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Complex Acoustic Environments: Review,
Framework, and Subjective Model

Adam Weisser1,2 , Jörg M. Buchholz1,2, and Gitte Keidser2,3

Abstract

The concept of complex acoustic environments has appeared in several unrelated research areas within acoustics in different

variations. Based on a review of the usage and evolution of this concept in the literature, a relevant framework was

developed, which includes nine broad characteristics that are thought to drive the complexity of acoustic scenes. The

framework was then used to study the most relevant characteristics for stimuli of realistic, everyday, acoustic scenes:

multiple sources, source diversity, reverberation, and the listener’s task. The effect of these characteristics on perceived

scene complexity was then evaluated in an exploratory study that reproduced the same stimuli with a three-dimensional

loudspeaker array inside an anechoic chamber. Sixty-five subjects listened to the scenes and for each one had to rate 29

attributes, including complexity, both with and without target speech in the scenes. The data were analyzed using three-way

principal component analysis with a (2 3 2) Tucker3 model in the dimensions of scales (or ratings), scenes, and subjects,

explaining 42% of variation in the data. ‘‘Comfort’’ and ‘‘variability’’ were the dominant scale components, which span the

perceived complexity. Interaction effects were observed, including the additional task of attending to target speech that

shifted the complexity rating closer to the comfort scale. Also, speech contained in the background scenes introduced a

second subject component, which suggests that some subjects are more distracted than others by background speech when

listening to target speech. The results are interpreted in light of the proposed framework.
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Introduction

Recent hearing research has shown a growing interest in
the effects that realistic listening conditions may have on
different psychoacoustic measures, which are tradition-
ally tested in the laboratory (Best, Keidser, Buchholz, &
Freeston, 2015; Naylor, 2016; Neuhoff, 2004; Plomp,
2002). The realistic settings are often referred to as ‘‘com-
plex acoustic environments’’ (CAEs), although different
variations of this term are routinely encountered in the
literature (see Table 1). While the central role that CAEs
play in realistic hearing has been acknowledged in the
current research, the exact meaning of the term and what
it designates have remained opaque. This is addressed
here by first providing a brief literature review on
CAEs in hearing research, which is then developed and
expanded into a framework that summarizes the key
aspects that make an acoustic environment complex.
This framework is then applied to stimuli that are used
in an exploratory study to evaluate the perceived

complexity of a range of realistic environments that are
reproduced in the laboratory.

CAEs in the Literature

The concept of CAEs did not fully make it to the main-
stream jargon of hearing research until recent times,
although it first appeared much earlier in different vari-
ations (Carhart & Tillman, 1970; Durrant, 1967;
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Harrison & Beecher, 1969; Tillman, Carhart, & Nicholls,
1973). The main boost to the eventual popularity of the
term has likely been the seminal work by Bregman (1990)
about auditory scene analysis. Even though he did not
use the term explicitly in his book, a follow-up paper
(Bregman, 1993) explained: ‘‘The simple rules for spatial
perception that classical psychophysics has discovered by
testing listeners in simple, quiet environments cannot be
applied without modification in acoustically complex
ones’’ (p. 16). Listeners have evolved to continuously
segregate sound events from their environments, which
they achieve either by using learned schemas uncon-
sciously, attentively, and voluntarily or by following reg-
ularities in acoustic streams, such as common temporal
and harmonic patterns—attributable to a single source.
Similarly, Yost (1991) referred to ‘‘complex sound fields’’
as containing more than one source, from which the
hearing system creates auditory images. A more in-
depth review on the link between auditory scene analysis
and CAEs that includes additional usages of the term in
acoustics and related fields can be found in Weisser
(2018).

Even though CAEs are often considered in the same
vein as realistic acoustic environments, many of the hear-
ing studies that picked up the CAE terminology did not
necessarily attempt to construct realistic environments.
Instead, they rather aimed at creating more involved
scenes in terms of the scene analysis challenge using trad-
itional psychoacoustic stimuli (e.g., Bendor & Wang,
2006; Pelofi, De Gardelle, Egré, & Pressnitzer, 2017;
Wilson & Strouse, 2002; Zwiers, Van Opstal, &
Cruysberg, 2001). However, there have been mounting
concerns that observations collected using traditional
psychoacoustic and audiometric methods, which may
not exert subjects’ cognitive systems as realistically as
complex environments do, have low predictive power to
daily situations (e.g., Arlinger, Lunner, Lyxell, &
Kathleen Pichora-Fuller, 2009). The cocktail party para-
digm (Cherry, 1953), in which listeners are able to attend
to a specific talker among several competing talkers in
their immediate environment, is thus deemed a more
appropriate model for realistic listening conditions.

