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ABSTRACT
Two Component Systems and Phosphorelays (TCS/PR) are environmental signal
transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal
domain organization of proteins and the topology of TCS/PR cascades play an
important role in shaping the responses of the circuits. It is thus important to
maintain updated censuses of TCS/PR proteins in order to identify the various
topologies used by nature and enable a systematic study of the dynamics associated
with those topologies. To create such a census, we analyzed the proteomes of 7,609
organisms from all domains of life with fully sequenced and annotated genomes. To
begin, we survey each proteome searching for proteins containing domains that are
associated with internal signal transmission within TCS/PR: Histidine Kinase (HK),
Response Regulator (RR) and Histidine Phosphotranfer (HPt) domains, and analyze
how these domains are arranged in the individual proteins. Then, we find all types
of operon organization and calculate how much more likely are proteins that contain
TCS/PR domains to be coded by neighboring genes than one would expect from the
genome background of each organism. Finally, we analyze if the fusion of domains
into single TCS/PR proteins is more frequently observed than one might expect from
the background of each proteome. We find 50 alternative ways in which the HK,
HPt, and RR domains are observed to organize into single proteins. In prokaryotes,
TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in
this study contain just one of the three domains, while 8% of the remaining proteins
combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all
TCS/PR proteins have more than one domain. These results might have implications
for how signals are internally transmitted within TCS/PR cascades. These implica-
tions could explain the selection of the various designs in alternative circumstances.
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INTRODUCTION
Historically, Two Component Systems and Phosphorelays (TCS/PR) have been considered

primary environmental signal transduction cascades in prokaryotes (Wolanin, Thomason

& Stock, 2002; Cheung & Hendrickson, 2010). In TCS/PR, environmental signals regulate

the autophosphorylation state of a sensor histidine kinase. In TCS this sensor transfers

its phosphate to a response regulator, which will in turn directly regulate the relevant

cellular responses to the signal. The sensor and response regulator may be two independent

proteins. They may also be the same protein, containing independent domains that are

responsible for each of the two functions. In PR, additional phosphotransfer steps may

happen before the phosphate reaches the response regulator protein(s) that directly

controls cellular responses (Fig. 1). PR are considered to be a main form of signal

transduction in bacteria (Parkinson, 1993; Hoch & Silhavy, 1995). They are less frequently

present in eukaryotes and absent in animals (Chang et al., 1993; Maeda, Wurgler-Murphy &

Saito, 1994; Appleby, Parkinson & Bourret, 1996; Thomason & Kay, 2000).

The mechanism of signal sensing in the various types of TCS/PR have been studied with

great detail and is reviewed elsewhere (Inouye & Dutta, 2003; Simon, Crane & Crane, 2007;

Gross & Beier, 2012). Extensive and insightful reviews have also been published about the

topology (pattern of molecular interactions between the proteins in the cascade), crosstalk

and signal transmission in TCS/PR (Oka, Sakai & Iwakoshi, 2002; Majdalani & Gottesman,

2005; Bekker, Teixeira de Mattos & Hellingwerf, 2006; Laub & Goulian, 2007; Szurmant,

White & Hoch, 2007; Ortiz de Orué Lucana & Groves, 2009; Krell et al., 2010; Buelow &

Raivio, 2010; Szurmant & Hoch, 2010; Hazelbauer & Lai, 2010; Casino, Rubio & Marina,

2010; Porter, Wadhams & Armitage, 2011; Schaller, Shiu & Armitage, 2011; Kobir et al.,

2011; Seshasayee & Luscombe, 2011; Gross & Beier, 2012; Jung et al., 2012; Podgornaia &

Laub, 2013; Fassler & West, 2013; Mascher, 2014), as well as about the domain structure and

evolution of the proteins involved in the cascades (Inouye & Dutta, 2003; Catlett, Yoder &

Turgeon, 2003; Galperin & Nikolskaya, 2007; Cock & Whitworth, 2007; Jenal & Galperin,

2009; Whitworth & Cock, 2009; Kim et al., 2010; Wuichet, Cantwell & Zhulin, 2010; Cheung

& Hendrickson, 2010; Galperin, 2010; Perry, Koteva & Wright, 2011; Seshasayee & Luscombe,

2011; Capra & Laub, 2012; Sheng et al., 2012; Attwood, 2013; Ortet et al., 2015).

There are several protein types and domains that nature uses in TCS/PR cascades.

For example, CHEW adapter proteins permit transmitting information about nutrient

gradients to the TCS system that regulates bacterial response to those gradients (Jones

& Armitage, 2015). In another example, the PII protein regulates the activity of the TCS

that responds to nitrogen depletion in the environment (Huergo et al., 2012). There are

other cases where external proteins bind proteins from a TCS/PR cascade and modulate

their stability (Salvado et al., 2012). These protein types are used in TCS/PR with specific

biological functions and are not common to all TCS/PR cascades.

Nevertheless, there are four types of protein domains that are common to all TCS/PR

cascades. Sensor domains, with wide sequence variability, are responsible for capturing the

environmental changes and adjusting the activity of the cascade (Cheung & Hendrickson,

2010; Hazelbauer & Lai, 2010). Irrespective of protein domain organization, signal
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Figure 1 Two component systems. (A) Prototypical two component system with one phosphotransfer
step between HK and RR. (B) 3-step phosphorelay, with four protein domains involved in the signal
transduction process and 3 phosphotransfer steps.

transmission within a TCS/PR circuit is done using histidine kinase (HK) domains,

response regulator (RR) domains, and/or histidine phosphotransfer (HPt) domains. These

last three domains are responsible for internal signal transmission (IST) within the cascade

and represent the focus of the current work. Because they are common to all TCS/PR

cascades, the results from our study are generally applicable and do not depend on the

specific environmental signal or biological response mediated by the cascades.

Several examples demonstrate that the dynamic range and signal-response curve that

a given cascade might exhibit is closely related to the interactions between the various

proteins and to the organization of IST domains within each cascade protein (Alves &

Savageau, 2003; Igoshin et al., 2004; Igoshin, Alves & Savageau, 2008; Eswaramoorthy

et al., 2010; Ray, Tabor & Igoshin, 2011; Salvado et al., 2012; Narula et al., 2012). For

example, circuits where each IST domain is in an independent protein are more likely

to participate in cross-talk and branching is more likely to occur in the signal transduction

process (Catlett, Yoder & Turgeon, 2003; Seshasayee & Luscombe, 2011). In addition, noise

propagates differently in a cascade of independent IST domain proteins than in a cascade

where IST domains are found within the same protein (Swain, 2004) (Fig. 2). Also, TCS

where phosphatases are involved in dephosphorylating the response regulator protein

may show hysteretic behavior. In contrast, TCS where the sensor protein works both

as phosphodonor and phosphatase for the response regulator may only exhibit graded

responses to changes in the signal (Igoshin, Alves & Savageau, 2008).

These and other examples (Alves & Savageau, 2003; Süel et al., 2006; Kuchina et al.,

2011a; Kuchina et al., 2011b) show that connectivity of the TCS/PR circuits and domain

organization of the proteins play an important role in shaping the responses of the cascades

to their cognate signals. It is thus important to maintain censuses of TCS/PR proteins in

order to identify the various network topologies used by nature and enable a systematic

study of the internal signal transduction dynamics associated with those topologies.

Information about such topologies can be retrieved for a detailed analysis from several

databases (Ulrich & Zhulin, 2010; Finn et al., 2014).
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Figure 2 Four different patterns of covalent linkage between the protein domains involved in phos-
phorelays. (A) A four protein phosphorelay. (B) A phosphorelay with and hybrid kinase at the beginning
of the cascade. (C) A two protein phosphorelay where the first two phosphotransfer steps between
domains contained in a single protein. (D) A one protein phosphorelay, where all phosphotransfer steps
take place between domains of a single protein.

