 50000 6144 1000 700 25

3 PakFog-2 20000 95000 12288 2000 1500 25

4 PakFog-3 15000 85000 10240 1500 1200 15

5 PakFog-4 12000 75000 8192 1200 1000 30

Computational Intelligence and Neuroscience 15

TaBLE 4: Symbol description.

Symbol Definition

D Dataset

FE Feature engineering
FS Feature selection
Logit Logistic unit (log odds)
p X Sigmoid function
EOF() End of file

z Weighted sum

Bo Intercept or bias term
By Coeflicient

X Features

F (2) Calculate probability
C Cloud data center

F Fog network

P Predicted/Estimated probability

0 (Cloud Datacenter)

1 (Fog Network)

FIGURE 9: Data bifurcation of fog-cloud offloading.

(1) Load D
(2) Preprocessing D
(i) FE
(i) FS
(3) Train D, test D, split D
(4) Classification modeling
logit = logodds
p(X) = 1/1 + e Fotbx
(i) Task offloading prediction
for i=0 to EOF()
for j=0 to (X.length-1)
calculate Z
return Z
p=f (@)
if(p==1){
offloads to F
1
Else{
offloads to C
1
1
(ii) Estimation the Logit Model
Estimated probability: p' = p/1 - p
p’ = eﬂu*ﬂlx/l — (eﬁu+ﬁlx)
(iii) Interpreting logistic regression result
(iv) Interpreting model coeflicient
(v) Estimated logit model

ArLGoriTHM 1: Task offloading in fog-cloud collaboration.

16
BW Usage
350
300
250
200
150
100
50
0
—— Size
—— BW

Computational Intelligence and Neuroscience

RAM Usage

1200
1000
800
600
400
200
0

B RAM
= BW

Burst Time

0 50 100 150

W Burst Time
B Size

200 250 300 350

FEATURE 10: Feature analysis.

set mean/median values in place of missing values, therefore,
a relevant algorithm is suggested to be used to observe and
handle these values so that a formal solution may be devised.
Additionally, the services of some domain experts can be
taken to resolve the problem correspondingly.

Checking and removing outliers, often datasets contain
some values that may be outside the range of the data and
affect the expected results. These are referred to as outliers
and, sometimes, machine learning exhibits improvements
by considering and yet eliminating these outliers. Carefully
observing the underlying dataset as shown in Figure 11,
some instances in MIPS and bandwidth do not follow a
similar pattern to the rest of the data; removing these values
is in fact the process of removing the outliers from the
dataset. To deal with the outliers in the fog-cloud dataset,
techniques include transforming values, deleting observa-
tions, imputation, treating outliers separately, deleting/re-
moving those instances that skew the analysis, etc.

Encoding categorical data, machine learning models are
supposed to work with numeric values; if the dataset con-
tains some textual data relevant to some categories, then it is
mandatory to encode these categorical data to numbers in
order to avoid problems. The employed dataset contains the
following three attributes with their respective values that
are categorical in nature and need to encode accordingly.

(i) Priority (high, low, medium)
(ii) Data Type (abrupt, location based, medical, mul-
timedia, small textual)
(iil) Device Type (actuator, dumb objects, mobile, sen-
sor, node)

4.1.2. Feature Selection and Dimensionality Reduction.
Feature selection is the process of carefully choosing the
input variables while planning and developing a machine
learning-based predictive model. An approach, the corre-
lation coefficient method, is being described to employ the
moderate number of necessary features deprived of com-
promising the model accuracy by using the correlation
method. Feature selection is supposed to be a significant
process in the underlying research work that assists in the
enormous amount of data being generated by IoT and
mobile devices as well as evaluation and management of
algorithms in predicting the target network computing
system at either Fog and or cloud data center level.

Statistical measures are quite significant to obtain the
details of the data that is used to train the machine learning
model and to interpret the results in the simulation setup. It
incorporates the total number of instances, mean, standard
deviation, minimum, maximum, and percentage values.

The Pearson correlation coefficient method is used to
select the appropriate features in the simulation process. This
method measures the strength of a linear association of
variables, specifically two variables by taking a range of
values from -1 to +1, 0 indicates no association at all, while
-1 and +1 indicate the association of either negative or
positive. Hence, the selected features are dependent upon the
associated values generated by the Pearson method. The
whole working of feature selection and reduction is de-
scribed in the mathematical formula as follows:

. NYxy -2 (QXy)
[VNIX' - (] [VN Y - (Zy)*]

1)

Computational Intelligence and Neuroscience

17

100 150 200 250 300 0
Size

200 400 600 800 1000 1200 200 400 600 800 1000
MIPS

RAM

20 40 60 80 100 120 140

0 5 10 15 20 25 30 35
BurstTime

FiGure 11: Identification of outliers.

where r is the correlation coefficient, N is the number of pairs
of scores, Y xy is the sum of products of paired scores, Y x is
the sum of x scores, Y y is the sum of y scores,) x2 is the
sum of squared x scores, and Y y2 is the sum of squared y
score. Since correlation coeflicient is a statistical measure of
the degree, statistical measures (count, mean, standard
deviation, smallest and largest values of each variable) of the
whole dataset are mentioned in Table 5.