It is, however, a challenging problem to study in con-
trolled conditions (McDermott, 2009; Middlebrooks,
Simon, Popper, & Fay, 2017) and one that is not very
well handled by current hearing aid technology (Shinn-
Cunningham & Best, 2008). Cherry suggested a number
of mechanisms that enable listeners to segregate the mul-
tiple talkers. Segregating multiple talkers has been a
recurrent theme in auditory scene analysis research,
sometimes emphasizing reverberation or variable source
to background levels as factors that specifically add com-
plexity to the scenes (e.g., Faller & Merimaa, 2004;
Girolami, 1998; Hawley, Litovsky, & Colburn, 1999;
Kamkar-Parsi & Bouchard, 2011; Lesser, Nawab, &
Klassner, 1995; Ma, Milner, & Smith, 2006).

The higher level attention-related tasks of auditory
scene analysis and object formation were gradually
merged with the everyday cocktail party problem (Best,
Ozmeral, Kopčo, & Shinn-Cunningham, 2008). It has
been repeatedly reported that listening to speech in
CAEs is a prime interest of hearing-device users, but a
situation that is difficult to assess using common experi-
mental techniques (Ghent, 2005; Naylor, 2016). This
notion was explored in different studies using highly
elaborate acoustic setups to be able to deal with multiple
simultaneous sources distributed in space, reverberation,
audio-visual displays, as well as elaborate signal process-
ing. These studies obtained results that were at odds with
traditional tests performed in simpler environments (e.g.,
Best et al., 2015; Brungart, Cohen, Cord, Zion, &
Kalluri, 2014; Brungart, Sheffield, & Kubli, 2014;
Smeds, Wolters, & Rung, 2015).

Few attempts have been made to narrow down the
scope that is entailed by the CAE concept. With hearing
aid evaluation difficulties as the focus, Ghent (2005) pro-
posed a straightforward definition for complex sound
fields: ‘‘sound fields created with at least two uncorrelated
sound sources on different axes that result in sound wave
interference at the center of the listening position.
A simple sound field, by contrast, has a single sound
source.’’ According to Ghent, the CAEs are confined to
enclosed spaces with an isotropic and homogenous
propagation medium, of constant acoustic impedance.
Different classes of environments are drawn according
to the kind of acoustic fields: free, diffuse, anechoic, rever-
berant, and real sound fields, which are dynamic, uncon-
trollable, and unpredictable. These real sound field
properties are largely missing from measurements
obtained in the laboratory, which is one possible reason
they often fail to predict real-life performance of hearing
aids. A speech-communication-centric take on the prob-
lem was offered by Mattys, Davis, Bradlow, and Scott
(2012), who were concerned with types of ‘‘adverse con-
ditions.’’ In their formulations, adverse conditions occur
at the source, receiver, and environment. The environ-
ment-related degradation may be the result of noise

Table 1. Different Wording Used in the Literature to Designate

Complex Acoustic Environments.

Complex Acoustic Environment

Realistic Auditory Scenario

Everyday Listening Scene

Demanding Multitalker Soundscape

Challenging Multisource Condition

Adverse Sound Situation

Real world Setting

Field
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sources that mask the speech or distraction caused by
informational masking. These problems may be further
exacerbated due to reverberation or noisy electronic
transmission channels, whenever amplification is used.
In all cases, stream segregation becomes more difficult
and may overload the listener’s working and short-term
memory.

While the discussion about complex environments in
the acoustic literature has been formulated independently
of the complexity literature, complex systems are wide-
spread in the real world and some of their most well-
known features are relevant to CAEs as well (Mitchell,
2009). Complexity science has been grappling with the
existence of a universal definition of complexity across
scientific domains (Lloyd, 2001; Mitchell, 2009, Chapter
7). Therefore, complex systems are often described using
a particular subset of characteristics out of many that are
commonly associated with complexity (Badii & Politi,
1999, Chapters 1–2). One such important feature of com-
plex systems that has not been explicitly mentioned ear-
lier is the different levels of connection and interaction
between the various elements of a complex system that
define its overall information dynamics, as is characteris-
tic for networks (Strogatz, 2001). Applied to acoustic
environments, an example of such a network would be
a group of people talking, whereby they interact with one
another through conversation. Their overall acoustics
and conversation dynamics does not resemble that of
the same people talking to themselves in one space—a
dialog is not the aggregate of two monologs (Branigan,
Catchpole, & Pickering, 2011; Schober & Clark, 1989).
Moreover, the talkers will adapt their behavior to the
acoustic environment that may contain background
noise or other people talking, which provides an add-
itional level of interaction that is commonly described
by the Lombard effect (Lombard, 1911). In the case of
other interfering talkers, the Lombard effect will influence
the behavior of all talkers, who may iteratively raise their
voices to make themselves understood until an equilib-
rium is reached or they (temporarily) give up talking.

