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Abstract

Heterotrophic plants provide evolutionarily independent, natural experiments in the genomic consequences of radically altered

nutritional regimes. Here, we have sequenced and annotated the plastid genome of the endangered mycoheterotrophic orchid

Hexalectris warnockii. This orchid bears a plastid genome that is �80% the total length of the leafy, photosynthetic

Phalaenopsis, and contains just over half the number of putatively functional genes of the latter. The plastid genome of

H. warnockii bears pseudogenes and has experienced losses of genes encoding proteins directly (e.g., psa/psb, rbcL) and

indirectly involved in photosynthesis (atp genes), suggesting it has progressed beyond the initial stages of plastome degradation,

based on previous models of plastid genome evolution. Several dispersed and tandem repeats were detected, that are poten-

tially useful as conservation genetic markers. In addition, a 29-kb inversion and a significant contraction of the inverted repeat

boundaries are observed in this plastome. The Hexalectris warnockii plastid genome adds to a growing body of data useful in

refining evolutionary models in parasites, and provides a resource for conservation studies in these endangered orchids.
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Introduction

Plants that parasitize other plants or mycorrhizal fungi pro-

vide unique opportunities to study the genomic consequen-

ces of radically altered nutritional lifestyles and associated

changes in selective regimes (Wolfe et al. 1992; Barrett

et al. 2014; Wicke et al. 2016). In particular, plants that

have become obligate parasites upon fungi for nutritional

needs represent case studies of convergent evolution.

Transitions to this lifestyle have occurred an estimated min-

imum of 30� in the orchid family alone, mostly due to their

complete, parasitic dependence upon mycorrhizal fungi

early in development, called “initial mycoheterotrophy”

(Freudenstein and Barrett 2010; Merckx and Freudenstein

2010). Furthermore, many of these plants are rare or endan-

gered (Freudenstein 1999; Merckx et al. 2013), and in many

cases represent “ecological indicators” of undisturbed hab-

itat, or may serve as “umbrella species” for conservation

efforts (Taylor et al. 2013).

What happens to the genomes of organisms that have

undergone such drastic changes in nutritional mode, from

autotrophy to heterotrophy? Representative plastid genomes

have been sequenced from plant lineages containing hetero-

trophs, allowing researchers to construct models of plastid

genome degradation, including pseudogene formation (func-

tional losses), physical gene losses, and increased substitution

rates as a result of relaxed selective pressures on photosyn-

thetic function (Wicke et al. 2011, 2016; Barrett and Davis

2012; Barrett et al. 2014; Graham et al. 2017). However,

sampling gaps exist in these models, underscoring the need

for more thorough representation of plant lineages contain-

ing nonphotosynthetic members, each representing an inde-

pendent trajectory of plastome degradation.

One such lineage is the North American orchid genus

Hexalectris Raf. Members of this genus are hypothesized to

obtain most or all nutrients, including carbon, from their sym-

biotic mycorrhizal fungi (Taylor et al. 2003; Kennedy et al.
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2011), a situation called mycoheterotrophy. Hexalectris con-

tains ten currently recognized species, many of which are rare

and restricted to highly specific habitats (Catling and Engel

1993; Catling 2004; Kennedy and Watson 2010). Hexalectris

warnockii Ames and Correll, or the Texas purple-spike, is an

endangered member of the genus restricted to Texas,

Arizona, and Mexico, where it grows in shaded oak-juniper-

pinyon canyons near seasonally dry creek beds, or on calcar-

eous soils under juniper scrub (IUCN Red List: Endangered D;

Goedeke et al. 2015). It is known from �24 sites in United

States, including: Big Bend National Park, northeastern Texas

(Dallas area), the Edwards Plateau, and Arizona; in Mexico it is

found at a site in Coahuila and another at the southern tip of

Baja California Sur (Catling 2004).

Here, we have sequenced, assembled, and annotated the

plastid genome of Hexalectris warnockii. The goals of this

study are: 1) to use genomic criteria—that is, extensive loss

of photosynthesis-related genes—to determine if H. war-

nockii is nonphotosynthetic (fully mycoheterotrophic) or

retains photosynthetic capability (partially mycoheterotro-

phic); 2) to compare the plastid genome of H. warnockii to

those from members of other heterotrophic plant lineages;

and 3) to provide a genomic resource for the development of

plastid markers to facilitate studies of genetic diversity in pop-

ulations of this endangered species.