4.2. Training, Testing, and Splitting the Data. The output of
the data preprocessing process is used to split the dataset
into two major categories, i.e., train and test. First, the model
is trained using the training dataset that is 70% of the whole
dataset. Once the model is trained, 30% of the dataset is used
for testing the model in order to evaluate the performance of
the logistic regression model. Training and testing data are
two different but significant parts in machine learning where
training data is used to teach the logistic regression algo-
rithm, whereas testing data, as its name implies, assists in
validating the progress and optimizing the training of the
employed algorithm to obtain the improved results.

4.3. Classification Modeling. Logistic regression is used as
the proposed model in the simulation process. Some other

algorithms are used to train the model. The proposed model
calculates the probability of data points of the fog-cloud
dataset belonging to either fog or cloud class-related task
offloading. The use of exponent in the sigmoid function is
validated as the probability greater than zero and the
property of exponents takes care of this aspect.

1n<11_’;p) = By + BiX, ©))

where p/1 — p is the odds ratio, B, is the intercept or bias
term, 3, is the coeflicient of X, and X represents the feature
(input value). As far as the training and testing of the data
are concerned, the exploratory variables are grouped
quantitatively and categorically in the model. Quantitative
variables include size, MIPS, RAM, BW, and BurstTime.
Categorical variables include Priority, DataType, and
DeviceType which are typically referred to as dummy
variables, and we can implement a dummy variable
multiple regression to obtain these parameter estimates.
Here, though our focus is on the dependent variable Y, for
example, we may be interested in learning if a task off-
loading would be done at either fog or cloud level;
therefore, y becomes binary variable taking on categorical
values of 1 if task offloading is done at fog and 0 if task
oftloading is done at cloud.

18 Computational Intelligence and Neuroscience
TaBLE 5: Statistical measures of the data.
Size MIPS RAM BW Geo/latitude Geo/longitude BurstTime IsServedByFC
Count 10000 10000 10000 10000 10000 10000 10000 10000
Mean 206.683 344.65 418.43 88.494 33.68742 73.0078 12.662 0.4326
std 74.722 350.36 325.31 39.0848 0.065175 0.084029 9.305505 0.495461
min 80 50 100 20 33.57106 72.83865 0 0
25% 170 100 200 80 33.63828 72.94511 10 0
50% 220 200 300 90 33.70275 73.01083 10 0
75% 270 500 500 100 33.73518 73.09606 15 1
max 300 1200 1024 150 33.78799 73.14154 35 1
logit = logodds, (") must be less than 1 (since p<1).
Logistic Regression Function is
fo
odds = 1}’(7(?)) : 1 - p(fog) = cloud, EXP (B, + f,X) forhiX ©)
—pliog = = .
1-EXP(B,+,X) 1 _(eﬁw/le)
X E R’ . . . PR
Not only quotient will remain positive; any number
p(X) € [0,1], divided by another that is slightly greater than it would
always result in a value <I.
p(y =1IX) = p(X), { EXP (B, + B, X) isverylarge, p = 1 }
if . (7)
1 ; —
Sigmoid Function p (X) = — EXP (B, + B, X) isverylarge, p =0
1+e ™

(3)

4.3.1. Task Offloading Prediction. In order to forecast, we
need to identify the condition that must be satisfied by the
probability function, f (*), where

(1) f () must always be positive (since p >0)
(2) £ (") must be less than 1 (since p<1)
It is required to constrain p such that 0 < p < 1. Modeling

with Linear Probability Model (LPM) where problem in-
cludes “can produce predicted probabilities > 1 or < 0”.

Y =B+ X+ BXy + - fuXps

provided that y=1 if at fog level and 0 at cloud level.

f (%) must always be positive (since p >0)

Logistic probability function with one explanatory
variable can be represented using the exp notation.

p= EXP(ﬁo +pX = eﬁ(ﬁﬁlx)'

(4)

(5)

Although this function is always positive, it could be > 1;
that is why it will not work.