CAE Framework

Based on the literature summarized earlier, an attempt is
made in the following to frame what makes an acoustic
environment complex. The resulting CAE framework
can be employed as a tool that enables a comprehensive
qualitative characterization of arbitrary acoustic scenes
in terms of their acoustic complexity, as will be illu-
strated further. The framework was conceived to be as
exhaustive and inclusive as possible so that the complex-
ity of arbitrary acoustic environments can be accounted
for using its characteristics.

With reference to Mattys et al. (2012), an acoustic
environment is defined as bounded region in space that

contains at least one sound source and one receiver,
coupled through an acoustic medium (typically air;
Ghent, 2005). Using this generic definition, it is sug-
gested that the complexity of an acoustic environment
can be exhaustively accounted for according to the
nine broad characteristics listed in Table 2 or a
subset thereof. The first three characteristics (multiple
sources, source diversity, and source–source inter-
action) are related directly to the acoustic sources,
with emphasis on delineating complex sources and
complex environments. Characteristics 4 and 5 (rever-
beration and nonuniform medium) relate to the envir-
onment itself—the boundary conditions and the
acoustic medium within which sound propagates in
the system. Characteristics 6 to 8 (sound systems,
source–environment adaptation, and other cues) pre-
sent additional interactions that may exist between
sources and environments. The last characteristic
(receiver’s task) relates specifically to the receiver but
informs and contextualizes the other characteristics.
Overall, realism or everydayness is not necessary attri-
butes that make a situation complex. It is possible to
synthetically produce scenes with multiple sounds that
are not normally heard outside of the laboratory, nor
is a situation required to be challenging to be con-
sidered complex. For example, a conversation between
three people in a quiet room may be considered a
somewhat complex scene but is trivial for a normal-
hearing listener to follow.

The characteristics of the CAE framework some-
times require knowledge about the sources and the
context that goes beyond their acoustics. Most notably,
the source–environment–receiver delineation is not
always applicable in practice. From the standpoint of
the receiver, the environments and the sources can be
inseparable. Also, the roles of sources and receivers are
dynamic, as in a dialog, for instance, either of the
interlocutors can be the listener and talker at times.
Finally, the complexity of the medium in which they
occur may be emulated using headphones that provide
equivalent auditory cues. This can dissociate the spatial
perception from the physical space outside the listener
and thereby creates an environment completely loca-
lized around (or even inside) the listener’s head. The
very last characteristic—the receiver’s task—is critical
to framing all other characteristics, as it provides a
context to the action of interest that takes place in
the CAE system. This has recently been highlighted
in a review by Lewicki et al. (2014) who noted that
information gathered in ecologically valid (and bio-
logically relevant) scene analysis must be directed by
a particular goal of the perceiver. This, in turn, leads
to modification of the perceiver’s actions in accordance
with the information received through its senses and
previous knowledge in memory.

Weisser et al. 3



Goals

The overarching goal of this study is to understand the
factors that are most relevant for the subjective percep-
tion of complexity in acoustic scenes. This would allow a
more effective use of CAEs in hearing research and
thereby provide hearing outcomes with increased

ecological validity. To achieve this goal, first, the CAE
framework proposed earlier was applied to assess the
characteristics of complexity that are most salient in
everyday environments, considering a sample of 14 real-
istic acoustic scenes. These acoustic scenes were then
used within an exploratory subjective experiment,
which was designed with the specific aim to understand

Table 2. The Complex Acoustic Environment Framework.

Type No. Characteristic Description

Source 1 Multiple acoustic

sources distributed

in space

The more acoustic sources that are present, the more inde-

pendent streams of sound event information are competing

for the listener’s attention (e.g., Cherry, 1953; Hawley et al.,

1999; Shinn-Cunningham & Best, 2008).