Materials and Methods

Floral tissue of H. warnockii was collected from Brewster

County, TX. A voucher specimen was deposited at The

Miami University Willard Sherman Turrell Herbarium

(Accession: Kennedy and Freeman #33). We extracted DNA

using a CTAB protocol (Doyle and Doyle 1987), yielding

17.4 ng/ll based on a Qubit Fluorometer reading

(ThermoFisher Scientific, Waltham, MA). Illumina libraries

were prepared by shearing total genomic DNA to 350–

400 bp fragments on a Covaris E220 ultrasonicator (Covaris,

Woburn, MA), followed by the protocol of Glenn et al. (2016).

Library concentrations and fragment sizes were calculated on

an Agilent Bioanalyzer (Agilent Technologies, Santa Clara,

CA), pooled with 19 other libraries, and sequenced on two

lanes of an Illumina Hiseq2000 for paired-end, 100-bp reads.

We carried out adapter removal and quality trimming with

Trimmomatic v.0.36 (Bolger et al. 2014), using a 3-bp sliding

window and a minimum PHRED score of 20 (1:100 error rate).

The plastome was assembled from cleaned reads using

NOVOPlasty v.2.6.3 (Dierckxsens et al. 2017), which uses a

reference sequence as an initial seed (here, rbcL from the

leafy, photosynthetic orchid Phalaenopsis equestris,

GenBank# JF719062) and builds a circularized plastome.

Reads were mapped with high stringency to the draft plas-

tome produced by NOVOplasty in Geneious v.8.1 to check for

assembly errors (http://www.geneious.com, last accessed

May 1, 2018; Kearse et al. 2012; 98% similarity, allowing

gaps up to 100 bp). The plastome was annotated initially in

DOGMA (Wyman et al. 2004). Start/stop codons, exon/intron

boundaries, inverted repeat (IR) boundaries, and putative loss-

of-function pseudogenes were verified and adjusted by align-

ing the plastome to protein coding and RNA genes from P.

equestris (GenBank accession JF719062), Phoenix dactylifera

(Arecaceae, GU811709), and Heliconia collinsiana

(Heliconiaceae, JX08866), as was done in Barrett et al. (2014).

The annotated H. warnockii plastome was aligned with

that of P. equestris using the progressiveMAUVE (Darling

et al. 2010) plugin for Geneious v. 8.1, which identifies syn-

tenic regions between two or more genomes, thus allowing

detection of genomic rearrangements. Putatively functional

genes (with open reading frames or lacking drastic modifica-

tions in the case of RNA genes), pseudogenes (putative func-

tional losses, i.e., those with interrupted reading frames or

nontriplet insertions or deletions), and physical gene losses

were recorded and compared with the plastome of the leafy,

photosynthetic P. equestris. We also compared plastome size

and functional gene content for a number of full mycoheter-

otrophs, partial mycoheterotrophs, holoparasites, hemipara-

sites, and other leafy, autotrophic species.

Genomic repeat type and abundance were calculated in

REPuter (Kurtz et al. 2001), specifying a minimum length of

20 bp (for forward, reverse, palindromic, and reverse-

complementary repeats), a Hamming distance of 3, and a

maximum e-value of 1.0� 10�3. Tandem repeats were iden-

tified using the Phobos plugin for Geneious (Mayer 2010),

specifying 2–50 bp motif length, a minimum total length of

10 bp, and allowing only perfect repeats. All results were plot-

ted in R (R Core Development Team 2013) or PAST v.3.8

(Hammer et al. 2001). A linearized plastome map was created

in OGDraw (Lohse et al. 2013).