Since the exponent of any number negative or positive is
always positive, any number divided by another number that
is slightly greater, it would always result in a value of less
than one.

eﬁo +$X

pzl—@%wx) (8)

This logistic function is nonlinear; by performing some
algebra, the logistic expression can be rewritten to obtain the
following linear function, which is the logistic regression
model.

Therefore, In <1p> =B, + B X 9)
- P

Thus, even though the probably p is not a nonlinear
function of X, this transformation is a linear function of X.

In this derivation, the left-hand side of the equation is the
natural log of the odds ratios where p in the numerator is the
probability of success and 1 minus p in the denominator here
is the probability of failure. The above model is what is
implemented in logistic regression.

In the logit model,

Computational Intelligence and Neuroscience 19
- eﬁo*ﬁlx
probability of foglevel = p(y = 1) = p = m,
. eﬁo*ﬁlx
probability of cloudlevel = p(y=0)=1-p=1- m, (10)
Bo+BiX
. p €
oddsratio = = .
1- P 1 _(eﬁ()*ﬁlx)/l _(eﬁ()*ﬁlx/l _(eﬁoﬂ;lx))
Odds ratio (relative risk) is the ratio of the probability of
oftloading the task to fog over offloading to the cloud.
A =By +BiX
p % % e et e+l 1 (11)

= =¢c.

l—P_eA+1/1—(e*/e*+1)_e*+1/1—(e*/e*+1)_e*+1/1—(e*+1—e*/e*+1)_ dr1 1o é

Replacing A, therefore,

p — BotBiX
T P, (12)

By taking the natural log of both sides, a logistic re-
gression model can be found.

1n(1fp) =By + X, (13)

4.3.2. Estimation of the Logit Model. In order to estimate the
parameters of the logistic regression model, the Maximum
Likelihood Estimation (MLE) method is used.

1n(1fp) = By + B, X. (14)

Estimated probability is p’ = p/1 - p.

After running the logit regression model, the estimated
probability is then be calculated, i.e., the probability of
success.

, eﬁo"’ﬁlx
p = 1_(6/30*/31)()‘

where P’ is the estimated probability of success, and 3, and
B1 are estimated from the regression.

(15)

4.3.3. Interpreting Logistic Regression Result. Two of the four
cases are correct predictions, and two are wrong. If p’ > 0.5, it
would be the case where y =1; else y = 0. However, it is safer

to use a high cutoff like >0.7 to verify the effectiveness of the
prediction model.

4.3.4. Interpreting Model Coefficient

Bi(y =By +BiX +e) (16)

The sign of the coeflicient is interpreted, not the mag-
nitude. If B is greater than 0 (positive), then an increase in X
increases the likelihood that y=1. In other words, it in-
creases the probability of success; i.e., an increase in X makes
the outcome of 1 more likely. Conversely, if § < 0 (negative),
then an increase in X decreases the likelihood that y=1. In
other words, it decreases the probability of success; i.e., an
increase in X makes an outcome of 1 less likely. The
magnitude cannot be interpreted using the coefficient be-
cause the different models have different scales of coefficient.
Nevertheless, logit and probit models produce estimated
probabilities that are fair close.

The estimated likelihood is observed whether the task is
offloaded to fog or cloud giving the values in the X variables.
In the following, the linear model is specified.

Y =0+BX +BX+ ... B.X, +e (17)

If Y=1, the task is offloaded to fog, otherwise, to cloud.

Y = f, + f3,Size + 3,MIPS + f;RAM + 3,BW + B;BurstTime + ¢.
(18)

After simulation, the estimated logit model (log of odds
ratio) is

20

Computational Intelligence and Neuroscience

ln<1p) =Y =, + B,Size + BMIPS + B;RAM + B,BW + fBurstTime. (19)
-p

It is worthwhile to mention that the estimated logit
model is the log of odds ratio to find the estimated prob-
ability of offloading destination, i.e., fog or cloud.

4.3.5. Estimated Logit Model. It is pertinent to mention that
In(p/1 - p) is the log of the odds ratio, not the probability
(p); therefore, only the SIGN is interpreted and not the
magnitude of the coefficient in a logit model.

4.4. Result Interpretation. The results enumerate a sub-
stantial advantage in employing a logistic regression model
when the response (label) variable is categorical in nature.
The advantage has been measured in terms of high accuracy
with a low error rate.