While MIST2 (Ulrich & Zhulin, 2010) contains information about less than 3,000

genomes, Pfam contains a few hundred sequences divided among the HK, RR, and HPt

domain families involved in TCS/PR cascades. Currently, at the NIH there are over 10,000

fully sequenced and annotated genomes that are freely accessible to the public. Because of

this, obtaining a more up to date census of the TCS/PR in these genomes is an important

task that we set out to do. We analyzed the TCS/PR proteins of 7,609 organisms from all

domains of life with fully sequenced and annotated genomes. We focus on the IST domain

families HK, RR, and HPt of TCS/PR cascades. First, we survey the number of TCS/PR

domains in each organism and how these domains are arranged into individual proteins.

Then, we find all different type of operon organizations and analyze how much more likely

are proteins that contain TCS/PR domains to be coded by neighboring genes than one

would expect from the genome background. Finally, we analyze how the percentage IST

domain fusion within TCS/PR proteins changes among all analyzed genomes.

Our census finds that there are 50 alternative ways in which the HK, HPt, and RR

domains are observed to organize into single proteins. 90% of all proteins identified in this

study contain just one RR or HK domain, while 8% of the remaining proteins combine

one copy of a HK, a RR, and/or a HPt domain. We also find that more than 25% of all

TCS/PR eukaryotic proteins have more than one domain. Our results are consistent with

previous works and identify TCS/PR proteins in all non-animal phyla. Overall, our results

set the stage for a systematic study to compare the internal dynamic behavior of signal

transduction associated with each circuit topology in TCS/PR cascades.
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MATERIAL AND METHODS
Identification of proteins containing TCS/PR domains
The fully annotated proteomes of 9,961 organisms were downloaded from NCBI’s genome

database (January 2014 version). 2,352 of these proteomes were eliminated because

they belonged to phages, virus, satellite DNA sequences, or organisms whose taxonomic

classification was still not fully resolved. The remaining 7,609 proteomes belonging to 35

phyla from Bacteria, 6 phyla from Archaea and 11 eukaryotic phyla (Table S1) were further

analyzed in search for proteins containing domains of types HK, RR and HPt. These

domains are associated with IST in all TCS/PR cascades. Other protein domains (such

as the CHEW adaptor domain or the P2 protein from NRI/NRII, among many others)

were not included in the analysis because they are specific of certain TCS/PR cascades.

The sensor domain of TCS/PR cascade proteins was also not included due to its sequence

variability. Thus, the results from our study are general for all TCS/PR cascades.

We used PROSITE (http://prosite.expasy.org) to obtain a set of well curated sequences

that can be used as a seed to identify TCS/PR proteins in the relevant proteomes. We

downloaded a multiple alignment of all relevant ortholog sequences for each protein

domain (HK—PS50109 PROSITE Domain, RR—PS50110 PROSITE Domain and

HPt—PS50894 PROSITE Domain) from PROSITE. We then used these three multiple

alignments as a set of query sequences for two independent searches. One was done using

HMMER (Johnson, Eddy & Portugaly, 2010). For each multiple alignment downloaded

from PROSITE, we built a profile HMM using hmmbuild, and performed the search of the

profile HMM against all proteomes selected from the NCBI database using jackhmmer.

The second search was done in parallel using PSI-BLAST (Altschul et al., 1990) and

the three multiple alignments downloaded from PROSITE as a query. HMMER finds

homologues that are more distantly related than those found by BLAST.

We simultaneously use BLAST and HMMer because they have different sensitivities

in detecting sequence similarities. BLAST generates a higher number of false negatives,

while HMMer generates a higher number of false positives. By using both and filtering

the results, we hope to obtain a more precise picture of the conserved domains. In each

search we queried the 7,609 proteomes in order to identify proteins with domains that are

homologous to those used as queries.

In addition, the consensus sequence was calculated for each domain (HK, RR and HPt)

independently. Using an in-house PERL script, the most common residue in each position

was identified for each of the three multiple alignments. This residue was taken as the

consensus value for that position in the corresponding protein domain. Subsequently the

three consensus sequences were used to search each proteome using PSI-BLAST (Altschul

et al., 1990). In all three searches, the hits selected were the ones with an e-value lower than

10−6 and with a domain coverage of at least 80%.

After performing these three searches, a PERL script was also used to perform a fourth

text-mining search and identify the proteins that were annotated in each proteome as

being histidine kinases, sensory kinases, hybrid kinases, response regulators or histidine

phosphotransferases.
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The results of the four searches were merged into a non-redundant set. A total amount

of 469,421 proteins containing HK, HPt and/or RR domains were identified. This set was

curated in the following way:

(1) First we manually looked at the annotation of the proteins to identify functions that are

not involved in TCS/PR cascades (e.g., serine kinase).

(2) Then, we build a PERL script that automatically eliminates proteins annotated with

those functions from the list.

(3) We finish by automatically comparing the proteins in the list and the number of

proteins containing terms related to TCS/PR cascades.

(4) We repeat steps 1–3 until the number of proteins in the list and the number of proteins

containing only terms related to TCS/PR cascades are the same.

In this way, we semi manually identified 36,169 proteins that were annotated as being

something other than a TCS/PR protein. These proteins were eliminated. Frequent protein

types found in the discarded set of proteins are serine/threonine kinases and several types

of regulatory transcription factors.

The remaining 433,255 proteins were then reanalyzed and an additional set of 17,727

proteins were found to be annotated as being hypothetical or partial proteins. For each

of the three domains, the set of 17,727 hypothetical and partial proteins were aligned

using Clustal X in order to identify the conserved histidine motif in the HK and HPt

domains, and the conserved aspartate residue in RR domains. Those sequences without

a conserved histidine or aspartate residue were eliminated from the data, leaving a grand

total of 415,525 annotated proteins and 17,724 partial/hypothetical proteins containing

HK, RR and/or HPt domains.

A PERL script was developed to filter the curated data sets and determine both, the

domain composition of each protein and, when they belonged to the same organism, the

relative position of their corresponding genes with respect to each other in the genome.

Once we had identified all proteins containing HK, RR or HPt domains, and the relative

genomic position of their corresponding genes, we looked for all type of operons of

TCS/PR coding genes that occur in the organisms with fully sequenced genomes. For

this purpose, we performed a search of all genes coding HK, RR or HPt protein domains

that are located in consecutive positions on prokaryotic genomes. We assumed that they

constitute a transcription unit, although this may introduce a small error, as consecutive

operons coding for independent TCS/PR exceptionally exist. In our search, we allow the

presence of a gap in the operon, that is, a gene which does not encode any HK, RR or HPt

domain, because this could be a gene with regulatory functions in the operon.

The statistical treatment of data was carried out independently with and without taking

into account the hypothetical and partial proteins found. Both results are qualitatively

the same. In the Results section of this paper we give the results from the analysis of the

set of proteins without the hypothetical and partial proteins. The results of the whole

set of proteins, including hypothetical and partial proteins, are given as Supplemental
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Information. The sequence files for all domains are also available at http://web.udl.es/

usuaris/pg193845/Salvadoretal.html.