Results and Discussion

Illumina paired-end sequencing of H. warnockii yielded a total

of 38,633,900 reads (after trimming), with an average insert

size of 350 bp. Coverage depth of the finished plastome was

712.2�, representing 2.19% of the total read pool. The

119,057 bp plastome has a quadripartite structure as is typical

for angiosperms (fig. 1), with a Large Single Copy region (LSC;

66,903 bp), Small Single Copy region (SSC; 17,490), and an

Inverted Repeat (IR; 17,332) (table 1 and fig. 1). The H. war-

nockii plastome is thus 29,902 bp smaller than the leafy orchid

P. equestris, or �79.9% the total size of the latter

(148,959 bp, representing a typical orchid plastome size).

The largest physical reduction in the H. warnockii plastome

was in the LSC region, which was 27.6% smaller than that of

P. equestris due to several large deletions. There is a contrac-

tion of the inverted repeat (IR) in H. warnockii, representing a

33% difference in total IR length relative to P. equestris. This

contraction resulted in the following genes, typically found in

the IR, becoming part of the SSC: 16S rRNA, trnIGAU, trnAUGC,
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23S rRNA, 4.5S rRNA, 5S rRNA, trnRACG, trnNGUU, and the 50

portion of ycf1. Total GC content is 36.9% after removing

one copy of the IR, and similar to that of Phalaenopsis at

36.7%.

We identified 45 dispersed repeats across the genome pass-

ing our filters in REPuter: two were forward-compliment, 16

forward–forward, 22 palindromic, and five forward–reverse

(table 2). We identified 419 tandem repeats with minimum

motif lengths of 10 bp (table 2 and supplementary table S1,

Supplementary Material online). The most abundant of these

were hexanucleotide repeats (141) followed by pentanucleo-

tide repeats (99). We identified three dinucleotide repeats, 17

trinucleotide repeats, and 50 tetranucleotide repeats. Thus,

there are several options for the development of potentially

variable satellite markers in H. warnocki, which will be useful

indeterminingpatternsofplastidgenomicdiversityacrosspop-

ulations of this endangered orchid. Alignment with MAUVE

detected a major genomic inversion of a �29-kb region of

the LSC relative to P. equestris with breakpoints spanning

trnSGCU and trnSGGA; the entire collinear block detected by

MAUVE contains 29 genes (fig. 1).
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FIG. 1.—Map of the plastid genome of Hexalectris warnockii. LSC, large single copy region; SSC, small single copy region; gray, inverted repeat; dashed

line in LSC¼ a 29-kb inversion. Red text indicates the presence of a pseudogene (w). “*” and “**” denote genes with one or two introns, respectively.

Table 1

Features of the Fully Mycoheterotrophic Hexalectris warnockii Plastid Genome Relative to That of the Leafy, Autotrophic Phalaenopsis equestris (GenBank

accession JF719062)

Hexalectris warnockii Phalaenopsis equestris % of Phalaenopsis

Total length (bp) 119,057 148,959 79.9

Large single copy (LSC) 66,903 85,967 77.8

Inverted repeat (IR) 17,332 25,846 67.1

Small single copy (SSC) 17,490 11,300 154.8

protein coding genes (CDS) 38 69 55.1

Pseudogenes (w) 25 3 833.3

Transfer RNA genes (tRNA) 30 30 93.3

Ribosomal RNA genes (rRNA) 4 4 100.0

Putatively functional 72 103 69.9

Total genes and pseudogenes 97 106 91.5

Table 2

Numbers of Dispersed and Tandem Repeats Detected with REPuter and

Phobos, Respectively

Dispersed Repeats

Repeat Type Number

Forward-compliment 2

Forward–forward 16

Palindromic 22

Forward–reverse 5

Tandem repeats

Motif Length (bp) Number

2 3

3 17

4 50

5 99

6 141

7 50

8 19

9 15

>9 25

NOTE.—Tandem repeat sequences are listed in supplementary table S1,
Supplementary Material online.
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The plastome of H. warnockii encodes 72 putatively func-

