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Abstract: Retinopathy of Prematurity (ROP) affects preterm neonates and could cause blindness.
Deep Learning (DL) can assist ophthalmologists in the diagnosis of ROP. This paper proposes an
automated and reliable diagnostic tool based on DL techniques called DIAROP to support the
ophthalmologic diagnosis of ROP. It extracts significant features by first obtaining spatial features
from the four Convolution Neural Networks (CNNs) DL techniques using transfer learning and
then applying Fast Walsh Hadamard Transform (FWHT) to integrate these features. Moreover,
DIAROP explores the best-integrated features extracted from the CNNs that influence its diagnostic
capability. The results of DIAROP indicate that DIAROP achieved an accuracy of 93.2% and an area
under receiving operating characteristic curve (AUC) of 0.98. Furthermore, DIAROP performance is
compared with recent ROP diagnostic tools. Its promising performance shows that DIAROP may
assist the ophthalmologic diagnosis of ROP.

Keywords: Retinopathy of Prematurity (ROP); Deep Learning (DL); transfer learning; Convolutional
Neural Networks (CNN); Computer-Aided Diagnosis

1. Introduction

Retinopathy of Prematurity (ROP) impacts preterm infants and could cause blindness.
Screening and Diagnosing procedures of ROP have several barriers in developing coun-
tries [1]. Initially, there are inadequate amounts of medical screening/imaging equipment
for ROP. Also, the number of staff for airing retinal images for ROP is relatively small.
Moreover, ophthalmologists’ training procedure is not consistent, and the qualified oph-
thalmologists are of few numbers. In addition, the application of the ROP screening policy
is insufficient in developing countries. Thus, in developing countries, numerous premature
neonates become blind because of the absence of early screening and timely treatments [2].
Another obstacle that occurs worldwide is that imaging of the infants’ retina is very hard
and limited due to the shortage of equipment that offers a fast and simple scanning process,
specially designed for uncooperative and unanesthetized cases like premature neonates [3].
However, the latest imaging instrumentation advancements have considerably enhanced
and facilitated the capacity to attain high-quality images from premature infants.

The enhancement in digital imaging delivered new strategies for the diagnosis,
monitoring, and treatments of ROP. Though the typical binocular indirect ophthalmoscopy
(BIO) is considered the gold standard for imaging infants with ROP, it needs proper and
extensive training by qualified and skilled staff. Currently, the wide-angle digital retinal
imaging (Retcam) system is extensively used for examining premature neonates with ROP.
This is because it is simpler and faster to function compared to BIO. Moreover, the Retcam
system can capture, store, and transmit fundus images from several angles. Additionally,
it is more favorable for medical examination and monitoring, education, and scientific
research. All these benefits confirm acceptable results when using it along with digital
image analysis techniques to diagnose ROP [4].

In recent years, several diagnostic tools based on artificial intelligence (AI) techniques
have been proposed to diagnose medical conditions [5]. Examples of such conditions
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are as cancer [6–9], eye abnormalities [10,11], brain tumors and mental disorders [12,13],
heart problems [14–18], gastrointestinal diseases [19], motor disabilities [20,21], and lung
diseases [22,23]. With the latest advancements in digital imaging of ROP such as Retcam,
fundus retinal images may be analyzed effectively with AI methods. The AI methods
include traditional machine learning (ML) and modern Deep Learning approaches (DL).
In the former methods, conventional image processing and feature extraction techniques
identify pathological patterns such as fundus lesions and blood vessels [24]. Also, they
involve manual outlining of chosen features, and hence systemic bias can occur from
handcrafted extraction [4]. On the other hand, the DL approaches do not need any im-
age processing or feature extraction steps for performing the diagnosis [25], Therefore,
they are preferred over ML approaches. Moreover, diagnostics tools based on DL have
numerous advantages over manual diagnosis. First, they are effective and faster than
manual diagnosis. In addition, they are easier and prevent the error caused by fatigue or
emotions [26]. Also, they are more accurate, especially with large data. For these reasons,
this paper aims to propose a robust and reliable diagnostic tool called DIAROP based on
DL techniques for the automatic diagnosis of ROP in its early stages with high accuracy.
This tool is constructed using fundus images for preterm infants acquired using Retcam.
It uses an ensemble of DL techniques to perform classification. DIAROP has the potential
to help ophthalmologists in the early and accurate diagnosis of ROP. The study also aims to
present a diagnostic tool to differentiate normal images and those with ROP. DIAROP can
reduce the time and labor caused by manual diagnosis and conventional ML approaches.

The key contributions of this study are as follows:

1. Four state-of-the-art pre-trained CNNs models of different architectures are inves-
tigated; these pre-trained CNNs varied in their convolutional layers amount and
principal building block.

2. The performance of the four pre-trained models is compared. Considerable alteration
in performance is noticed.

3. Features extracted from these networks are of high dimension, so they are reduced
using Fast Walsh Hadamard transform (FWHT).

4. Due to the difference in performance across the different CNNs, feature integration is
utilized to merge each of the CNN architecture’s benefits.

5. Integrated features extracted from the four pre-trained CNNs are examined to select
the integrated features set with the highest impact.

6. Feature integration is achieved using three fusion techniques, including auto-encoder
(AE), principal component analysis (PCA), and discrete wavelet transform (DWT),
to investigate the best technique which improves the performance.