Numerical and statistical data analysis
To estimate how the clustering of the various TCS and PR proteins in a genome differed

from what one would expect by chance in the context of that genome, we took the

following approach. First, we calculated how frequently one would expect proteins

containing TCS/PR domains to be coded by neighboring genes in a genome if the order

of genes was fully random, given the total number of proteins in that genome, and the

number of proteins involved in TCS/PR cascades. The expected neighboring frequencies

under this assumption can be computed by Eqs. (1)–(6). In these F(P1 ↔ P2) represents

the expected frequency of the neighboring events in a genome for genes coding proteins

of types P1 and P2, nRR represents the number of proteins containing one RR domain in

the proteome, nHK represents the number of proteins containing one HK domain in the

proteome, and P represents the total number of proteins annotated to the proteome.

F(HK ↔ RR) =
nRR

P − 1
+

nRR

P − 2
. (1)

Equation (1) represents the probability that a gene localized in position j of the genome is

located next to a gene coding for a protein that contains an RR domain, either in positions

j − 1 or j + 1, if gene order is random in a genome. The first term of the sum represents the

probability of the presence of an RR gene in one of the two possible locations irrespective

of its presence also in the other genome location, and the second term is the probability

of the presence of the RR gene in one of the two genome locations when it is not found in

the other one. We note that we are not calculating the probability of having a consecutive

gene pair containing HK and RR domains. Rather, for any genomic position j, we ask what

the probability of its neighboring a gene containing an RR domain is. Equation (1) gives a

good estimation of this random probability, given that the total number of protein coding

genes is tens to hundreds of times larger than the number of IST domain coding genes,

and assuming that position j represents neither the first nor the last genomic position. This

expected RR neighboring frequency will be compared with the actual fraction of HK genes

that are found next to RR genes in order to study their genomic distribution.

F(HK ↔ RR ↔ HK2) = 6 ×
nHK

P − 1
×

nRR

P − 2
. (2)

Equation (2) computes the probability of finding an RR gene and a second HK gene in

the genomic neighborhood of a given HK gene. Because these three consecutive genes

can be sorted in 6 different ways, we must multiply by 6 the probability of an individual

neighboring event. Again, note that we assume having an HK domain containing gene,

and ask what the probability of its neighboring genes containing additional HK and RR

domains is.

F(HK ↔ RR ↔ HK2 ↔ RR2) = 12 ×
nRR

P − 1
×

nHK − 1

P − 2
×

nRR − 1

P − 3
. (3)
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Similarly, in Eq. (3) we compute the probability that, considering that we have found a

gene containing an HK domain in a given place in the genome, we also find in consecutive

genomic positions around that HK gene location another HK gene and two RR genes,

if gene organization is random. These four genes can be sorted in 24 different ways, but

we don’t differentiate between the two RR genes and therefore there are only 12 possible

spatial arrangements of these series of four genes.

F(HKRR ↔ HK ↔ RR) = 6 ×
nHK

P − 1
×

nRR

P − 2
. (4)

In Eq. (4), the probability of the event is computed in exactly the same way as in Eq. (2).

F(HKRRHPt ↔ RR) =
nRR

P − 1
+

nRR

P − 2
(5)

F(HKRRHK ↔ RR) =
nRR

P − 1
+

nRR

P − 2
. (6)

Equations (5) and (6) compute the probability of finding an RR gene placed in the genome

next to an HKRRHPt or an HKRRHK gene respectively, exactly in the same way as

described above for Eq. (1).

Once these expected frequencies were computed using Eqs. (1)–(6), we calculated

the odds ratios of the observed neighboring events with respect to the expected

neighboring event. All numerical and statistical calculations were done using Mathematica

(Wolfram, 1999).

Statistical models
To analyze the relationship between the number of TCS/PR gene fusion events and the

proteome size, we built a linear model that would better fit our data for % of fused HK

(RR, HPt) domains vs. total number of HK (respectively, RR, HPt). We also built linear

models of total number of IST domains in an organism vs. total number of proteins in the

proteome and phylogeny (prokaryote, eukaryote). In other words, we fit the data to Eq. (7):

Number of IST domains = α1

Total number of proteins in proteome


+α2 Phylogeny + ε. (7)

In Eq. (7), the variable phylogeny can assume two values. If the organism is a prokaryote,

the variable has value 1; otherwise it has value 2. An ANOVA analysis was used to

determine whether the coefficients for each control variable of the linear model are

significantly different from zero. If so, this implies that the variable is relevant in explaining

the variation observed in the dependent variable.

When fitting the data to the linear models we also calculated the R2 and adjusted R2

of the models. R2 shows how well terms (data points) fit a curve or line; adjusted R2 also

indicates how well terms fit a curve or line, but adjusts for the number of terms in a model.
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RESULTS
Survey of proteomes containing proteins with domains involved in
internal signal transduction (IST) in TCS/PR cascades
Bacteria
Table 1 summarizes the full set of results for bacteria. Proteins with HK and RR domains

are present in the proteome of 100% of the species analyzed from the following bacterial

phyla: Aquificae, Chlorobi, Verrucomicrobia, Chloroflexi, Cyanobacteria, Deferribacteres,

Deinococcus-Thermus, Dictyoglomi, Acidobacteria, Nitrospirae, Planctomycetes,

Epsilonproteobacteria, Spirochaetes, Thermodesulfobacteria, and Thermotogae. In

contrast, proteins containing HK and/or RR domains were not identified in a small

percentage of species in the following phyla: Actinobacteria—0.63% (4 out of 635 species

surveyed), Bacteroidetes—9.36% (22 out of 235 species), Firmicutes—0.68% (14 out of

2066), Fusobacteria—5.26% (2 out of 38), Alphaproteobacteria—3.55% (16 out of 451),

Betaproteobacteria—1.64% (6 out of 366), Deltaproteobacteria—1.22% (1 out of 82),

Epsilonproteobacteria—0.24% (1 out of 410), Gammaproteobacteria—1.83% (41 out of

2246), Synergistetes—9.09 % (1 out of 11). Interestingly, no proteins containing HK or

RR domains were identified in most Tenericutes species. Only 18 out of the 111 surveyed

Tenericutes species have proteins with HK and RR domains.

The percentage of species in each phylum with proteins containing HPt domains is

lower than the percentage of species with HKs and RRs, and ranges from less than 10%

(Chlamydiae, Tenericutes) to more than 90% (Deferribacteres, Acidobacteria, Nitrospirae,

Planctomycetes, Deltaproteobacteria, Epsilonproteobacteria, Gammaproteobacteria,

Spirochaetes, Thermodesulfobacteria, and Thermotogae). It should be noted that HPt

domains are also used by proteins that import PTS sugars (Clore & Venditti, 2013), which

means that not all HPt domains we found are involved in PR or TCS signal transduction.

Archaea
Proteins with HK and RR domains were identified in the proteome of 154 out of

179 Euryarchaeota species, 9 of the 11 Taumarchaeota species and only 2 out of 51

Crenarchaeota species surveyed. Proteins with HPt domains were identified in the

proteome of 115 Euryarchaeota species and in 7 of the 11 Taumarchaeota species surveyed.

No proteins containing HK, RR, or HPt domains were identified in Nanoarchaeota,

Nanohaloarcheota, and Korarchaeota (Table 1).

Eukaryotes
HK and RR domains were identified in the proteomes of 20 in 35 fungi species. 32 fungi

species contain proteins where the HPt-domain was identified. HK, HPt, and RR domains

were identified in the proteomes of the 2 eudicot species surveyed, but only HK and HPt,

and not RR domains, were identified in Oryza sativa.

There are only two surveyed protist phyla that contain proteins with IST domains. These

phyla are Euglenozoa and Amoeboflagellates. We analyzed five Euglenozoa species. Out

of these, only Leishmania donovani and Leishmania major contain proteins with HK and

RR IST domains. These domains are always found in separate proteins. Interestingly,
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Table 1 Percentage of species in each phylum with TCS/PR proteins.