tional genes (protein-coding, tRNA, and rRNA), compared

with 103 in P. equestris, a 31.1% difference in functional

gene content, composed of pseudogenes (i.e., functional

losses, 25 in H. warnockii relative to P. equestris s) and physical

gene losses (11 in H. warnockii relative to P. equestris). The

total plastome size reduction in H. warnockii is largely due to

the deletion of regions containing photosynthesis-related

genes (fig. 1), thus also reducing the gene count. Plastome

size in H. warnockii is comparable to that of the mycoheter-

otrophic orchid Corallorhiza striata var. vreelandii at

137,505 bp (Barrett and Davis 2012), and to the holoparasite

Myzorhiza californica at 120,840 bp (Wicke et al. 2013; see

fig. 2). Overall there is a strong positive correlation between

the number of putatively functional genes and plastome

length among heterotrophic angiosperms (fig. 2; Pearson cor-

relation r¼ 0.953, P< 0.0001); thus, physical gene loss is at

least in part driving a reduction in plastome size.

Genes that are either functionally or physically lost conform

to the models of Barrett and Davis (2012), Wicke et al. (2016)

and Graham et al. (2017), and include: photosynthesis-related

genes [Photosystem I and I subunits (psa, psb), Cytochrome

subunits (pet), RuBisCO Large Subunit (rbcL), Photosystem

Assembly Factors (ycf3, ycf4, also called paf1 and paf2,

respectively; Wicke et al. 2011); subunits of the plastid-

encoded RNA Polymerase (rpo); and subunits of the ATP syn-

thase complex (atp)]. There are also substantial functional and

physical losses among subunits of the NAD(P)H

Dehydrogenase complex (ndh; all physically lost except

ndhK, wndhB, and wndhC), but this is common in other

orchids including Phalaenopsis, perhaps due to the tendency

of orchids to occupy low-light environments (Lin et al. 2017).

Losses in subunits of these functional gene categories con-

form to “stage 4” of the model of plastome degradation by

Barrett and Davis (2012), and are also in line with a recent

mechanistic model of plastome evolution (Wicke et al. 2016).

Functional loss of five out of six ATP Synthase subunit genes is

significant, in that many parasitic lineages early in the process

of plastome degradation tend to have preserved reading

frames for atp genes despite having experienced major losses

in photosynthesis-related and rpo genes (Barrett et al. 2014;

Wicke et al. 2016; Braukmann et al. 2017; Graham et al.

2017). Thus, H. warnockii may have entered a new phase in

plastome evolution following a period of evolutionary stasis,

based on the “punctuated burst” model of plastome evolu-

tion put forth by Naumann et al. (2016).

The IR is hypothesized to function in plastid genome struc-

tural stability, but studies from highly rearranged genomes are
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equivocal (Palmer 1985; Lam et al. 2015; Lim et al. 2016).

Here, a 29-kb LSC inversion is found in conjunction with a

drastic reduction of the IR (fig. 1). Repeats have been shown

in parasitic Orobanchaceae to be associated with plastome

structural rearrangements and shifts in IR boundaries (Wicke

et al. 2013); thus additional sampling of Hexalectris spp. and

related genera will allow for explicit tests among repeat con-

tent, structural rearrangements, and substitution rates.

The ancestor of Hexalectris may have been evolving under

relaxed selective pressure for up to 32 Myr, based on a stem-

node age estimate of Hexalectris, which also includes mem-

bers of the closely related genera Basiphyllaea and Bletia (Sosa

et al. 2016). Hexalectris warnockii is consistently placed as

sister to the remaining members of genus Hexalectris in pre-

vious studies (Kennedy and Watson 2010; Sosa et al. 2016);

thus it is unknown whether this species has undergone an

independent transition to full mycoheterotrophy, or if this

condition is shared by all species in the genus. Regardless,

plastome degradation has been occurring in H. warnockii

for an estimated 24 Myr, when the first divergence occurred

within Hexalectris (Sosa et al. 2016). Sequencing of additional

members of Hexalectris, and the closely related members of

tribe Bletiinae (Basiphyllaea, Bletia) will allow fine-scale recon-

struction of plastid genome degradation, and testing of the

hypothesis of a single origin of full mycoheterotrophy/loss of

photosynthesis in Hexalectris. Furthermore, sampling of mul-

tiple individuals per species may uncover substantial variation

in plastomes across the geographic range of each species, as

has been recently demonstrated in the fully mycoheterotro-

phic orchid Corallorhiza striata (Barrett et al. 2018).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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