2 Acoustic source

diversity

Sounds vary in temporal and spectral characteristics, radiation

patterns, and position. The more variable the source is the

more challenging it may be for the receiver to process these

changes in the real time (e.g., Ghent, 2005; Sueur, Farina,

Gasc, Pieretti, & Pavoine, 2014).

3 Source–source

interaction

Human talkers and other biological sound sources form

interactive communication networks, so the sound pro-

duced by several sources (e.g., talkers) is not the same as

each of them alone (McGregor, 2005).

Environment 4 Reverberation, reflec-

tions, scattering,

diffraction, and

diffusion

The geometry and materials of the environment, and objects

within it, impose the boundary conditions on the propaga-

tion of sound that deviate from free-field acoustics. This

blurs individual sound sources (e.g., Houtgast & Steeneken,

1985) and may make sound signals more difficult to hear in

noise or competing signals (e.g., Brungart, Sheffield, et al.,

2014; see Characteristic 9 later).

5 Nonuniform medium

for sound

propagation

The medium can be inhomogeneous, nonlinear, nonisotropic,

absorptive, and dispersive. This is mostly applicable for

underwater acoustics, although over very long distances,

large temperature gradients, precipitation, or turbulent

conditions, some of these phenomena can become relevant

to airborne sound as well (Daigle, 1979; Lengagne & Slater,

2002; Morton, 1975; Wiener & Keast, 1959).

Source–environment

interactions

6 Loudspeaker amplifica-

tion systems

Electronic amplification interacts with the room acoustics and

affects the sound pressure levels and radiation patterns of

sounds in space (Kuttruff, 2009, Chapter 10).

7 Source–environment

adaptation

Biological sound sources may react and adapt to the general

acoustical conditions in the environment including rever-

beration, and general noise level, as well as their distribution

in space (e.g., the Lombard effect, Lombard, 1911).

8 Cues of other

modalities

Sensory signals of different modalities tend to co-occur in

natural settings and they can be combined and integrated by

the receiver (Partan & Marler, 1999), and inform action

(Lewicki, Olshausen, Surlykke, & Moss, 2014).

Receiver 9 Receiver’s task The instantaneous task of the listener frames how much

complexity matters (Badii & Politi, 1999, p. 6; Gell-Mann,

1995, p. 33), and how important the other characteristics

(1–8) are within that context, given the receiver’s resources

and knowledge.
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what listeners make out of the notion of complexity and
how they deal with various aspects thereof. Subjects were
asked to perceptually analyze the different acoustic
scenes and to rate their perceived complexity as well as
28 additional subjective attributes. The responses were
analyzed using a three-way principal component analysis
(PCA) to reveal the most dominant connections between
the acoustic scenes, rated attributes, and subjects.

Experimental Methods

Test Subjects

Sixty-five subjects participated in the test (48 females and
17 males) with an age range between 19 and 64 years
(median 23 years). Subjects either had their hearing
screened in the last year or were screened before the
test began. Fifty subjects had normal hearing (pure
tone thresholds below 20 dB HL at standard frequencies
between 250 and 8000 Hz), and 15 had slight-to-mild
losses (pure tone average, thresholds measured across
500, 1000, 2000, and 4000Hz between 20 and 30 dB
HL). Subjects were compensated for their participation
either by payment or by course credit, if they were under-
graduate students.

Test Setup

All stimuli were presented to the subjects using the 41-
channel loudspeaker array located inside the anechoic
chamber of the Australian Hearing Hub, Macquarie
University, Australia. This spherical loudspeaker array
is constructed from rings of equally spaced Tannoy V8
loudspeakers (Tannoy, Coatbridge, Scotland) at differ-
ent elevation angles and a distance of 1.87m from the
center of the array (see Oreinos & Buchholz, 2016). All
signals were processed on a PC at a sampling frequency
of 44.1 kHz using MATLAB software and were pre-
sented to the subjects via an RME MADI PCIe sound
card connected to two RME 32-channel M-32 digital-to-
analog converters (RME, Haimhausen, Germany),
which drove the 41 loudspeakers via 11 Yamaha
XM4180 power amplifiers (Yamaha, Hamamatsu,
Shizuoka, Japan). The power spectrum and sensitivity
of each Tannoy loudspeaker were individually equalized
using 2,048-sample long minimum-phase finite-impulse
response filters. An additional Genelec 8020C loud-
speaker (Genelec, Iisalmi, Finland), which was driven
by the same audio system, was placed in front of the
listener at a distance of 0.66m to reproduce the direct
sound of nearby target speech. This was required only
for Part C of the questionnaire described later. The dif-
ferences in sensitivity and distance of the nearby Genelec
8020C and the array loudspeakers were adjusted by
applying a compensation gain and delay.