Domain Phylum Abbreviaton No. of species
surveyed

% of species with HK
and RR domains

% of species with
HPt domains

Bacteria Actinobacteria At 635 99.37 14.49

Bacteria Aquificae Aq 13 100.00 76.92

Bacteria Armatimonadetes Ar 1 100.00 100.00

Bacteria Bacteroidetes Ba 235 89.79 49.79

Bacteria Chlorobi Cb 14 100.00 71.43

Bacteria Caldiserica Cd 1 100.00 0.00

Bacteria Chlamydiae Cm 108 98.15 1.85

Bacteria Lentisphaerae L 1 100.00 100.00

Bacteria Verrucomicrobia V 10 100.00 80.00

Bacteria Chloroflexi Cf 23 100.00 65.21

Bacteria Chrysiogenetes Cr 1 100.00 100.00

Bacteria Cyanobacteria Cy 118 100.00 75.42

Bacteria Deferribacteres Df 4 100.00 100.00

Bacteria Deinococcus-Thermus Dt 20 100.00 35.00

Bacteria Dictyoglomi Dc 2 100.00 0.00

Bacteria Elusimicrobia El 1 100.00 0.00

Bacteria Acidobacteria Ac 9 100.00 100.00

Bacteria Fibrobacteres Fb 1 100.00 100.00

Bacteria Firmicutes Fi 2,066 99.42 37.80

Bacteria Fusobacteria Fu 38 94.74 28.95

Bacteria Gemmatimonadetes Ge 1 100.00 100.00

Bacteria Nitrospinae Ni 1 100.00 100.00

Bacteria Nitrospirae Nt 4 100.00 100.00

Bacteria Planctomycetes Pl 20 100.00 100.00

Bacteria Alphaproteobacteria A 451 96.67 58.31

Bacteria Betaproteobacteria B 366 98.36 59.56

Bacteria Deltaproteobacteria D 82 98.78 98.78

Bacteria Epsilonproteobacteria E 410 100.00 98.54

Bacteria Gammaproteobacteria G 2,246 98.31 95.46

Bacteria Zetaproteobacteria Z 1 100.00 100.00

Bacteria Spirochaetes S 274 100.00 99.64

Bacteria Synergistetes Sy 11 90.91 63.64

Bacteria Tenericutes T 111 15.32 7.21

Bacteria Thermodesulfobacteria Th 2 100.00 100.00

Bacteria Thermotogae Tt 17 100.00 100.00

Archaea Crenarchaeota C 51 3.92 3.92

Archaea Euryarchaeota Eu 179 86.03 64.25

Archaea Korarchaeota K 1 0.00 0.00

Archaea Thaumarchaeota Ta 11 81.82 63.64

Archaea Nanoarchaeota N 1 0.00 0.00

Archaea Nanohaloarchaeota Nh 1 0.00 0.00

Eukarya Alveolates Av 5 0.00 20.00
(continued on next page)
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Table 1 (continued)
Domain Phylum Abbreviaton No. of species

surveyed
% of species with HK
and RR domains

% of species with
HPt domains

Eukarya Amoeboflagellates Am 1 100.00 100.00

Eukarya Euglenozoa Eg 5 40.00 0.00

Eukarya Microsporidians Mi 2 50.00 0.00

Eukarya Ascomycetes As 31 54.84 96.77

Eukarya Basidiomycetes Bs 2 100.00 100.00

Eukarya Eudicots Ed 2 100.00 100.00

Eukarya Monocots M 1 0.00 100.00

Eukarya Nematodes – 1 0.00 0.00

Eukarya Arthropods – 7 0.00 0.00

Eukarya Chordates – 10 0.00 0.00

only one RR domain containing protein was identified in each of the two species.

Surprisingly, only HK domains were identified in proteins from Leishmania infantum

and Trypanosoma brucei. No IST domains were identified in Leishmania braziliensis. In

Amoeboflagellates, only Dictyostelium discoideum has proteins containing IST domains

in its proteome. The HK domain was only identified in hybrid HKRR, HKRR1RR2, or

HKRR1HK2RR2 proteins. In contrast, RR domains also appear in proteins where no other

IST domains are identified.

No HK, RR, or HPt domains were found in animal proteomes in the context of TCS/PR

cascades.

Percentage of proteins with HK, RR or HPt domains in the sur-
veyed proteomes
For simplicity, hereafter we shall refer to proteins containing IST domains typical from

TCS/PR cascades as TCS/PR proteins. On average, between 1 and 2% of a prokaryotic

proteome is composed of TCS/PR proteins (mean = 1.37%). In contrast, when an

eukaryotic proteome contains TCS/PR proteins, they account for between 0.05% and

0.2% of the entire proteome (mean = 0.11%). In bacteria, Deltaproteobacteria is the group

with the highest average percentage of TCS/PR proteins (Fig. 3). In contrast Tenericutes

and Chlamydiae almost tie with the lowest average percentage of TCS/PR proteins (Fig. 3).

It has been observed in previous analyses that the number of proteins containing IST

domains associated with TCS/PR cascades increases almost quadratically with the number

of total proteins in a proteome (Ulrich, Koonin & Zhulin, 2005; Galperin, Higdon & Kolker,

2010). We further wanted to assess if this dependency is significantly different between eu-

karyotes and prokaryotes. To do so we fit the data to the linear model described by Eq. (7).

An ANOVA analysis shows that phylogeny is important in explaining the variation in total

number of IST domains found in a proteome (p < 10−25). Because of this we divided

the dataset in prokaryotes and eukaryotes, and fit each dataset to the linear model shown

in Fig. 4. We find that the fraction of variability in number of IST domains explained by

proteome size in eukaryotes doubles that of prokaryotes. This suggests that the number of

IST domains could evolve differently in prokaryotic and eukaryotic organisms.
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Figure 3 Percentage of TCS/PR proteins in the proteome per phylum. The colored box represents the
range of percentage values comprised between the 25% and the 75% quantiles, and the edges of the
vertical bar denote the upper and lower percentage values for each phylum. Phylum abbreviations are
given in Table 1. Phyla with only one species surveyed are not represented in the figure. Their percentage
of TCS/PR proteins per phylum are: Aq (1.30), Ge (3.15), Fb (0.81), L (0.68), Cr (3.73), El (0.78), Ar
(0.93), Z (2.47), O (4.95), Ni (1.97), K (0), N (0), Nh (0), Am (0.17) and M (0.04). We have found only 2
TCS/PR proteins in Av (5 sp): 1 HPt in T. annulata and 1 HK in T. parva.

Figure 4 Percentage of TCS/PR proteins in the proteome versus total number of proteins in the
proteome. R2 is 0.21 for prokaryotes and 0.49 for eukaryotes. This means that proteome size explains
21% of the variation in the percentage of TCS/PR in prokaryotes and 49% in eukaryotes.

Survey of TCS/PR protein types
We find fifty unique types of TCS/PR proteins, when it comes to IST domain organization

within a single polypeptide chain. These unique types of TCS/PR proteins are shown in

Table 2, sorted by abundance. In that table, the protein identifier describes the type of IST

domain (HK, HPt, or RR) and the number describes how many domains of a given IST
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Table 2 Types of TCS/PR proteins found in the 7,609 surveyed species. The protein identifier describes the type (HK, HPt, or RR) and number of
TCS/PR domains fused in each protein.