Training confusion matrix contains 7000 instances,
whereas testing confusion matrix exhibits 3000 instances
that fall under different classes. The performance of the
logistic regression has been evaluated using the performance
measures. These measures present the informative notion of
the effectiveness of how much the employed algorithm is
efficient. When a task is offloaded to fog classified correctly,
it falls under true positive (TP) class; training and testing
instances include 3996 and 1678 instances, respectively;
likewise, when a task that needs not to be offloaded to fog
and classified correctly falls under the true negative (TN),
training and testing include 1997 and 866 instances. On the
contrary, when a task offloading is misclassified to fog layer,
it is false positive (FP); 456 and 1007 instances are related
during training and testing processes, respectively, and are
referred to as Type-I error, and when a task is offloaded to
the cloud misclassified, it is a false negative (FN) with 0 value
and referred to as Type-II error.

The confusion matrix consists of training and testing
processes as shown in Figure 12 for visually demonstrating
the significant predictive analytics where the performance of
logistic regression is summarized. It provides direct com-
parisons among the values of true positives, true negatives,
false positives, and false negatives. In view of the fact that
only classification accuracy is not enough, several measures
need to be taken for evaluating the performance of the al-
gorithm that are as follows with their corresponding for-
mulas. Accuracy can be obtained as the ratio of training
instances correctly identified to the total instances in the fog-
cloud dataset.

TP + TN

accuracy = . (20)
TP + TN + FP + EN

Precision shows the ratio of detection that is correctly
identified to the total instances.

TP

—_— 21
TP + FP (21)

precision =

Recall (sensitivity or true positive rate) is the correct
detection ratio to the total number of actual detection cases
in the dataset.

TP

—_— (22)
TP + FN

recall =

F-Score characterizes the trade-off between the precision
and recall in terms of offloading the task to fog network by
using the harmonic mean.

recall x precision

F —score = 2 -
recall + precision
(23)

2xTP
2xTP + EN + FP’

Sensitivity (recall) is calculated as the number of tasks
offloaded to fog correctly predicted divided by the total
number of tasks offloaded to fog. In other words, the fraction
of related tasks is retrieved.

TP

—_ (24)
TP + FN

sensitivity =

Specificity is calculated as the number of predictions for

cloud data center correctly classified divided by all predic-
tions for the cloud data center.

TN

—_— (25)
TN + FP

specificity =

Positive predictive value (precision) is the probability

that a task offloaded to fog truly has to be oftloaded to the fog
network.

TP

S 26
TP + FP (26)

PPV =
Negative predictive value is the probability that a task
offloaded to a cloud data center truly has to be offloaded to a
cloud data center.
™N
NPV = oS (27)
Various performance measures of both training and
testing processes are described graphically in Figure 13
where both values (0 and 1) of label variables demon-
strate their predictive rate. These performance measures give
more meaning and build confidence where the consent of
domain experts, according to the proposed algorithm, is
essential to obtain the maximum benefits by the experiments
as can be achieved. The prediction accuracy of 85.61% is
obtained by the proposed algorithm; i.e., logistic regression
with a high precision value for the fog network is 100% and
80.3% for the cloud data center. Likewise, sensitivity and
specificity show 67.1% for the fog network and 100% for the
cloud data center, respectively. The misclassification rate is
14.39%, the positive likelihood ratio is 2.89, and the negative

Computational Intelligence and Neuroscience

-3500

3996 -3000

2500
2000
1500
1000
500
0

21

-1600

- 1400

| -1200

1000
800
600
400

200

0 1

FIGURE 12: Training and testing confusion matrix.

Training performance

1

o
13

o
o

=3
=

=]
o

Accuracy Pecision Recall ~ F1-Score Sensitivity Specificity Positive Negative
Predictive Predictive
Value Value
)
=1

Testing performance

0.8
0

o
'S

I
o

Accuracy Pecision Recall Fl-Score Sensitivity Specificity ~Positive Negative
Predictive Predictive
Value Value
=0
=1

FIGURE 13: Performance measures (training and testing).

Comparision of Algorithms

1.2

0.8

Values (%)

0.6
0.4
0.2

0

Logistic Naive Bayes Decision Tree Support MLP
Regression Vector
Algorithms Machine
M Accuracy M Recall
B Precision F1-Score

FiGURE 14: Comparisons of the proposed model with other algorithms.

likelihood ratio is 0.0. The support is the number of oc-
currences of each class in the test dataset for fog offloading
which is 1322 and 1678 for the cloud data center.
Comparing the simulation results of the proposed model
with other algorithms in Figure 14 demonstrates that the
proposed algorithm gets the highest accuracy. The proposed
model gets the highest accuracy reaching an 86% score and
the lowest error/loss among others. On the contrary, Naive
Bayes could achieve only 68% accuracy which is the lowest.