Realistic Acoustic Environments

To understand the factors that determine the perceived
complexity of acoustic environments, 12 2-min samples
of real-world urban scenes were taken from the
Ambisonic Recordings of Typical Environments
(ARTE) database (Weisser et al., 2019). The scenes rep-
resent a sample of typical urban environments that are
encountered, more or less regularly, by many city dwell-
ers (in this case, inhabitants of Sydney, Australia).
Therefore, the sample was considered to cover a broad
range of perceived complexity in everyday listening. All
scenes naturally contained different amounts and types
of acoustic sources from different directions were situ-
ated either indoor or in combined indoor–outdoor envir-
onments and exhibited a broad range of average sound
pressure levels (SPLs). In addition to these real-world
scenes, two speech-weighted Diffuse-Noise scenes were
included to represent the type of masking noise that is
common in psychoacoustic research and to serve as con-
trol conditions. The root-mean-square level of the
Diffuse-Noise scenes was arbitrarily set to 58.3 and
68.3 dB SPL. An overview of the scenes is provided in
Table 3, and a detailed description of the applied record-
ing and processing methods is provided in Weisser et al.
(2019).

To further understand the characteristics of the acous-
tic scenes with respect to their complexity, the scenes
were classified using the CAE framework described ear-
lier. This classification was performed qualitatively by
the first two authors and involved their background
knowledge from when the original scenes were recorded,
acoustic measures from the original environments (e.g.,
RT60), and subjects’ responses from Part A of the ques-
tionnaire described later. The results are described later
and are summarized in Table 4.

Realistic Speech Material

According to the proposed CAE framework described
earlier (Table 2, Characteristic 9), the subject’s task
may have a significant effect on the perceived complexity
of an acoustic scene. Therefore, the effect of attending to
speech while rating the complexity of the different scenes
was evaluated in addition to a general scene analysis
task. To implement this task, a modified set of the 14
acoustic scenes described earlier was generated, which
also contained natural speech that could have been
experienced in the original scenes in the real world.

Realistic target speech material. The target speech was
extracted from recordings from Weisser and Buchholz
(2019), which were obtained by applying the methods
for eliciting natural conversations between two people
described in Beechey, Buchholz, and Keidser (2018). In
brief, subjects were asked to follow a puzzle task that

Weisser et al. 5



could only be solved by communicating information
between each other. While performing this task, the sub-
jects were listening to binaural versions of the aforemen-
tioned acoustic scenes, one at a time, which were
presented to them at their original SPL (Table 3) via
highly open Sennheiser HD 800 headphones
(Sennheiser, Hanover, Germany). As is expected from
the Lombard effect, the conversation partners adjusted
their vocal effort level (and other acoustic, linguistic, and
communicative characteristics of their speech) to the
individual acoustic scenes. During this conversation
task, the subjects were seated on chairs in an anechoic
chamber at a mouth-to-ear distance of approximately
1m, facing each other, and their voices were recorded
using calibrated DPA d:fine FIO66 omnidirectional
headset microphones (DPA Microphones, Allerød,
Denmark). The recorded conversations were later
mapped to a recording distance of 1m, by applying a

negative gain, using the method described in Beechey
et al. (2018). Moreover, 2-min recordings from one rep-
resentative female talker, whose speech levels were close
to the mean of 12 female talkers and had a pleasant
voice, were then edited to obtain natural low-contextual
single-talker conversational speech with scene-specific
vocal effort level. The final edits were typically 35-45 s
long and were therefore repeated to match the durations
of the 2-min long scenes.

Realistic sound source properties of the target speech. The
target speech edits were set to a realistic SPL and pre-
sented from a realistic distance along with matching
reverberation. This follows observations by Pearsons,
Bennett, and Fidell (1977, Figure 22), which suggest
that talkers stand closer to one another the higher the
background noise level is with an increase in effective
speech level as a result. The realistic talker distances

Table 3. The Complex Scene Stimuli Used in the Experiment, Which Were Taken From the ARTE Database.

Scene name Description SPL (dB) SPL (dBA) T30 (s) Speech (dBA)

1 Library University study area in the main library, off-peak

hours, quiet, distinctly audible acoustic objects,

people whisper to avoid disturbing others.