Protein type Total number of
proteins found

Percentage of proteomes
with this type of protein

Number of species
with this type
of protein

Average number of
proteins/organism

RR 219,436 97,07 7,386 29.71

HK 151,849 95,98 7,303 20.79

HKRR 18,383 48,57 3,696 4.97

HKRRHPt 9,097 40,85 3,108 2.93

HKHPt 5,506 41,99 3,195 1.72

HPt 3,534 28,05 2,134 1.66

RR1RR2 2,034 17,60 1,339 1.52

HKRR1RR2 2,017 13,59 1,034 1.95

HKRR1HPtRR2 982 8.12 618 1.59

HK1RR1RR2RR3 580 6.58 501 1.16

HK1HK2 450 4.07 310 1.45

HK1RRHK2 392 3.30 251 1.56

RRHPt 312 3.47 264 1.18

HKRRHPt1HPt2HPt3 141 1.85 141 1.00

RR1RR2HPt 130 1.45 110 1.18

HKRRHPt1HPt2HPt3HPt4 108 1.42 108 1.00

HK1RR1HK2RR2 90 0.79 60 1.50

RR1RR2RR3HPt 72 0.51 39 1.85

HKRRHPt1HPt2HPt3HPt4HPt5 61 0.80 61 1.00

HKRRHPt1HPt2 58 0.72 55 1.05

HK1HK2RRHPt 39 0.50 38 1.03

HK1HK2HPt 39 0.50 38 1.03

HKHPt1HPt2 36 0.46 35 1.03

RR1RR2RR3 34 0.32 24 1.42

HKRR1RR2RR3HPt 33 0.37 28 1.18

HPt1HPt2 21 0.20 15 1.40

HKHPt1HPt2HPt3 16 0.20 15 1.07

HK1HK2RR1RR2RR3 9 0.12 9 1.00

HK1HK2HK3 9 0.04 3 3.00

HKRR1RR2RR3RR4RR5HPt 7 0.09 7 1.00

HKRRHPt1HPt2HPt3HPt4HPt5HPt6HPt7 7 0.09 7 1.00

HKRR1RR2RR3RR4 6 0.08 6 1.00

HK1HK2HK3HK4RR1RR2 6 0.08 6 1.00

HK1HK2RRHPt1HPt2 5 0.07 5 1.00

HKRR1RR2RR3RR4HPt 5 0.07 5 1.00

RR1RR2RR3RR4 2 0.03 2 1.00

HK1HK2RR1RR2HPt1HPt2 2 0.03 2 1.00

HK1HK2RR1RR2RR3RR4 2 0.03 2 1.00

HK1HK2HK3HK4 2 0.03 2 1.00

HK1HK2HPt1HPt2 2 0.03 2 1.00
(continued on next page)
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Table 2 (continued)
Protein type Total number of

proteins found
Percentage of proteomes
with this type of protein

Number of species
with this type
of protein

Average number of
proteins/organism

HKRR1RR2HPt1HPt2 2 0.03 2 1.00

HK1HK2HK3RR 1 0.01 1 1.00

HPt1HPt2HPt3 1 0.01 1 1.00

HK1HK2RRHPt1HPt2HPt3 1 0.01 1 1.00

HKRR1RR2RR3HPt1HPt2HPt3 1 0.01 1 1.00

HPt1HPt2HPt3HPt4 1 0.01 1 1.00

HKRR1RR2HPt1HPt2HPt3 1 0.01 1 1.00

HK1HK2RR1RR2HPt 1 0.01 1 1.00

HK1HK2RR1RR2RR3RR4RR5RR6HPt 1 0.01 1 1.00

HKRRHPt1HPt2HPt3HPt4HPt5HPt6 1 0.01 1 1.00

type are found in each protein. Hereafter we shall refer to proteins containing only one HK

IST domain as HK protein type, proteins containing one HK domain and one RR domain

as HKRR protein type, and so on and so forth.

Overall, all phyla where IST domains associated with TCS/PR cascades were identified

have RR and HK protein types, with the exception of Monocots, which lack RR domains.

HKRR protein type (also known as hybrid HK) is present in all phyla where TCS/PR

proteins were identified, except in Aquificae, Tenericutes, Chlamydiae, and Crenarchaeota

(Table S2). Together, HK, RR, and HKRR proteins represent 94% of all TCS/PR proteins

that were identified.

In prokaryotes, RR or HK protein types are the most abundant. Together,

they represent more than 90% of all TCS/PR proteins found in the genomes of

many organisms (Table S2). HKRR represent the third most abundant type of

TCS/PR protein, oscillating between less than 1% (Firmicutes) and more than 10%

(Cyanobacteria) of all TCS/PR proteins (Table S2). The remaining protein types

(HPt,HKRRHPt,HK1RRHK2,HKRR1HPtRR2,HK1RR1HK2RR2,...) range from less

than 1% to 5% of all TCS/PR proteins identified in a phylum. Of these less abundant

protein types, the three-domain HKRRHPt protein is more abundant than HK1RRHK2.

The HPt domain is more frequently found in combination with other IST TCS/PR

protein domains than alone in a protein, with the exception of Firmicutes, Tenericutes,

Actinobacteria, Bacteroidetes and Spirochaetes. We also observe that HKRR1HPtRR2 is

more abundant than HK1RR1HK2RR2 (Table S2).

The relative abundances of proteins containing IST domains associated with TCS/PR

cascades in eukaryotes are different from those of prokaryotes. In broad terms, HK and RR

protein types tend to make for a smaller fraction of TCS/PR proteins in eukaryotes than in

prokaryotes, while the opposite is observed for HKRR proteins. Another clear distinction

between prokaryotes and eukaryotes refers to HPt-containing proteins: HPt protein type

represents more than 10% of all TCS/PR proteins in eukaryotes. In prokaryotes, except in

Tenericutes, HPt proteins typically account for less than 1% of TCS/PR proteins. Moreover,

no HKRRHPt or HKRR1HPtRR2 protein types were found in eukaryotes (Table S2).
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Among protists, Euglenozoa proteomes contain mostly HK protein type, although

HKRR type is the most abundant in D. discoideum (Amoeboflagellate). There are cases

of inactive HK domains that have lost their histidine. When identified, these proteins

were eliminated from the analysis as described in Methods. However, there is always the

possibility that some such proteins have passed our filters. To control for that possibility

we created a multiple alignment of the Euglenozoa HK proteins. We found that the

HK domains contained the conserved histidine motif that is needed for HK signal

transduction. Hence, these proteins could be active HK proteins. Furthermore, if we lower

our e-value for cut-off to 10−4, many of these proteins will also be flagged as containing RR

domains with conserved aspartate residues, suggesting that such proteins could be HKRR

types with a high degree of sequence divergence from other HKRR proteins we identified.

Thus, the HK proteins in this clade might either be hybrid HKs or be active in a context that

does not involve a TCS/PR cascade. TCS/PR proteins are almost absent in Alveolates. In the

fungi phyla (Table 1), HKRR is the most abundant protein type in Basidiomycetes, making

up for almost 50% of total TCS/PR proteins. In contrast, RR, HK and HPt protein types

are relatively more abundant than HKRR protein type in Ascomycetes. A remarkable result

in fungi is the relative abundance of HK1RRHK2 and HK1RR1HK2RR2, which are much

more frequent in eukaryotes (above 10%) than in prokaryotes. In plants, RR is the most

abundant protein type in Eudicots, making for about 60% of all TCS/PR proteins.