This paper is organized as follows; Section 2 illustrates the previous diagnostic tools
for ROP diagnosis. Section 3 presents the methodology and materials. It also introduces
the description of DIAROP; the proposed diagnostic tool. Section 4 provides the perfor-
mance metrics and parameter settings. Section 5 delivers the results of DIAROP. Section 6
introduces a discussion of the main settings and results of DIAROP. Section 7 concludes
the paper.

2. Previous Diagnostic Tools

Several ROP diagnostic tools based on Retcam imaging modality have been proposed
in the literature during the past few years based on traditional machine learning techniques
(TML) or Deep Learning techniques (DL). The criteria behind the selection of the related
works are based on recent studies that focused on diagnosing only ROP. In other words,
those studies built diagnostic tools for identifying diabetic retinopathy for premature
infants, not adults or children. Regarding TML, the authors of Ref. [27] employed several
ML classifiers to diagnose pre-plus, plus, and non-plus ROP disease using 87 images. They
achieved an average accuracy of 80.15%. In 2018, an ROP tool was constructed using
20 images to differentiate between pre-plus and plus ROP diseases [28]. Oloumi et al.
utilized Gabor filters to distinguish between plus and non-plus ROP disease using 110 images
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of 41 patients [24,29]. Ataer-Cansizoglu et al. [30] proposed a diagnostic tool called “i-ROP”
to classify healthy, pre-plus and plus ROP disease based on 77 images. They employed a
support vector machine (SVM) classifier and achieved an accuracy of 95%. Nevertheless,
the previous tools used low-quality images, a small number of images to construct the
classification model. They required manual feature extraction and segmentation of the
vessels, which might reduce the accuracy of diagnosis because of the probable faults and
professional bias that could occur while choosing the target vessels. Also, the time needed
for image processing like segmentation and feature extraction is high. This necessitate the
need for a more automated tools that can be reliable such as those based on DL techniques.

Lately, numerous ROP diagnostic tools based on DL techniques have been introduced.
These systems utilized transfer learning (TL) which reemploys pre-trained Convolutional
Neural Networks (CNNs) trained with large datasets such as ImageNet on another similar
classification problem but with a lower number of images like the one on hand [31]. Since
the pre-trained CNN has been previously learned image features from a massive dataset
with many diverse images, TL has been proven to enhance diagnostic accuracy [32–34].
Brown et al. [35] proposed a tool called “i-ROP “ based on two CNNs, the first one for
segmentation and the second for classifying healthy, pre-plus and plus ROP disease. The
authors used 5511 retinal images and attained an average sensitivity of 96.5% and an
average specificity of 94%. Another automated system based on DL was presented called
“DeepROP” [36]. The authors employed 11,707 images. The system first diagnosed images
into normal or ROP, and then ROP images were classified into severe or minor. The sys-
tem achieved a 96.64% sensitivity, 99.33% specificity for classifying normal versus ROP,
and an 88.46% sensitivity, 92.31% specificity for severe versus minor. An automatic tool
was introduced called “ROP.AI” to diagnose normal and plus diseases [37].The classifi-
cation model achieved 96.6% sensitivity and 98.0% specificity. Lei et al. [38] employed
ResNet-50 and added an attention module and channel to diagnose ROP. Similarly, Zhang
et al. [39] employed several versions of ResNet to build their model. On the other hand,
Rani et al. [40] introduced a tool based on DL and multiple instance learning (MIL) where
images were split into equal patches, and then a CNN was employed to extract features
from these patches. Features of the same image are combined to distinguish between
normal and ROP cases. The system obtained an accuracy of diagnosis of 83.33%, sensitivity
and specificity of 100%, and 71.43%, correspondingly. Later the authors of [41] proposed a
pipeline called “I-ROP ASSIST” to differentiate among healthy and plus ROP diseases. The
authors segmented the images using U-Net CNN and extracted handcrafted features from
these segmented images to train several machine learning classifiers. The highest accuracy
achieved was 94%.

Huang et al. [42] presented an automatic tool based on five CNNs, including VGG-13,
VGG-16, MobileNet, Inception, and DenseNet to detect ROP in preterm infants. The au-
thors first distinguished between normal and ROP cases and then classified ROP severity
into mild and severe. As described in [43,44], the several stages of ROP were categorized
as Stage 1, Stage 2, and Stage 3. The ophthalmologists classified the severity of ROP as
mild-ROP, in case the eye condition refers to Stage 1 and Stage 2 ROP. Otherwise, if the eye
condition refers to Stage 3 ROP, then it is a severe ROP. The authors compared the perfor-
mance of the 5 CNNs and showed that VGG-16 has the highest performance. For normal
versus ROP, the VGG-16 reached 96% accuracy, 96.6% sensitivity, and 95.2% specificity.
For severity classification, the VGG-16 model attained 98.82% accuracy, 100% sensitiv-
ity, and 98.41% specificity. Similarly, in Ref. [45] an automated model was constructed
based on VGG-16, ResNet-50, and Inception CNNs. The model first recognized ROP cases
and then classified their severity into mild and severe. Maximum accuracy of 97% was
achieved using the Inception CNN for healthy versus ROP and 84% for mild versus severe.
Another automated system based on DL called “DeepDR” was proposed in [46]. The
system employed an ensemble of CNNs to identify ROP and then its severity. DeepDR
consists of two fusion stages; the first stage is feature-based fusion, whereas the second
is a probability-based fusion. The results showed that fusing the average probabilities of
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Xception, Inception, and InceptionResNet CNNs attained the highest sensitivity of 97.5%,
a specificity of 97.7% for identifying ROP. While identifying the severity level, the same
CNNs achieved a sensitivity of 98.1% and a specificity of 98.9%. The results achieved by
diagnostic tools based on DL have shown that these tools are comparable and can produce
higher accuracy than experts in diagnosing ROP disease. Therefore, they have the potential
to be employed for ROP diagnosis [4]. However, they have some limitations; the majority of
the previous techniques were based on only spatial DL features, however, merging spatial
DL features with other types of features such as spectral or temporal can boost the accuracy
of image classification [47–50]. Besides, almost all of them utilized a single convolution
neural network (CNN) to perform classification, but it was proven that fusing features of
several CNN are capable of enhancing the classification performance [51–54]. Furthermore,
they employed private datasets which makes it difficult to use these datasets for compari-
son purposes and reproducing their works. This study proposed an automated diagnostic
tool called “DIAROP” based on DL techniques. It can be considered as a reliable diagnostic
tool that can classify ROP with high accuracy using a large number of images. It consists of
ensembles of DL approaches that are fused using several integration techniques. DIAROP
utilizes TL to four convolution neural networks (CNNs) and compares their performance
for diagnosing ROP. These CNNs include ResNet-50, Inception, Inception-ResNet, and
Xception. It is assessed on a public freely available dataset.