Comparative analysis using performance measures, i.e.,
precision, recall, and Fl-score, among these algorithms is
carried out on the basis of accuracy that measures how
frequently the algorithms classify the data accurately.

The proposed model exhibits the lowest loss, i.e., 0.029 as
shown in Figure 15. The least loss value indicates how well
the proposed model performs after every iteration of opti-
mization. On the other hand, MLP infers 0.172 loss which is
the highest among all other algorithms. Certainly, it is not

22

Execution Time

Computational Intelligence and Neuroscience

Loss

ML N 017
Support Vector Machine [0.169
Decision Tree [0.039
Naive Bayes [N 0.14
KNN |, 0179

Logistic Regression [l 0.029

Algorithms

0 0.05 0.1 0.15 0.2
Loss Values

M Loss

FIGURE 15: Error/loss comparison.

Execution Time

0.172

MLP

2.5
2.06741
2
1.5
1
0.5653
0.5
0.14538
0
Logistic KNN Naive Bayes Decision Support Vector
Regression Tree Machine
Algorithms
FiGure 16: Execution time comparison.
Receiver operating characteristic

Q

]

~

L

&

2

(=9

Q

=

H

0.0 += T T T T
0.0 0.2 0.4 0.6 0.8

False Positive Rate

—— Logistic Regression (area = 0.84)

1.0

FIGURE 17: Receiver operating characteristics (ROC) curve performance.

Computational Intelligence and Neuroscience

always the case, but normally an increase in accuracy is
observed with the decrease in loss accordingly.

However, while seeing the execution time of all algo-
rithms in Figure 16 that are used in the simulation setup, the
logistic regression model takes relatively more execution
time to complete its operations. In view of the fact that the
dataset contains few (10,000) instances to be processed by
logistic regression for its training and testing purpose, on the
other hand, thousands and even million records/instances
can show the worth of the proposed model to perform its
intended operations in an ideal short time where other
classifiers may exhibit poor execution time. Naive Bayes
exhibits longest execution time, i.e., 2.06741.

The receiver operating characteristic (ROC) curve is
another common tool used with binary classifiers. The
dotted line represents the ROC curve of a purely random
classifier. The ROC curve is used to identify the mutual
association between the true negative (TN) rate and the false
alarm rate in a communication channel in signal channel
theory. It contains the capability to address the effectiveness
and proficiency of a classification system that is binary in
nature as the label variable possesses either fog or cloud
characteristics. An efficient logistic regression training with a
ROC curve is employed in Figure 17 where performance
analysis is depicted. The ROC curve demonstrates the
performance of the binary classification system as it forms
with the true positive rate against the false-positive rate. It
can be examined that the improved performance of logistic
regression is reflected.

5. Conclusion

In this paper, a machine learning-based intelligent task
offloading model is proposed in the fog-cloud collabo-
rative network using a logistic regression algorithm. First,
an offloading-related optimization problem is addressed
by considering the threshold values of the concerned
parameters associated with the cloud data center. Nu-
merous types of applications including delay-sensitive
and computation-intensive applications specifically need
to perform their intended tasks as per their computing
resource requirements that must be provisioned pro-
portionately. Second, the projected model is proposed by
employing an intelligent task offloading management
system that predicts the incoming tasks generated by
heterogeneous IoT and mobile devices that are located at
some dispersed remote locations. Simulation results
demonstrate that the proposed model is capable of pre-
dicting the task offloaded to either fog or cloud network
successfully with 86% highest accuracy among other
employed algorithms. Two cloud data centers located in
America and Singapore and five fog nodes located at local
geolocation with adequate hardware specification in terms
of computation power, storage capacity, handling MIPS,
upload and download bandwidth, and processor burst
time have been employed in the whole simulation process.
The mathematical model proves to validate the simulation
process accordingly.

23

It is viable to mention that more work would be in-
corporated in the proposed model particularly in multifog
oftfloading and distributed environment. What lacks in this
model is first of all fog-to-fog communication where tasks
possibly are offloaded to nearby fog computing network
instead of routing to cloud. In order to strengthen the in-
fluence of fog computing, therefore, the second limitation is
associated with the deployment of the proposed model in a
distributed environment where data generated devices are
located at some scattered locations. Furthermore, OMS
needs to be more dynamic, so it can handle the intended
tasks efficiently. Since services offered by fog computing are
of large scale that usually raise trust issues and communi-
cation challenges, therefore, a prescribed strategy needs to be
devised with the intention of handling these issues to reduce
the impacts of the limitations of the proposed model.