Distribution of genes coding for TCS/PR protein types in the
genomes
Previous surveys found that many of the TCS/PR proteins are mostly organized in operons

and/or regulons in prokaryotes (Alm, Huang & Arkin, 2006; Williams & Whitworth,

2010; Galperin, 2010; Galperin, Higdon & Kolker, 2010). Consistent with this, we find

that between 60% and 90% of genes containing HK domains are neighbors to genes

containing RR domains. Exact percentages depend on the phylum, but below 20% of

the total prokaryotic HK coding genes are orphan, that is, they are not neighboring any

other gene coding for a protein that contains at least one IST domain. We also have found

some clusters of genes coding HK, RR or HPt domains in eukaryotes, but all of them are a

succession of genes with identical domain composition. Although the existence of operons

has been reported in the eukaryote C. elegans (Blumenthal, Davis & Garrido-Lecca, 2015),

the gene clusters identified in our search have independent promoters.

Altogether, we found 530 different types of gene clusters coding for TCS/PR proteins.

We now briefly describe these results, shown in Table S9.

Neighborhood analysis for HK and RR protein types
In most prokaryotes neighboring genes coding for HK and RR protein types are between

50 and 100 times more frequent than one might expect by chance alone. In some species,

this frequency is even higher (Fig. S1 and Table S3). Several phyla have a small percentage

of species containing only orphan HK and RR protein types in their genomes (20 out of

2066 species in Firmicutes, 2 out of 635 in Actinobacteria, 6 out of 235 in Bacteroidetes, 11

out of 2,246 in Gammaproteobacteria, 48 out of 451 in Alphaproteobacteria, 7 out of 366
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in Betaproteobacteria, 4 out of 108 in Chlamydiae, 3 out of 118 in Cyanobacteria and 9 out

of 179 in Euryarchaeota). Most of these species have a number of TCS/PR proteins below

the average of their phylum.

Neighborhood analysis for HK-RR-HK2
Approximately 20% of all prokaryotic species have HK-RR-HK2 consecutive genes in their

genomes at least 10 (and sometimes 50) times more frequently than one might expect by

chance alone. Conversely, the frequency of this gene neighborhood organization is what

one would expect by chance alone in the remaining 80% prokaryotic species (Table S4).

Neighborhood analysis for HK-RR-HK2-RR2
In most prokaryotic phyla, between 10% and 60% of species have HK-RR-HK2-RR2 genes

at least 100 times more frequently than one would expect by chance alone (Table S5).

Neighborhood analysis for HKRR-HK2-RR2
In the majority of prokaryotic species, genes coding for proteins of type HKRR have no

neighboring genes coding for proteins of types HK or RR. Nevertheless, in more than 20%

of the species of some prokaryotic phyla, such as Proteobacteria or Spirochaetes, genes

coding for HKRR-protein type are neighbors to genes coding for HK or RR protein type

with a frequency more than 100 times higher than expected by chance alone (Table S6).

Neighborhood analysis for HKRRHPt next to RR2
In most of the prokaryotic species where HKRRHPt protein types are present, the observed

frequency of HKRRHPt-RR genetic neighborhoods is between 10 and 50 times more

frequent than one would expect by chance alone (Table S7).

Neighborhood analysis for HK1RRHK2 next to RR2
In prokaryotes, HK1RRHK2 is a scarce protein, present only in a few species (Table 2). If

present, it is located in the genome next to a RR protein type on average 31% of the times

(Table 3). In Gammaproteobacteria, HK1RRHK2 is present only in 28 out of 2246 species

surveyed, and in 9 of these 28 species, the observed frequency of HK1RRHK2 genes placed

in the chromosome next to RR genes is more than 100 times higher than the random

expected frequency (Table S8).

Gene fusion of TCS/PR proteins
Gene fusion events
The number of gene fusion events observed in a genome is expected to be proportional to

genome size, in a model for neutral evolution of protein domain fusion (Durrens, Nikolski

& Sherman, 2008; Whitworth & Cock, 2009). Thus, if gene fusion events in the case of HK

and RR are random one would expect that the linear model that would best fit the data for

% of fused HK (RR, HPt) domains vs. total number of HK (respectively, RR, HPt) domains

has slope zero. In contrast, if these events are favored, the slope of that model should be

positive, and if the events are disfavored, that slope should be negative.

We analyze fusion events of IST domains associated with TCS/PR cascades in the

individual phyla by creating a linear model of percentage of fused HK (or RR) domains
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Table 3 Total number of HKRRHPt and HKRRHK proteins found in prokaryotic phyla. Phyla in bold are from the bacterial domain. Italicized
phyla are from the archaeal domain.

Phylum Number of HKRRHPt/HK1RRHK2
proteins found

Number of HKRRHPt/HK1RRHK2
genes with a neighboring RR gene

% of HKRRHPt/HK1RRHK2
genes with a neighboring RR
gene

Actinobacteria 12/4 9/1 75.00/25.00

Aquificae 0/0 0/0 −/−

Armatimonadetes 0/0 0/0 −/−

Bacteroidetes 107/9 62/4 57.94/44.44

Chlorobi 4/0 0/0 0.00/−

Caldiserica 0/0 0/0 −/−

Chlamydiae 2/0 1/0 50.00/−

Lentisphaerae 1/0 0/0 0.00/−

Verrucomicrobia 12/2 9/1 75.00/50.00

Chloroflexi 16/0 8/0 50.00/−

Chrysiogenetes 1/0 0/0 0.00/−

Cyanobacteria 193/28 41/9 21.24/32.14

Deferribacteres 9/0 7/0 77.78/−

Deinococcus-Thermus 0/4 0/1 −/25.00

Dictyoglomi 0/0 0/0 −/−

Elusimicrobia 0/0 0/0 −/−

Acidobacteria 1/5 1/2 100.00/40.00

Fibrobacteres 0/0 0/0 −/−

Firmicutes 65/97 44/69 67.69/71.13

Fusobacteria 2/0 2/0 100.00/−

Gemmatimonadetes 3/0 3/0 100.00/−

Nitrospinae 0/0 0/0 −/−

Nitrospirae 4/0 3/0 75.00/−

Planctomycetes 40/0 18/0 45.00/−

Alphaproteobacteria 337/10 233/5 69.14/50.00

Betaproteobacteria 364/9 274/4 75.27/44.44

Deltaproteobacteria 208/29 131/1 62.98/3.45

Epsilonproteobacteria 399/0 389/0 97.49/−

Gammaproteobacteria 7239/28 3336/15 46.08/53.57

Zetaproteobacteria 2/0 1/0 50.00/−

Spirochaetes 53/147 16/3 30.19/2.04

Synergistetes 6/0 6/0 100.00/−

Tenericutes 0/0 0/0 −/−

Thermodesulfobacteria 2/0 1/0 50.00/−

Thermotogae 6/0 5/0 83.33/−

Crenarchaeota 0/0 0/0 −/−

Euryarchaeota 9/1 3/0 33.33/0.00

Thaumarchaeota 0/0 0/0 −/−

Total 9097/373 4603/115 50.60/30.83
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as a function of the total number of HK (or RR) domains in the genome and calculate the

likelihood that the slope is different from zero. The results are shown in Table 4. We find

that the percentage of fused HK (or RR) domains increases with the number of HK (or

RR) domains in the genomes. This is consistent with a positive selection for fused HKRR

proteins.

DISCUSSION
Scope, caveats, and limitations of our analysis
In this work we analyze the distribution and prevalence of different types of TCS/PR

proteins in 7609 organisms belonging to 52 phyla. These proteins are responsible for

sensing and adequately regulating the cellular responses to environmental cues. To date,

this is the largest survey of TCS/PR proteins we are aware of. We confirm that these

proteins are predominantly prokaryotic, although they are also present in many eukaryotic

phyla. However, functional TCS/PR cascades appear to be absent in animals. This is also

consistent with previous findings (Attwood, 2013).