3. Materials and Methods
3.1. ROP Data Acquisition

The ROP images collected were a part of the ROP Collaboration Group (RCG), which
includes 30 hospitals located all over China. Shenzhen Eye Hospital (SEH) was the leader
for this collaboration as it offers ROP screening facilities to all other hospitals participating
in this collaboration. All these hospitals applied similar ROP screening standards for
selecting the cases involved in the dataset collection. The initial number of infants who
were asked to join the study was 26,424. However, many of them were omitted from
the acquisition process. Only neonates who were eligible to participate should have the
following two criteria. First, they should have a birth weight lower than 2000 g. Second,
premature neonates who are 2000 g at birth but suffer from severe systemic disorders. The
eligible infants were around 890. Every premature infant’s eye (each eye) was captured
with ten standard angles (10 images) throughout each screening process. the number of
generated images was 8090 for ROP cases and 9711 for normal eyes. The images were
acquired using Retcam 2 or Retcam 3 by an expert technician Five professional childhood
ophthalmologists independently annotated the images acquired during the screening
procedure to “Disease” and “Not Diseased”. In the case of inconstancies, the final decision
was taken after a discussion made by the ophthalmologists’ group. The dataset contains
8090 diseased images and 9711 not diseased images. More details about the data acquisition
process can be found in [26]. Samples of the dataset’s images are shown in Figure 1.

Figure 1. Samples of images included in the dataset, (a) Diseased, (b) Not Diseased.
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3.2. Proposed Diagnostic Tool

This study proposes an automated diagnostic tool named DIAROP for the early diag-
nosis of ROP. It is based on an ensemble of DL techniques and three integration approaches.
DIAROP consists of five phases involving, the pre-processing of images, extraction of
spatial features, reduction and extraction of spatial-spectral features, integration of features,
and classification phases. Initially, images are resized and augmented in the first phase
(pre-processing of images phase). Afterward, four CNNs, including; ResNet-50, Inception
V3, Xception, and Inception-ResNet V2, are utilized for pulling out spatial DL features using
TL in the second phase. Next, spectral features are extracted using Fast Walsh Hadamard
transform (FWHT) in the third phase, which ends up by generating spatial-spectral features.
The features’ dimension is also reduced in this phase. Then, three integration techniques
are employed to combine features comprising; auto-encoder (AE), principal component
analysis (PCA), and discrete wavelet transform (DWT). Finally, in the classification phase,
three well-known machine learning classifiers including, linear support vector machine
(L-SVM), Quadratic-SVM (Q-SVM), and Linear discriminate analysis (LDA) classifiers are
used to classify diseased and not diseased cases. The five phases of DIAROP are illustrated
in Figure 2.

Figure 2. The five phases of the DIAROP diagnostic tool.
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3.2.1. Pre-Processing of Images Phase

ROP images are resized to be equivalent to the input layer’s dimension of the four
CNNs used in DIAROP. For the Inception V3, Xception, and Inception-ResNet V2 CNNs,
the input size is 229 × 229 × 3. Whereas for ResNet-50 the input size is 224 × 224 × 3.
Next, these images are augmented using translation (−30,30), scaling (0.9,1.1), flipping in x
and y directions, shearing (0,45) in x and y directions. Augmentation is usually done to
expand the number of fundus images in a dataset and prevent overfitting [55,56].

3.2.2. Extraction of Spatial Features Phase

TL is used in this phase to adapt four pre-trained CNNs that were previously trained
on the ImageNet dataset to classify ROP disease. These pre-trained CNNs involve Inception
V3, ResNet-50, Xception, and Inception-ResNet V2. Next, the output layers of these pre-
trained CNNs are modified to be equal to 2, equivalent to the number of classes of the ROP
dataset instead of the 1000 classes of ImageNet. Afterward, a few parameters are altered
(illustrated later in the parameter selection section), and then the CNNs are trained. TL is
also applied to obtain spatial features from a particular layer of each CNN. These features
are taken from the “avg_pool” of ResNet-50, Xception, InceptionResNet, and Inception
CNNs. The dimension of those features after being extracted is 2048 for Inception, Xception,
and ResNet-50. Whereas for Inception-ResNet V2, the number of features is 1536.