In view of the fact that IoT devices generate such tasks
that might be versatile and diverse in nature, therefore, it is
not feasible that one should rely only on just data types
generated by the mentioned devices but rather train the
network; hence, the network performance significantly
improves. The next research work will be based on updating
the model in which the parameters, which are associated
with the task offloading process, will be analyzed, improved,
and proclaimed accordingly using the Adaptive Neuro-
Fuzzy Inference System (ANFIS). ANFIS is an intelligent
system that possesses the capability to be applied in such
revolutionized areas where decision-making support is re-
quired; therefore, it would be recommended approach to
continue the ongoing research work with the fog-cloud task
offloading process.

Data Availability

The data used in this paper can be requested from the
corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this work.

Authors’ Contributions

M.M.B, T.M.G, and S.A have collected data from different
resources. M.M.B, T.M.G, and M.A.K performed formal
analysis, mathematical modeling, and simulation, M.A,
M.A K, and K.M.A contributed to original draft preparation,
H.W, K.M.A, and U.F reviewed and edited the manuscript,
M.A K and S.A performed supervision, HW, M.A, M.AK,
and K.M.A drafted pictures and tables, and U.F, S.A, and
K.M.A performed revision and improve the quality of the
draft. All authors have read and agreed to the published
version of the manuscript.

Acknowledgments
This work is self-funded.

24

References

(1]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

J. Jiang, Z. Li, Y. Tian, and N. Al-Nabhan, “A review of
techniques and methods for IoT applications in collaborative
cloud-fog environment,” Security and Communication Net-
works, vol. 2020, pp. 1-15, 2020.

R. Yadav, W. Zhang, I. A. Elgendy et al., “Smart healthcare:
RL-based task offloading scheme for edge-enable sensor
networks,” IEEE Sensors Journal, vol. 21, no. 22,
pp. 24910-24918, 2021.

V. K. Sarker, J. P. Queralta, T. N. Gia, H. Tenhunen, and
T. Westerlund, “Offloading slam for indoor mobile robots
with edge-fog-cloud computing,” in Proceedings of the 2019
Ist International Conference on Advances in Science, Engi-
neering and Robotics Technology (ICASERT), pp. 1-6, IEEE,
Dhaka, Bangladesh, May 2019.

A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On re-
ducing IoT service delay via fog offloading,” IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 998-1010, 2018.

H. Mahini, A. M. Rahmani, and S. M. Mousavirad, “An
evolutionary game approach to IoT task offloading in fog-
cloud computing,” The Journal of Supercomputing, vol. 77,
no. 6, pp. 5398-5425, 2021.

M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog
computing for IoT: review, enabling technologies, and re-
search opportunities,” Future Generation Computer Systems,
vol. 87, pp. 278-289, 2018.

G. Qu and H. Wu, “DMRO: a deep meta reinforcement
learning-based task offloading framework for edge-cloud
computing,” 2020, https://arxiv.org/abs/2008.09930.

K. S. Awaisi, S. Hussain, M. Ahmed, A. A. Khan, and
G. Ahmed, “Leveraging IoT and fog computing in healthcare
systems,” IEEE Internet of Things Magazine, vol. 3, no. 2,
pp. 52-56, 2020.

A. A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese,
“Performance estimation of container-based cloud-to-fog
offloading,” 2019, https://arxiv.org/abs/1909.04945.

S. Tuli, S. Tlager, K. Ramamohanarao, and R. Buyya, “Dynamic
scheduling for stochastic edge-cloud computing environ-
ments using a3c learning and residual recurrent neural net-
works,” IEEE Transactions on Mobile Computing, 2020.

M. Aazam, S. U. Islam, S. T. Lone, and A. Abbas, “Cloud of
things (CoT): cloud-fog-IoT task oftloading for sustainable
internet of things,” IEEE Transactions on Sustainable Com-
puting, 2020.

A. Yousefpour, C. Fung, T. Nguyen et al., “All one needs to
know about fog computing and related edge computing
paradigms: a complete survey,” Journal of Systems Architec-
ture, vol. 98, pp. 289-330, 2019.

R. Somula, “A load and distance aware cloudlet selection
strategy in multi-cloudlet environment,” International Jour-
nal of Grid and High Performance Computing, vol. 11, no. 2,
pp. 85-102, 2019.

S.P. Ahuja and N. Deval, Research Anthology on Architectures,
Frameworks, and Integration Strategies for Distributed and
Cloud Computing, IGI Global, Pennsylvania, United States,
pp. 999-1010, 2021.