An important feature in this study is that we include all organisms with fully

sequenced and annotated genomes in our analysis. For example, on the order of one

thousand Escherichia coli strains are included in our analysis. This would clearly bias any

deletion/duplication or horizontal gene transfer study of TCS/PR proteins that one might

make in the full dataset. However, considering all strains and subspecies in our analysis

is fundamental for identifying extremely low-frequency unique IST domain and operon

organization types.

Identifying unique types of IST domain organization in TCS/PR
cascades
The main goal of this analysis is to identify the unique types of organization for IST

domains in proteins of TCS/PR cascades. In addition we also perform a less thorough

identification of operon organization for TCS/PR proteins. This study was independently

made in two ways: first, we eliminate all proteins annotated as hypothetical or partial. Sub-

sequently we include such proteins in the analysis. The results for the analysis that include

the hypothetical and partial proteins can be found as a ZIP supplementary file (Appendix

S1). Results are qualitatively similar in both cases, and the raw sequences in FASTA format

can be downloaded from http://web.udl.es/usuaris/pg193845/Salvadoretal.html.

Our analysis identifies 50 unique types of TCS/PR proteins, when it comes to intra

protein IST domain organization. The most frequent types of proteins with fused IST

domains are the hybrid histidine kinases, a design with one HK and one RR protein

domains fused in a single protein. This organization has been observed in most of the

eukaryotic PRs that have been well characterized genetically and biochemically (for

example the Sln1p-Ypd1p-Ssk1p pathway in S. cerevisiae (Maeda, Wurgler-Murphy &

Saito, 1994) or the ETR1 system in A. thaliana (Chang et al., 1993)). It is also present in

some prokaryotic systems (for example, the RcsC/YojN/RcsB pathway, involved in the

regulation of capsular polysaccharide synthesis in E. coli (Takeda et al., 2001), and the Lux

pathway regulating bioluminescence in V. harveyi (Freeman & Bassler, 1999)). Another
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Table 4 Percentage of RR and HK domains in hybrid proteins as a function of the total number of HK
and RR proteins in the genome. Phyla in bold are from the bacterial domain. Italicized phyla are from
the archaeal domain. Other phyla are from the eukaryotic domain.

Phylum RR SK

Gammaproteobacteria 6.97 + 0.2x** 14 + 0.31 x**

Betaproteobacteria 1.90 + 0.22x** 4.6 + 0.37x**

Epsilonproteobacteria 15.3 − 0.06x*** 0.17 + 0.36x*

Deltaproteobacteria 17.3 + 0.1x* 31.9 + 0.06x***

Alphaproteobacteria 4.1 + 0.29x** 3.8 + 0.4x**

Firmicutes −0.6 + 0.1x** 1.7 + 0.09x*

Tenericutes – –

Actinobacteria −4.5 + 0.32x**
−0.38 + 0.2x*

Chlamydiae – –

Spirochaetes 5 + 0.47x* 27.2 + 0.07x***

Acidobacteria −5.7 + 0.26x −16 + 0.53x*

Bacteroidetes 30.7 + 0.05x*** 32 + 0.09x***

Fusobacteria −5.8 + x −7.1 + 1.5x

Verrumicrobia 6.7 + 0.3x*** 6.6 + 0.4x***

Planctomycetes 32.8 − 0.1x*** 49.8 − 0.21x***

Synergistetes – –

Cyanobacteria 2.2 + 0.3x** 5.8 + 0.4x**

Green sulfur bacteria 31.6 + 0.7x*** 33.5 + 0.5x***

Green non-sulfur bacteria 5.2 + 0.2x 8.9 + 0.2x

Deinococcus-Thermus −1.2 + 0.2x −1.6 + 0.2x

Euryarchaeota 6.9 + 0.6x* 15.4 + 0.1x***

Crenarchaeota – –

Nanoarchaeota – –

Korarchaeota – –

Oomycetes – –

Diatoms – –

Parabasilids – –

Diplomonads – –

Euglenozoa – –

Alveolates – 9.5 + 0.4x***

Amoeboflagellates – –

Choanoflagellates – –

Microsporideans – –

Basidiomycetes 25.7 + 3.7x 88 + 1.1x***

Ascomycetes 37.4 + 2.5x** 92.4 − 0.07x***

Red algae – –

Green algae 29.2 + x*** 114.7 − 9x***

Mosses – –

Monocots 12.3 + 0.2x*** 32.9 + 1.9x***

Eudicots 17.4 + 0.1x*** 71 − 0.5x***

Notes.
* p-value < 10−3

** p-value < 10−8

*** Non-significant (p-value > 0.1)
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relatively frequent type of IST domain organization is when one HK, one HPt, and one RR

domain are found within a single protein. Such proteins are called unorthodox histidine

kinase or tripartite HK. Some examples of systems with this design are: BvgS-BvgA (Uhl &

Miller, 1996), EvgS/EvgA (Bock & Gross, 2002), ArcB/ArcA (Georgellis, Lynch & Lin, 1997),

TorS/TorR (Bordi et al., 2003), BarA/UvrY (Sahu et al., 2003), TodS/TodT (Silva-Jiménez,

Ramos & Krell, 2012) and GacS/GacA (Sahu et al., 2003).

We also identify 530 unique types of possible operons in prokaryotes and some

eukaryotes, such as ascomycetes and eudicots (Table S9). This variety will be used in

subsequent works to infer naturally occurring variations in the pattern of regulatory

interactions between the proteins involved in TCS/PR networks. For example, if we find

a gene cluster formed by one HK and two RR coding genes, we can infer that the signaling

pathway has a branching point in which the HK phosphorylates both RR. This alternative

circuitry is important because it has been proved that network architecture affects network

dynamics and can define the operational limits of the system in a way that is independent

of the specific biological processes being regulated (Alves & Savageau, 2003; Igoshin, Alves &

Savageau, 2008; Cağatay et al., 2009; Tiwari et al., 2010; Salvado et al., 2012).

We have no way of identifying TCS/PR cascades at the regulon level using only sequence

data. Many examples for this type of organization exist, such as the Kin-SpoO pathway

(Burbulys, Trach & Hoch, 1991).

Why do we focus only on the IST domains of TCS/PR cascades, rather than also includ-

ing also other protein domain that are involved in TCS/PR signal transduction? By focusing

on these domains and their organization, our results set the stage for an analysis of general

dynamics organization principles in the internal transmission of signals within TCS/PR

cascades. The organization of IST domains, either within a protein or within an operon,

plays an important role in determining the dynamics of the signal transmission in a cascade

(Alves & Savageau, 2003; Igoshin, Alves & Savageau, 2008; Ray & Igoshin, 2010; Narula et

al., 2012). Hence, that organization is likely to be the subject of natural selection. Had

we included other types of domains, we would be also analyzing aspects of the input and

output of the cascades that are case specific and not general to all cascades of a given type.

Some physiological, phylogenetic and evolutionary
considerations
In prokaryotes, approximately 90% of all PR proteins have only one HK domain or one RR

domain (Table 2 and Table S2), and most of the genes encoding these proteins are located

in the chromosome next to other PR/TCS genes, forming operons. In contrast to this,

in eukaryotes proteins of types HK and RR are less common, and genes encoding these

proteins are never located next to other TCS/PR genes in the species surveyed. On the other

hand, in eukaryotes there is a higher fraction of TCS/PR proteins containing a combination

of the HK and RR domains (the HPt domain was not found in these eukaryotic multi

domain TCS/PR proteins), such as HKRR, HK1RRHK2 and HK1RR1HK2RR2. This

implies that TCS/PR signal transduction in eukaryotes is in principle less prone to

cross-talk and noise, as the signal is internally transmitted within the same peptide chain

(Tiwari et al., 2010; Tiwari & Igoshin, 2012).
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Our analysis confirms the ad hoc observation that coordinated expression of IST

domains and/or TCS/PR proteins involved in the same cascade is frequent. We also

quantify how much more frequent this coordinated expression is with respect to what

one would expect by chance alone. Although this is not unexpected (Price, Arkin & Alm,

2006; Alm, Huang & Arkin, 2006; Ray & Igoshin, 2012; Tiwari & Igoshin, 2012), to our

knowledge, such quantification had not been done before on such a large dataset.