3.2.3. Reduction and Extraction of Spatial-Spectral Features Phase

In this phase, FWHT is utilized to extract spectral features from the spatial DL features
attained in the previous phase from the four CNNs resulting in obtaining spatial-spectral
features. FWHT is a practical and time-efficient approach to calculate the Walsh Hadamard
Transform (WHT), which analyzes and transforms the input data into a cluster of per-
pendicular waveforms termed Walsh basis functions having coefficients of 1 and −1. It is
considered one of the simplest transforms as it is based on additions and subtractions oper-
ations. It analyzes the input data of length 2n into 2n coefficients, equivalent to the discrete
WHT of the input data. The fundamental privilege of FWHT is that it simple, fast, and
involves small storage capacity space to save the decomposed coefficients. It decomposes
the input data with a dimension of power 2, but if the power is lower than 2, its dimension
is padded with zero to become equal to the subsequent closer power of 2. [57,58]. FWHT
is also used for data reduction. Thus, it is also applied to reduce the spatial features’
dimension extracted in the preceding phase forming reduced spatial-spectral features.

3.2.4. Feature Integration Phase

This phase integrates the reduced spatial-spectral features obtained from the four
CNNs after applying FWHT in the previous phase. This integration is made using three
integration techniques, including PCA, AE, and DWT. These three approaches are also
employed to reduce the vast dimension of features occurring due to the feature integration
process. This phase also explores the best set of integrated spatial-spectral features that
impacts the classification performance. This investigation is made by, first, exploring
the integration of each two reduced spatial-spectral featured attained from every two
CNNs. Second, it examines the integration of every three reduced spatial-spectral featured
extracted from every three CNNs. Finally, it observes the integration of all reduced spatial-
spectral featured extracted from the four CNNs. The three integration techniques are briefly
discussed below.

PCA is a method that is frequently used to lower the massive size of observed variables
in a dataset. It performs covariance analysis on the observed variables to compress the
data and remove redundancy. It transforms the original variables into new transformed
functions of lower dimensions. These functions are called principal components, which
represent the variance located in the original data. PCA is commonly used when the data
is enormous [59].
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AE is an unsupervised DL technique commonly used to decrease the massive data
dimension [60]. AE involves two core elements, encoder, and decoder. The former maps
the observed features into a code utilizing a hidden layer that illustrates a code applied to
characterize the input and enable the network to neglect redundant information. The latter
element maps the code to recreate the original input demonstration of the data.

DWT applies orthogonal basis functions termed wavelets to analyze input data [61].
For 1-D input data as the spatial-spectral features, the DWT procedure is accomplished
through convolving the input features with a low and high pass filter [62]. After That,
a reduction process is accomplished by downsampling the output data by 2 [63]. Subse-
quently, two clusters of coefficients are produced called the approximation coefficients CA1
and detail coefficients CD1 [64]. In this study, the mother wavelet utilized is the Meyer
wavelet (dmey). For reducing the dimension of the integrated spatial-spectral features,
only CD1 coefficients are employed.

3.2.5. Classification Phase

The classification phase of DIAROP is used to diagnose ROP and classify images as
either diseased or not diseased. This classification is done using three well-known machine
learning classifiers involves, Linear-SVM (L-SVM), Quadratic SVM (Q-SVM), and Linear
discriminant analysis (LDA). 5-fold cross-validation is employed to validate the results.
Note the classification phase is accomplished through three settings corresponding to the
extraction of spatial features, reduction and extraction of spatial-spectral features, and
feature integration phases of DIAROP. In setting I, spatial features extracted from each
CNNs are used separately to train the three classifiers. Whereas in setting II, each spatial-
spectral feature set obtained from each CNN is used individually to learn the classifiers.
Finally, in setting III, the integrated feature sets generated in the feature integration phase
are utilized for training the classifiers.

4. Performance Setting
4.1. Parameters Adjustment

For training the four CNNs, some parameters are tuned while others are kept un-
changed. The hyper-parameters adjusted in the CNNS are the minibatch size which is
the number of samples included in each sub-epoch weight change and is chosen to be 10.
This number was chosen to fits the memory of the GPU, as increasing it lead to an “out of
memory” problem. Utilizing small batch sizes generally reaches the greatest generalization
performance [65]. The learning rate defines the stride size at every iteration whilst turning
on the way to a minimum of a loss function. It was selected to be 0.0003 which achieved the
highest accuracy while minimizing the training time. It is well-known that increasing the
epochs size increases the training time. The sum of epochs was modified to 10 as rising this
number did not enhance the performance. The validation frequency is chosen to be 1246 to
calculate the accuracy only once by the end of each epoch. The learning technique used for
training the four CNNs is stochastic gradient descent with momentum. The three settings
of DIAROP are accomplished using Matlab 2020 a. The processor is Intel(R) Core (TM)
i7-10750H with NVIDIA GeForce GTX 1660 video controller of 6 GB capacity, processor
frequency of 2.6 GHz 64-bit operating system.

4.2. Metrics of Assessment

The assessment metrics used to evaluate the performance of the three settings of
DIAROP are illustrated in this section. These metrics involve sensitivity, accuracy, speci-
ficity, F1-score, and precision. These metrics are measured utilizing the following mathe-
matical functions [66] (1)–(5).

Sensitivity is also known as Recall or true positive rate which is equivalent to the
number of diseased images that were correctly classified over the total number of true
diseased images.

Sensitivity =
TP

TP + FN
(1)
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Accuracy is a metric that calculates the number of images that were correctly classified
by the classifier.