J. Liu, K. Xiong, D. W. K. Ng, P. Fan, Z. Zhong, and
K. B. Letaief, “Max-min energy balance in wireless-powered
hierarchical fog-cloud computing networks,” IEEE Trans-
actions on Wireless Communications, vol. 19, no. 11,
pp. 7064-7080, 2020.

G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao, “Fair task
offloading among fog nodes in fog computing networks,” in

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Computational Intelligence and Neuroscience

Proceedings of the 2018 IEEE International Conference on
Communications (ICC), pp. 1-6, IEEE, Kansas City, MO,
USA, May 2018.

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computing—a key technology towards 5G,”
ETSI white paper, vol. 11, no. 11, pp. 1-16, 2015.

S. Kim, “New application task offloading algorithms for edge,
fog, and cloud computing paradigms,” Wireless Communi-
cations and Mobile Computing, vol. 2020, 2020.

K. S. Awaisi, A. Abbas, M. Zareei et al., “Towards a fog enabled
efficient car parking architecture,” IEEE Access, vol. 7,
pp. 159100-159111, 2019.

P. V. Garach and R. Thakkar, “Design and implementation of
smart waste management system using FOG computing,” Int.
Res. J. Eng. Technol.(IRJET), vol. 5, pp. 3888-3891, 2018.

H. Ben Hassen, N. Ayari, and B. Hamdi, “A home hospi-
talization system based on the Internet of things, Fog com-
puting and cloud computing,” Informatics in Medicine
Unlocked, vol. 20, p. 100368, 2020.

C. Lin, G. Han, X. Qi, M. Guizani, and L. Shu, “A distributed
mobile fog computing scheme for mobile delay-sensitive
applications in SDN-enabled vehicular networks,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 5,
pp. 5481-5493, 2020.

M. K. Hussein and M. H. Mousa, “Efficient task offloading for
IoT-based applications in fog computing using ant colony
optimization,” IEEE Access, vol. 8, pp. 37191-37201, 2020.
A. Aljumah, A. Kaur, M. Bhatia, and T. Ahamed Ahanger,
“Internet of things-fog computing-based framework for smart
disaster management,” Transactions on Emerging Telecom-
munications Technologies, vol. 32, no. 8, Article ID e4078,
2021.

P. Pereira, J. Araujo, C. Melo, V. Santos, and P. Maciel,
“Analytical models for availability evaluation of edge and fog
computing nodes,” The Journal of Supercomputing, vol. 77,
no. 9, pp. 9905-9933, 2021.

M. Ahmed, R. Mumtaz, S. M. H. Zaidi, M. Hafeez,
S. A.R. Zaidi, and M. Ahmad, “Distributed fog computing for
Internet of Things (IOT) based ambient data processing and
analysis,” Electronics, vol. 9, no. 11, p. 1756, 2020.

S. Josilo and G. Dén, “Decentralized algorithm for ran-
domized task allocation in fog computing systems,” IEEE/
ACM Transactions on Networking, vol. 27, no. 1, pp. 85-97,
2018.

H. Sun, H. Yu, G. Fan, and L. Chen, “Energy and time efficient
task offloading and resource allocation on the generic IoT-
fog-cloud architecture,” Peer-to-Peer Networking and Appli-
cations, vol. 13, no. 2, pp- 548-563, 2020.

H. Wang, L. Wang, Z. Zhou, X. Tao, G. Pau, and F. Arena,
“Blockchain-based resource allocation model in fog com-
puting,” Applied Sciences, vol. 9, no. 24, p. 5538, 2019.

M. Q. Tran, D. T. Nguyen, V. A. Le, D. H. Nguyen, and
T. V. Pham, “Task placement on fog computing made efficient
for iot application provision,” Wireless Communications and
Mobile Computing, vol. 2019, 2019.

D. Rahbari and M. Nickray, “Task offloading in mobile fog
computing by classification and regression tree,” Peer-to-Peer
Networking and Applications, vol. 13, no. 1, pp. 104-122, 2020.
S. Park, D. Kwon, J. Kim, Y. K. Lee, and S. Cho, “Adaptive
real-time offloading decision-making for mobile edges: deep
reinforcement learning framework and simulation results,”
Applied Sciences, vol. 10, no. 5, p. 1663, 2020.

M. Li, J. Gao, L. Zhao, and X. Shen, “Deep reinforcement
learning for collaborative edge computing in vehicular

https://arxiv.org/abs/2008.09930
https://arxiv.org/abs/1909.04945

Computational Intelligence and Neuroscience

networks,” IEEE Transactions on Cognitive Communications

and Networking, vol. 6, no. 4, pp. 1122-1135, 2020.