This suggests that alternative IST regimes might be favored by evolution in prokaryotic

or eukaryotic TCS/PR cascades. This can be inferred from the fact that the three types

of gene expression coordination (regulon, operon, or gene fusion) imply different

characteristics when it comes to internal signal transmission within the cascade. In general,

fused genes will have a lower level of noise in signal transduction, followed by genes coded

in the same operon, and with genes coded in the same regulon permitting the highest level

of noise to enter the signal transduction process (Ray & Igoshin, 2012).

Why is this so? TCS/PR proteins whose expression is coordinated either at the regulon

or operon levels are potentially translated in different amounts. RR proteins typically

are orders of magnitude more abundant than HK proteins (Igoshin, Alves & Savageau,

2008). This leads to a type of signal transduction where amplification of the signal can

be high, as many RR molecules can be modified by a single HK protein. In contrast,

in hybrid kinases where the HK and RR domains are fused in the same protein, the

ratio of HK/RR domains is one to one. This means that each HK domain will likely

only phosphorylate one RR domain. Moreover, independent HK protein types might

also be leakier, phosphorylating non-cognate RRs. Similarly, independent RR protein

types can be more prone to phosphorylation by non-cognate sources. Such non-cognate

phosphorylation events are physically harder to achieve in HKRR protein types. Thus,

proteins with fused TCS/PR domains represent a design that will on average transduce

signals with smaller amplification, but higher fidelity than TCS/PR cascades composed

only of proteins with individual TCS/PR domains.

Taking these considerations into account, one might think that maximization of internal

signal amplification is likely to be an important selective pressure for the evolution of

TCS/PR cascades in prokaryotes, while fidelity of internal signal transmission appears

to be a more important selective pressure for the evolution of TCS/PR cascades in

eukaryotes. These two functional requirements for IST in TCS/PR cascades are generic and

independent of more specific pressures, such as the type of signal they transduce, whether

the organism is uni- or multi-cellular, or other similar considerations (Alm, Huang &

Arkin, 2006; Laub & Goulian, 2007; Williams & Whitworth, 2010; Galperin, Higdon &

Kolker, 2010; Capra & Laub, 2012; Podgornaia & Laub, 2013). If and why amplification

and fidelity of internal signal transmission are indeed shaping the general organization of

TCS/PR cascades is a matter to be investigated further in the future. This will be done in a

forthcoming study by creating mathematical models for the TCS/PR cascade architectures

identified in this study and comparing the dynamic behavior of each of the alternatives.
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Ortiz de Orué Lucana D, Groves MR. 2009. The three-component signalling system
HbpS-SenS-SenR as an example of a redox sensing pathway in bacteria. Amino Acids 37:479–486
DOI 10.1007/s00726-009-0260-9.

Parkinson JS. 1993. Signal transduction schemes of bacteria. Cell 73:857–871 DOI 10.1016/0092-
8674(93)90267-T.

Perry J, Koteva K, Wright G. 2011. Receptor domains of two-component signal transduction
systems. Molecular BioSystems 7:1388–1398 DOI 10.1039/c0mb00329h.

Podgornaia AI, Laub MT. 2013. Determinants of specificity in two-component signal
transduction. Current Opinion in Microbiology 16:156–162 DOI 10.1016/j.mib.2013.01.004.

Porter SL, Wadhams GH, Armitage JP. 2011. Signal processing in complex chemotaxis pathways.
Nature Reviews. Microbiology 9:153–165 DOI 10.1038/nrmicro2505.

Price MN, Arkin AP, Alm EJ. 2006. The life-cycle of operons. PLoS Genetics 2:e96
DOI 10.1371/journal.pgen.0020096.

Ray JCJ, Igoshin OA. 2010. Adaptable functionality of transcriptional feedback in bacterial
two-component systems. PLoS Computational Biology 6:e1000676
DOI 10.1371/journal.pcbi.1000676.

Salvado et al. (2015), PeerJ, DOI 10.7717/peerj.1183 25/27

https://peerj.com
http://dx.doi.org/10.1016/j.bbagen.2011.01.006
http://dx.doi.org/10.1146/annurev.micro.112408.134054
http://dx.doi.org/10.1038/msb.2011.88
http://dx.doi.org/10.1371/journal.pcbi.1002273
http://dx.doi.org/10.1146/annurev.genet.41.042007.170548
http://dx.doi.org/10.1038/369242a0
http://dx.doi.org/10.1146/annurev.micro.59.050405.101230
http://dx.doi.org/10.1016/j.tim.2014.05.006
http://dx.doi.org/10.1073/pnas.1213974109
http://dx.doi.org/10.1266/ggs.77.383
http://dx.doi.org/10.1093/nar/gku968
http://dx.doi.org/10.1007/s00726-009-0260-9
http://dx.doi.org/10.1016/0092-8674(93)90267-T
http://dx.doi.org/10.1016/0092-8674(93)90267-T
http://dx.doi.org/10.1039/c0mb00329h
http://dx.doi.org/10.1016/j.mib.2013.01.004
http://dx.doi.org/10.1038/nrmicro2505
http://dx.doi.org/10.1371/journal.pgen.0020096
http://dx.doi.org/10.1371/journal.pcbi.1000676
http://dx.doi.org/10.7717/peerj.1183


Ray JCJ, Igoshin OA. 2012. Interplay of gene expression noise and ultrasensitive dynamics
affects bacterial operon organization. PLoS Computational Biology 8:e1002672
DOI 10.1371/journal.pcbi.1002672.

Ray JCJ, Tabor JJ, Igoshin OA. 2011. Non-transcriptional regulatory processes shape transcrip-
tional network dynamics. Nature Reviews. Microbiology 9:817–828 DOI 10.1038/nrmicro2667.

Sahu SN, Acharya S, Tuminaro H, Patel I, Dudley K, LeClerc JE, Cebula TA, Mukhopadhyay S.
2003. The bacterial adaptive response gene, barA, encodes a novel conserved histidine kinase
regulatory switch for adaptation and modulation of metabolism in Escherichia coli. Molecular
and Cellular Biochemistry 253:167–177 DOI 10.1023/A:1026028930203.

Salvado B, Vilaprinyo E, Karathia H, Sorribas A, Alves R. 2012. Two component systems: physio-
logical effect of a third component. PLoS ONE 7:e31095 DOI 10.1371/journal.pone.0031095.

Schaller GE, Shiu S-H, Armitage JP. 2011. Two-component systems and their co-option for
eukaryotic signal transduction. Current Biology 21:R320–R330 DOI 10.1016/j.cub.2011.02.045.

Seshasayee ASN, Luscombe NM. 2011. Comparative genomics suggests differential deployment
of linear and branched signaling across bacteria. Molecular BioSystems 7:3042–3049
DOI 10.1039/c1mb05260h.

Sheng X, Huvet M, Pinney JW, Stumpf MPH. 2012. Evolutionary characteristics of bacterial
two-component systems. Advances in Experimental Medicine and Biology 751:121–137.
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