Accuracy =
TP + TN

TN + FP + FN + TP
(2)

Specificity is equivalent to the number of non-diseases images that were correctly
classified over the total number of true non-diseases images.

Speci f icity =
TN

TN + FP
(3)

F1-score is the average of precision and recall metrics commonly employed to access
the performance. Its value varies from ‘0’ to ‘1’. If the score is ‘0’ this means extremely bad
performance. The higher the F1 score, the better the performance.

F1 − Score =
2 × TP

(2 × TP) + FP + FN
(4)

Precision is a well-known metric that determines the ratio of correctly classified
diseased images over the total number of images classified as diseased.

Precision =
TP

TP + FP
(5)

where; True positive (TP) is the total number of correctly diagnosed images as diseased.
TN. True negative is the total number of correctly diagnosed images as not diseased.
False-positive (FP) is the sum of images that were incorrectly diagnosed as diseased.
False-negative is the sum of images that were inaccurately diagnosed as not diseased.

5. Results

This section illustrates the results of the three settings of the DIAROP diagnostic tool.
In the first setting, spatial features obtained from the four CNNs are employed to train the
three classifiers individually. Next, in the second setting of DIAROP, the spatial-spectral
features extracted and reduced using FWHT are utilized to learn the classifiers. In the
third setting, the sets of integrated features generated in the feature integration phase
are employed to train the classifiers. Figure 3 represents the three classification settings
of DIAROP.

5.1. Setting I Results

The results of the spatial features obtained from the four CNNs and employed to
train the three classifiers are shown in Table 1. As can be noticed from Table 1, the highest
accuracies of 90.9%, 91.6%, and 91.6% are achieved using the LDA, L-SVM, and Q-SVM
classifiers trained with ResNet-50 spatial features. The next highest performance is attained
utilizing the spatial features of Inception-ResNet V2, where the accuracies are equal to
90.2%, 90.6%, and 90.8% using the LDA, L-SVM, and Q-SVM classifiers. The following
are the spatial features of Inception V3, where the accuracies obtained are 89.4%, 90.5%,
and 90.5% using the LDA, L-SVM, and Q-SVM classifiers. The spatial features of Xception
CNN attain the lowest accuracy of 87.3%, 88.3%, and 88.6% using the LDA, L-SVM, and
Q-SVM classifiers.
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Figure 3. The three classification settings of DIAROP diagnostic tool.

Table 1. The accuracy (%) attained using spatial features extracted from the four CNNs of DIAROP
diagnostic tool.

Spatial Features LDA L- SVM Q-SVM

ResNet-50 90.9 91.6 91.6
Inception 89.4 90.5 90.5
Xception 87.3 88.7 88.6

InceptionRes 90.2 90.6 90.8

5.2. Setting II Results

The reduced spatial-spectral features obtained after applying the FWHT method are
discussed in this section. The accuracy attained using the four spatial-spectral features
used to construct the three classifiers are displayed in Table 2. Maximum accuracies of
91.1%, 91.6%, and 91.8% are attained using spatial-spectral features of ResNet-50. The
spatial-spectral features of Inception-ResNet V2 reach the next maximum accuracies of
90.5%, 90.6%, 90.8% using the LDA, L-SVM, and Q-SVM classifiers. Then, the spatial-
spectral features of Inception V3 attain accuracies of 89.9%, 90.6%, and 90.6% for the LDA,
L-SVM, and Q-SVM classifiers. Finally, the least accuracies of 87.8%, 88.5%, and 88.8% are
achieved using the spatial-spectral features of Xception. It can be observed from Table 2
that spatial-spectral obtained using FWHT has enhanced the accuracy of the LDA, L-SVM,
and Q-SVM classifiers compared to those obtained in Table 1. This is not the case for the
L-SVM classifier trained with spatial-spectral features of Xception. Note that for the L-SVM
and Q-SVM classifiers constructed with spatial-spectral features of Inception-ResNet V2,
the accuracies are the same as setting I as shown in Figure 4. However, the number of
features has been reduced from 1536 (setting I) to 700 in setting II. Similarly, the number of
spatial-spectral features obtained from ResNet-50, Inception, and Xception is decreased
from 2048 in setting I to 1100 in setting II.
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Table 2. The accuracy (%) attained using spatial-spectral features obtained after applying FWHT on
the spatial features extracted from the four CNNs of DIAROP diagnostic tool.

Spatial-Spectral Features LDA L-SVM Q-SVM

FWHT-ResNet-50 91.1 91.6 91.8
FWHT-Inception 89.9 90.6 90.6
FWHT-Xception 87.8 88.5 88.8

FWHT-InceptionResNet 90.5 90.6 90.8

Figure 4. ROC curve analysis and AUC for (Left), L-SVM, (Right) Q-SVM trained with the spatial-spectral features
involving ResNet50+Inception+InceptionResNet integrated using DWT.