S. Misra and N. Saha, “Detour: dynamic task offloading in

software-defined fog for IoT applications,” IEEE Journal on

Selected Areas in Communications, vol. 37, no. 5, pp. 1159-

1166, 2019.

J. Back and G. Kaddoum, “Heterogeneous task offloading and

resource allocations via deep recurrent reinforcement

learning in partial observable multifog networks,” IEEE In-

ternet of Things Journal, vol. 8, no. 2, pp. 1041-1056, 2021.

[36] Z.Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-
hop cooperative computation offloading for industrial IoT-
edge-cloud computing environments,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 12, pp. 2759-
2774, 2019.

[37] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu,
“Energy-latency tradeoff for dynamic computation offloading
in vehicular fog computing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 14198-14211, 2020.

[38] M. M. Bukhari, B. F. Alkhamees, S. Hussain, A. Gumaei,

A. Assiri, and S. S. Ullah, “An improved artificial neural

network model for effective diabetes prediction,” Complexity,

vol. 2021, pp. 1-10, 2021.

S. Aljanabi and A. Chalechale, “Improving IoT services using a

hybrid fog-cloud offloading,” IEEE Access, vol. 9, pp. 13775~

13788, 2021.

[40] A. Mubarakali, A. D. Durai, M. Alshehri, O. AlFarraj,

J. Ramakrishnan, and D. Mavaluru, “Fog-based delay-sensi-

tive data transmission algorithm for data forwarding and

storage in cloud environment for multimedia applications,”

Big Data, 2020.

J. Hwang, L. Nkenyereye, N. Sung, J. Kim, and J. Song, “IoT

service slicing and task offloading for edge computing,” IEEE

Internet of Things Journal, vol. 8, no. 14, pp. 11526-11547,

2021.

H. Zhang, M. Babar, M. U. Tariq, M. A. Jan, V. G. Menon, and

X. Li, “SafeCity: toward safe and secured data management

design for IoT-enabled smart city planning,” IEEE Access,

vol. 8, pp. 145256-145267, 2020.

L. Zhang, G. Zhu, P. Shen, J. Song, S. Afaq Shah, and

M. Bennamoun, “Learning spatiotemporal features using

3dcnn and convolutional Istm for gesture recognition,” in

Proceedings of the IEEE International Conference on Computer

Vision Workshops, pp. 3120-3128, Venice, Italy, October 2017.

[44] G. A. Martinez-Mascorro, J. R. Abreu-Pederzini, J. C. Ortiz-
Bayliss, and H. Terashima-Marin, “Suspicious behavior de-
tection on shoplifting cases for crime prevention by using 3D
convolutional neural networks,” 2020, https://arxiv.org/abs/
2005.02142.

[45] J. D. Freilich, S. M. Chermak, and B. R. Klein, “Investigating
the applicability of situational crime prevention to the public
mass violence context,” Criminology ¢ Public Policy, vol. 19,
no. 1, pp. 271-293, 2020.

[46] A.]J. V. Neto, Z. Zhao, J. J. P. C. Rodrigues, H. B. Camboim,
and T. Braun, “Fog-based crime-assistance in smart iot
transportation system,” IEEE access, vol. 6, pp. 11101-11111,
2018.

[47] 7. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards
delay-aware container-based service function chaining in fog
computing,” in Proceedings of the NOMS 2020-2020 IEEE/
IFIP Network Operations and Management Symposium,
pp- 1-9, IEEE, Budapest, Hungary, April 2020.

(34

[35

[39

(41

(42

[43

25

[48] T. Sultana and K. A. Wahid, “IoT-Guard: event-driven fog-
based video surveillance system for real-time security man-
agement,” IEEE Access, vol. 7, pp. 134881-134894, 2019.

[49] V. Pandimurugan, A. Jain, and Y. Sinha, “IoT based face
recognition for smart applications using machine learning,” in
Proceedings of the 2020 3rd International Conference on In-
telligent Sustainable Systems (ICISS), pp. 1263-1266, IEEE,
Thoothukudi, India, December 2020.

[50] G. Neelakantam, D. D. Onthoni, and P. K. Sahoo, “Rein-
forcement learning based passengers assistance system for
crowded public transportation in fog enabled smart city,”
Electronics, vol. 9, no. 9, p. 1501, 2020.

[51] A. Alhowaide, I. Alsmadi, and J. Tang, Towards the Design of
Real-Time Autonomous IoT NIDS, pp. 1-14, Cluster Com-
puting, Berlin, Germany, 2021.

https://arxiv.org/abs/2005.02142
https://arxiv.org/abs/2005.02142