53.0 46.1 0.6 54.6

2 Office Open space office, people typing, chatting and

talking on the phone

56.7 51.4 0.2 63.9

3 Diffuse Noise 1 Low-level speech-weighted broadband diffuse

sound field L

58.3 54.2 N/A 62.7

4 Church 1 Small church space, people entering and chatting

quietly before service

60.5 54.7 1.2 62.4

5 Living Room Living room with access to kitchen in the back,

loud television and sounds from the kitchen

63.3 58.7 0.2 65.0

6 Church 2 Same as 4, but busier and louder conversations

(1.5 min)

65.9 60.9 1.2 67.5

7 Diffuse Noise 2 Medium-level speech-weighted broadband diffuse

sound field

70 65.9 N/A 69.7

8 Café 1 Indoor café at medium occupancy 71.0 67.3 1.1 72.1

9 Café 2 Indoor (company) café at medium occupancy

before lunch, next to the wall

71.7 66.2 1.1 70.8

10 Dinner Party Small room with eight people chatting over the

table with background music

72.8 68.7 0.4 71.8

11 Street/Balcony Apartment balcony over a busy arterial road;

Mainly traffic noise with some noise from

within the apartment

74.5 71.1 N/A 75.6

12 Train Station Sydney Central, main concourse—large space,

open to the platforms with people walking at

peak hour; loud amplified announcement and

train sounds

77.1 73.6 1.0 74.2

13 Food Court 1 Busy university food court 78.2 74.9 0.9 74.9

14 Food Court 2 Very noisy food court in a shopping mall during

lunch

79.6 76.7 1.0 76.6

Note. The scene names and descriptions are provided along with the unweighted (dB SPL) and A-weighted (dBA) SPLs, and the reverberation time T30. Data

in the table are reproduced from Weisser et al. (2019). The right-most column contains the target speech levels from 0.66 m in dBA. SPL ¼ sound pressure

level; N/A ¼ not applicable.
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and target speech levels were derived from Weisser and
Buchholz (2019), where conversational speech levels
were recorded at 0.5m and 1m talker distance for the
same 12 acoustic environments applied here. Thereby, it
was assumed that the realistic talker distance is 1m for
the softest environment (the Library) and 0.5m for the
loudest environments (Food Court 2), which is slightly
different from the distances of 0.9m and 0.4m derived in
Weisser and Buchholz. For all other acoustic environ-
ments of intermediate noise levels, the target speech
levels and talker distances were derived using a linear
interpolation on a double-logarithmic scale (the abscissa
being the SPL in dB and the ordinate the log distance).
The resulting target speech levels are summarized in
Table 3.

Realistic reverberation. For each of the 12 acoustic real-
world scenes (excluding the Diffuse Noise scenes), the
derived target speech material was convolved with a cor-
responding 41-channel room impulse response (RIR)
from the ARTE database (Weisser et al., 2019). The
RIR was measured in the same acoustic environment as
the recorded scene using a Tannoy V8 loudspeaker at an
azimuth angle of 0

�

at a distance of 1.3m from the micro-
phone array. Before convolution with the target speech,
the direct sound component of each of the RIRs was
separated from the reverberant component by applying
a frequency-dependent time window (Weisser et al.,
2019). The direct sound component was then summed
across all 41 loudspeaker channels and assigned to an
additional loudspeaker (Genelec 8020C) that was placed

inside the loudspeaker array in front of the listener at a
distance of 0.66m—a distance that corresponded to that
of a scene with a median SPL of the target talker across
all scenes. The reason for this extra loudspeaker is that
the robust reproduction of nearby sound sources, that is,
sound sources that are significantly closer to the subject
than the playback loudspeakers (here 1.87m), is difficult
to realize using loudspeaker arrays (Favrot & Buchholz,
2012). Moreover, presenting the target speech from a sep-
arate, clearly visible, nearby loudspeaker made it easier
for the test subjects to focus on the corresponding speech
within the acoustic scene. The direct and reverberant por-
tions of the target speech were amplified differentially to
account for the fact that the direct and reverberant fields
are reproduced from different loudspeakers, but assum-
ing that the direct field follows the inverse square law,
whereas the reverberant field is independent of the
source–receiver distance. The complete signal was ampli-
fied to produce the target speech levels shown in Table 3.
Then, only the reverberant part was attenuated to
account for the different distance between the
measured RIR at 1.3m and the assumed target speech
at 0.66m, applying a gain to the reverberation of
20 logð0:66 m=1:30 mÞ ¼ �5:9 dB. More detailed infor-
mation on the involved methods can be found in
Weisser and Buchholz (2019).