5.3. Setting III Results

The results of the feature integration are discussed in this section. Three integration
techniques, including DWT, AE, and PCA, are compared. Initially, every two spatial-
spectral features obtained from FWHT are integrated. Similarly, every three spatial-spectral
features are integrated. Finally, the whole spatial-spectral features are fused. The results
of the feature integration phase are illustrated in Tables 3–5. Table 3 shows the accuracies
of the three classifiers trained with the integrated spatial-spectral features fused using
AE. In the case of integrating two spatial-spectral features, the peak accuracies of 92%,
92.6%,92.6%, and 92%, 92.5%, 92.4% are achieved by LDA, L-SVM, and Q-SVM classifiers.
These classifiers are trained with ResNet50+Inception and ResNet50+InceptionResNet
spatial-spectral features respectively. Whereas for integrating three spatial-spectral feature
sets, the maximum accuracy of 92.6%, 93%, and 93.1% is obtained using the LDA, L-SVM,
and Q-SVM classifiers. These classifiers are learned with the spatial-spectral features of
ResNet-50+Inception+InceptionResNet.
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Table 3. The accuracy (%) attained for the three classifiers trained with integrated spatial-spectral
features using AE.

Integrated Spatial-Spectral Features LDA L-SVM Q-SVM

Integration of Two Spatial-Spectral Feature Sets

ResNet50+Inception 92 92.6 92.6
ResNet50+Xception 91.3 91.8 91.9

ResNet50+InceptionResNet 92 92.5 92.4
Inception+Xception 90.5 90.7 90.9

Inception+InceptionResNet 91.5 91.8 91.6
Xception+InceptionResNet 91 91.3 91

Integration of Three Spatial-Spectral Feature Sets

ResNet-50+Inception+Xception 92.1 92.7 92.6
ResNet-50+Inception+InceptionResNet 92.6 93 93.1
ResNet-50+InceptionResNet+Xception 92.3 92.7 92.9
Inception+InceptionResNet+Xception 91.6 92.1 92.3

Integration of Four Spatial-Spectral Feature sets

All 92.5 92.8 93

Table 4. The accuracy (%) achieved for the three classifiers trained with integrated spatial-spectral
features using PCA.

Integrated Spatial-Spectral Features LDA L-SVM Q-SVM

Integration of Two Spatial-Spectral Feature Sets

ResNet50+Inception 92.2 92.6 92.6
ResNet50+Xception 91.8 92.2 92.3

ResNet+InceptionRes 92.4 92.5 92.6
Inception+Xception 91.1 91.2 91.1

Inception+InceptionResNet 91.8 91.9 91.8
Xception+InceptionResNet 91.3 91.3 91.4

Integration of Three Spatial-Spectral Feature Sets

ResNet50+Inception+Xception 92.6 92.5 92.7
ResNet50+Inception+InceptionResNet 92.7 92.9 92.9
ResNet50+Xception+InceptionResNet 92.5 92.6 92.8
Inception+Xception+InceptionResNet 92.1 92.3 92.2

Integration of Four Spatial-Spectral Feature Sets

All 92.8 92.8 93.1

On the other hand, integrating the four spatial-spectral features reached an accuracy of
92.5%, 92.8%, and 93% using the LDA, L-SVM, and Q-SVM classifiers. It was proven from
Table 3, that integrating the three spatial-spectral features of ResNet-50+Inception+Inception-
ResNet using AE has the highest performance amongst all other integrated feature sets
fused These results verify that integrating spatial-spectral features obtained from different
CNNs can improve the diagnostic capability of DIAROP.

The results of spatial-spectral integration using PCA are displayed in Table 4. When
investigating the integration of every two spatial-spectral features, it was found that fusing
the spatial-spectral features of ResNet-50+Inception and ResNet-50+Inception-ResNet has
attained the highest accuracy. These accuracies are 92.2%, 92.6%, 92.6% and 92.4%, 92.5%,
92.6% utilizing LDA, L-SVM, and Q-SVM classifiers respectively. While examining the
combination of every three spatial-spectral features, the peak accuracy of 92.7%, 92.9%,
and 92.9% is reached using LDA, L-SVM, and Q-SVM classifiers. These models are built
with the spatial-spectral features of ResNet50+Inception+InceptionResNet. Nevertheless,
the maximum accuracies among all integrated feature sets are accomplished using the
LDA, L-SVM, and Q-SVM classifiers (92.8%, 92.8%, and 93.1%) developed using the spatial-
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spectral features of the four CNNs of DIAROP. These performances confirm that integrating
spatial-spectral features from several CNNs can enhance the performance of DIAROP.

Table 5. The accuracy (%) achieved for the three classifiers trained with integrated spatial-spectral
features using DWT.

Integrated Spatial-Spectral Features LDA L-SVM Q-SVM

Integration of Two Spatial-Spectral Feature Sets

ResNet50+Inception 91.9 92.6 92.6
ResNet50+Xception 91.4 92.2 92.3

ResNet50+InceptionResNet 92 92.6 92.7
Inception+Xception 90.7 91.4 91.5

Inception+InceptionResNet 91.5 92.2 92.1
Xception+InceptionResNet 91 91.4 91.4

Integration of Three Spatial-Spectral Feature Sets

ResNet50+Inception+Xception 92.1 92.9 92.9
ResNet50+Inception+InceptionResNet 92.4 93 93.2
ResNet50+Xception+InceptionResNet 92.1 92.7 92.9
Inception+Xception+InceptionResNet 91.7 92.3 92.1

Integration of Four Spatial-Spectral Feature Sets

All 92.4 93.2 93.2

The accuracy attained by the DWT approach as an integration technique is shown in
Table 5. The results in Table 5 show that for fusing every two spatial-spectral features, the
highest accuracies of 92%, 92.6%, and 92.7% are achieved with LDA, L-SVM, and Q-SVM
classifiers. These classifiers are constructed using ResNet50+InceptionResNet. On the other
hand, when fusing every three feature sets, the maximum accuracies are attained using the
LDA, L-SVM, and Q-SVM models. These models are constructed with the spatial-spectral
features of ResNet50+Inception+InceptionResNet. Accuracies of 92.4% and 93.2% are
obtained using the LDA and Q-SVM classifiers trained with the spatial-spectral features of
the four CNNs. Where a higher accuracy of 93.2% is attained using the L-SVM classifier
trained with the spatial-spectral features of the four CNNs. These accuracies prove that
feature integration is capable of increasing the capability of DIAROP in diagnosing ROP.