Questionnaire

While listening to the acoustic scenes, the subjects were
asked to fill out a questionnaire, which was divided into

Table 4. A Qualitative Breakdown of Relevant CAE Framework Characteristics for the ARTE Scenes Described in Table 3.

Scene name

CAE framework characteristic

Multiple

sources

Source

diversity

Source–source

interaction Reverberation

Nonuniform

medium Amplification Adaptation

Other

modalities

Receiver’s

task

1 2 3 4 5 6 7 8 9

1 Library þ þ þ � � � þ � þ

2 Office þ þ þ � � � þ � þ

3/7 Diffuse

Noise 1 and 2

� � � � � � � � þ

4 Church 1 þ � þ þ � � þ � þ

5 Living Room þ þ � � � þ � � þ

6 Church 2 þ � þ þ � � þ � þ

8/9 Café 1 and 2 þ þ þ þ � þ þ � þ

10 Dinner Party þ þ þ þ � þ þ � þ

11 Street/Balcony þ þ � � 0 � � � þ

12 Train Station þ þ þ þ 0 þ þ � þ

13 /14 Food

Court 1 and 2

þ þ þ þ � � þ � þ

Note. This breakdown gathers the most salient dimensions according to which perceived complexity may vary. The CAE framework characteristics are

shown in Table 2. A plus (þ) indicates that the respective characteristic was judged to be highly relevant to the scene, whereas a minus (�) indicates the

opposite. The zero (0) indicates that a nonuniform medium effect (5) may have been present but could not be captured with the recording technology used.

CAE ¼ complex acoustic environment.

Weisser et al. 7



three parts that together covered from different angles all
relevant aspects of complexity as were identified in the
CAE framework. Part A served primarily as a scene
familiarization round. It required the listeners to analyze
the scenes by asking them to identify as many sounds as
they could, classified into categories (e.g., human-made,
kitchen, traffic) and subcategories (e.g., footsteps, dishes,
moving cars). Subjects were also asked to guess what the
scene is. Only summary data from this part were used
here and details are described in Weisser (2018, Chapter
4). Once the subjects felt familiar enough with the scene,
they proceeded to Part B, where the scene identity and
location were revealed to the subjects. This part con-
tained 19 rating questions, relating to various subjective
attributes of the scenes, such as familiarity, loudness,
busyness, annoyance, reverberance, pleasantness, or
how hard it would be to follow a conversation on the
phone. An explicit rating of perceived complexity was
obtained as one of the final questions without any fur-
ther explanation. The subjects were also not informed
that the complexity rating was of any higher importance
in comparison with other ratings. Part C was similar to
B, but with a nearby target talker added to the scene just
in front of the subject. While listening to the target
speech, subjects answered 10 additional rating questions,
such as self-estimated speech intelligibility, listening
effort, and complexity of the scene given the specific
(additional) task of listening to the target speech.

The questionnaire that was used in this study was the
result of multiple reiterations by the authors based on
pilot field and laboratory trials. Special attention was
paid to refrain from using jargon in the question wording
so that they could be easily understood by lay subjects.
The full questionnaire is provided in Online Appendix A.

Procedure

Test subjects were seated at the center of a loudspeaker
array in an anechoic chamber, while listening to three-
dimensional recordings of real acoustic scenes. The
recordings were 2min long but played in a loop for as
long as the subjects needed to complete the tasks. While
listening to the scenes, subjects filled in (paper) question-
naires—one per scene—that probed into different attri-
butes of the scenes. The playback system was optimized
to the listener’s head position, but subjects were free to
turn their heads to better focus on sounds when needed.
A single training scene (Café 2 in Table 3) opened the test
to familiarize the subjects with the questionnaire and
concept of the test. Then, seven scenes were presented
in a random order, followed by a mandatory break. In
the second half of the test, seven more scenes were pre-
sented in a random order, the first of which was a repe-
tition of one of the first seven scenes. As the data
measured for the training scene were found to be as

stable as for all other scenes, data for a total of 14
scenes (plus one repeated condition) were evaluated in
this study. Each scene was repeated twice every 13 sub-
jects. The entire test took 1.5 to 3 h per subject.