A comparison between the highest accuracy and the number of features achieved
using each feature integration technique is shown in Table 6. The previous results showed
that the integrated spatial-spectral features of the ResNet50+Inception+InceptionResNet
fused using the three integration techniques achieved the highest performance using the
Q-SVM classifier. The table indicates that the three integration techniques have comparable
performance; however, the highest performance is achieved using DWT. Table 6 also
indicates that DWT that obtained the highest accuracy has 1500 features, followed by the
AE with 1800 features, ending with PCA with only 300 features.

Table 6. A comparison between the highest accuracy (%) with variance and the number of features
achieved using each feature integration technique.

Integration Method Accuracy (%) Number of Features

AE 93.1 (0.003) 1800
PCA 92.9 (0.187) 300
DWT 93.2 (0.13) 1500

The performance metrics are calculated for the spatial-spectral features of ResNet50+
Inception +InceptionResNet integrated using DWT and displayed in Table 7. The table
shows that the sensitivities of 88.31%, 89.4%, 89.7%, specificities of 95.88, 96.4%, 96.1%,
precisions of 94.7%, 95.4%, 95.1%, and F1-scores of 91.39%, 92.3%, 92.3% are attained
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using the LDA, L-SVM, and Q-SVM respectively. Figure 4 shows the receiving area
characteristics curve (ROC) and the area under the ROC curve (AUC) for the L-SVM and
Q-SVM classifiers. These models are trained with the spatial-spectral features involving
ResNet-50+Inception+InceptionResNet integrated using DWT. Figure 4 indicates that the
AUC for L-SVM and Q-SVM is 0.98. As mentioned in [67,68], for a diagnostic tool to be
reliable, it should attain a precision and specificity greater than 95% and a sensitivity of
more than 80%. Thus, with the performance metrics of DIAROP shown in Table 7, DIAROP
is considered a reliable diagnostic tool that can be used for the automatic diagnosis of ROP.

Table 7. The Performance Metrics (%) for the spatial-spectral features of ResNet50+Inception+
InceptionResNet integrated using DWT.

Classifier Sensitivity Specificity Precision F1-Score

LDA 88.31 95.88 94.7 91.39
L-SVM 89.4 96.4 95.4 92.3
Q-SVM 89.7 96.1 95.1 92.3

6. Discussion

This paper proposed an automated diagnostic tool called DIAROP to diagnose ROP
based on DL techniques. It consists of several DL approaches based on TL. DIAROP
involves three settings. In the first setting, TL is used to obtain spatial features from four
pre-trained CNNs. These spatial features are utilized separately to train LDA, L-SVM, and
Q-SVM classifiers. Setting II, presents the extraction of spectral features from the spatial
features obtained from each CNN. These spectral features are extracted using FWHT after
applying it to the previous setting’s spatial features, ending up producing spatial-spectral
features. FWHT is also utilized to reduce these spatial-spectral features’ dimensions.
The last setting presents the feature integration phase using three integration techniques.
It searches for the best integrated spatial-spectral features extracted from the four CNNs.
Figure 5 shows the highest accuracy attained in each setting. In setting I, an accuracy of
91.6% was obtained using the spatial features of ResNet-50. On the other hand, an accuracy
of 91.8% was achieved using the spatial-spectral features of ResNet-50. Finally, in the last
setting, the spatial-spectral features of ResNet50+Inception+InceptionResNet integrated
using DWT attained an accuracy of 93.2% using the Q-SVM classifier. The final architecture
of DIAROP is displayed in Figure 6.

Figure 5. The accuracy (%) attained at the three settings of DIAROP.
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Figure 6. The final architecture of DIAROP diagnostic tool.

The training time achieved by DIAROP is compared with those attained by end-to-end
DL CNNs, including ResNet-50, Inception V3, Xception, and Inception-ResNet V2. The
training execution times of DIAROP and end-to-end DL CNNs are illustrated in Table 8.
This table proves the competence of DIAROP as the training execution time of DIAROP is
404.17 s, much lower than that executed by other end-to-end DL CNNs.

Table 8. The training execution time (sec) of the four CNNs and DIAROP.

Method Training Time (Seconds)

Xception 11,410
Inception-ResNet V2 30,426

Inception V3 16,221
ResNet-50 4276
DIAROP 404.17

Combining several features extracted from different Deep Learning models, increase
the complexity and the computational time of the classification process. However, the
proposed DIAROP diagnostic tool tried to reduce this side effect by performing two feature
reduction steps. The first is using the FWHT to reduce the dimension of the spatial Deep
Learning feature extracted from each CNN. Next, it employs several integration techniques
which are also well-known feature reduction methods such as PCA, AE, and DWT. It can
be noted in the results that they have reduced the number of features as shown in Table 7
and reduced the classification time compared to end-to-end models as shown in Table 8.

Regarding the CNNs employed in this study, they were chosen as they were previously
used in the ROP’s literature such as [39,45,46] and achieved good performance. For feature
extraction, TL has been employed as it is a well-known technique commonly used in
several ways, one of the most ways is to use it to extract deep features from specific
layers of a CNN [33,69]. On the other hand, the FWHT is a common technique used
for dimensionality reduction [57]. It is also a well-known method for time-frequency
representation [58]. The results section has proved that FWHT has successfully reduced
the number of features while enhancing performance. (Please refer to Tables 1 and 2).
PCA [70], AE [71], and DWT [72,73] techniques are employed for the integration process as
they are popular feature reduction methods that have been extensively used in the machine
learning literature. SVM performs well with large dimension space and as it uses kernel
function which maps the feature space into a new domain that can easily separate between
classes of a dataset. Therefore, it is commonly used with the huge dimension of DL features
extracted from CNNs [74] achieving outperforming results.

The main challenge of this study is the availability of ROP datasets. To our knowledge,
all datasets that have been used in the literature are private; therefore, it was hard to
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compare the performance of DIAROP with related previous diagnostic tools. The only
article that used the same dataset employed to construct DIAROP is [26], where the
authors used three CNNs individually to construct their diagnostic tool. In contrast,
DIAROP integrates the spatial-spectral features of several CNNs instead of using only one
CNN individually. The performance of DIAROP is compared with the AlexNet, VGG-16,
and GoogleNet CNNs’ performance, as shown in Table 9. Also, it was compared with
other end-to-end models used in the literature. The table confirms the competitiveness of
DIAROP over the other methods, as the accuracy (93.2%) of DIAROP is higher than the
accuracy of the AlexNet (77.9%), VGG-16 (80.4%,), and GoogleNet (73.9%) used in [26]. The
outperformance of DIAROP over end-to-end CNNs as the accuracy accomplished using
DIAROP is 93.2% which is higher than the 86.5%, 90.9%, 91.42%, and 91.48% achieved using
Xception, Inception-ResNet V2, Inception V3, and ResNet-50 CNNs. The outperformance
of DIAROP ensures that it can be used as a diagnostic tool that helps ophthalmologists
diagnose the ROP disease more accurately. It is a reliable automated tool that can lower
examination time and ophthalmologists’ exertion in the diagnosis procedure.

Table 9. A comparison between DIAROP and recent work based on the same dataset.

Reference Method Accuracy (%)

[26] AlexNet 77.9
[26] VGG-16 80.4
[26] GoogleNet 73.9
[46] Xception 86.95
[46] Inception-ResNet V2 90.9
[45] Inception V3 91.42
[39] ResNet-50 91.48

DIAROP 93.2

It was proven in several studies the great training capacity of Deep Learning with
large datasets without the necessity to identify significant features by professionals,
to automatically diagnose ROP disease in retinal scans accurately [36]. Deep Learning
could deliver similar diagnostic results on a given retinal scan each time, which is hard to
be achieved by ophthalmologists as the diagnosis achieved by them is subjective. The key
findings of this study are: (1) DIAROP can assist ophthalmic experts to achieve high ROP
diagnostic accuracy avoiding challenges of the manual diagnosis; (2) the diagnosis achieved
by DIAROP is not subjective; (3) DIAROP offers a new vision regarding the diagnostic
procedures for ophthalmologists, particularly those who are located in developing and
poor countries, and finally (4) ophthalmologists in the area of ROP are limited which
can affect the diagnosis procedure, however, DIAROP can help in the timely diagnosis
of the ROP disease, that could help in lowering blindness caused by the misdiagnosis.
This can attain a major contribution in the field of ophthalmology research, clinical, and
educational applications. It may also help ophthalmologists in choosing suitable follow-up
plans according to the diagnostic results.

7. Conclusions

This study introduced an automated diagnostic tool named DIAROP based on an
ensemble of DL techniques to diagnose ROP disease. DIAROP involved five phases,
including pre-processing of ROP images, extraction of spatial features, reduction and
extraction of spatial-spectral features, integration of features, and classification phases.
These phases were performed in three different settings. Setting I presents the mining of
spatial DL features from four pre-trained CNNs using TL. Whereas setting II describes
the extraction of spatial-spectral features using FWHT after being operated on the spatial
features of setting I. FWHT is also applied to reduce the extracted features’ size. Finally,
in the last setting, the feature integration process is performed where each combination of
the integrated feature set is investigated to select the best set of integrated spatial-spectral
features extracted from several CNNs. The results of setting II showed that using spatial-
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spectral features is better than using spatial features only. The reason is that setting II
accuracy is higher than setting I. Also, the number of features in setting II is lower than
setting I. Moreover, setting III’s results proved that the integrated spatial-spectral features of
several CNNs could enhance ROP disease’s diagnostic accuracy. The results were compared
with end-to-end DL CNNs and a recent related diagnostic tool that verified the competence
of DIAROP. Therefore, DIAROP is considered a robust and reliable diagnostic tool that
can automatically diagnose ROP disease with high accuracy. DIAROP can reduce the
manual labor and the time of examination accomplished during the diagnosis procedure.
The limitations of this study are; first, it did not apply segmentation techniques. Also,
it did not consider categorizing the severity of the ROP disease. Moreover, the real ROP
diagnosis includes Aggressive posterior ROP, acute ROP, plus disease ROP, pre-threshold
ROP, and ROP Zones and stages that were not addressed in the paper. Future work will
address these limitations. Future work will also consider using more CNNs. Furthermore,
upcoming work will apply DIAROP to detect the severity of the ROP disease.
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