Statistical Modeling

Data Preparation

The raw data that were obtained from the questionnaire,
as well as its preparation for statistical analysis, are
described later. The unprocessed data array contained
31,850 observations out of which 178 points (0.56%)
were missing. The data provided 36 observed variables,
including 30 rating scales (1 question from Part A, 19
questions from Part B, and 10 questions from Part C),
the test time for Part A and Part B combined, the test
time for Part C, the scene presentation order, and three
scales derived from Questions #1 to #3, that is, the nom-
inal count of sound events, the nominal count of talking
people (i.e., the estimated number of individual talkers in
the scene), and a combined recognition score. In the fol-
lowing, all 36 variables will be collectively referred to as
‘‘scales.’’

As these 36 scales measured fundamentally different
quantities, they were not directly comparable and there-
fore only their relative variability was taken into account
in the data analysis. Scales that were not in the standard
rating range of 0 to 10 were therefore equalized to fit that
range (Kroonenberg, 2008). Moreover, data that were
not directly derived from a rating scale had to be trans-
formed into an effective (equalized) rating score.
Answers to the distraction questions specifically (#12
and #25) may have not been directly comparable because
they often referred to different sounding objects.
Nevertheless, to enable comparison, this aspect was
ignored and where no distraction was reported, the
rating was set to zero.

The nominal count of sound events scale was derived
from the responses to Question #1 (excluding #1 a) by
calculating the sum of all distinct events (or categories,
in cases where subjects did not go into subcategorical
details) that were identified by the subjects in each scene.
Similarly, the nominal count of talking people was calcu-
lated from the identified number of people talking
(Question #1 a). The latter count was constrained by the
maximum number of people talking that the question
allowed, whereby the ‘‘more than three people’’ option
was counted as four events. These two scales were
summed up to yield a combined nominal count of sound
events that will be referred to as ‘‘event count’’ from here
on. This reduced the total number of scales to 35.

It is unclear how many sound events (including talk-
ing people) that subjects recognized could be mapped to
actual events in reality and whether their identification
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was correct (Weisser, 2018, Chapter 5). To take this
aspect into account, a combined recognition score was
derived from the subjects’ responses to Questions #1 to
#3. As the ‘‘ground truth’’ about the number and type of
events that were present in the original (real) scenes is
unknown, a proxy measure was applied based on a
‘‘white list’’ that was iteratively developed by four experi-
enced listeners. Based on a complete list of all the events
that were identified by the subjects for all the scenes,
these listeners eliminated all those events that they
could not hear when carefully and repeatedly listening
to the scenes. The resultant list was then screened again
by a different group of four experienced listeners. The
remaining events then formed the ‘‘white list.’’ Using this
list and the knowledge of what the scene was, a com-
bined recognition ‘‘event score’’ was calculated based
on successfully identified attributes of the scene: 1/2
point was given for each correctly identified event cat-
egory, 1 point for each event (or event sub-category), 2
points for the environment type, and 4 points for the
scene location. While this score is somewhat arbitrary,
it provided a simple way to include the binary recogni-
tion data as an additional variable. For example, a sub-
ject who was presented with the office scene and correctly
identified more than three people talking, laughter and
ventilation noise, and correctly classified that it was rec-
orded indoors in an office received 12 points in total: 6
points for events, 2 points for environment type, and 4
points for location. It should be noted that because two
Diffuse Noise and Church scene variations were pre-
sented, the place and space type recognition scores
were counted only in their first presentations, as in
many cases learning improved the scene identification
performance in their second presentation.

All rating data were centered to zero and normalized
to unity variance according to procedures explained in
Kroonenberg (2008, Chapters 6 and 14) and Weisser
(2018).

Tucker3 Model Selection and Simplification

The subjective data that resulted from the questionnaire
were analyzed using a Tucker3 three-way PCA model
(Tucker, 1966). Tucker3 modeling enables the reduction
of high-dimensionality data to lower dimensionality,
which is easier to interpret than the unreduced data,
and can be associated with actual aspects of the stimuli
and experiment. In the present analysis, this allowed the
exploration of the variances of the three types of data
involved in the results, as well as their interactions, that
is, the 35 scales (rating question, object counts, test dur-
ation, and other variables), 14 scenes (acoustic environ-
ments or conditions), and 65 subjects. Each one of these
types is referred to as a ‘‘mode’’ and represents a funda-
mentally different aspect of the data, which is not directly

comparable with the other types (Kroonenberg, 2008, p.
28; Smilde, Bro, & Geladi, 2005, pp. 2–4). Simpler meth-
ods than three-way PCA would have required averaging
data over modes and thereby removed information that
could be important (Jolliffe, 2002, pp. 397–399;
Thompson, 2004, p. 84). The Tucker3 method was
selected over alternative three-way methods because it
is particularly suitable for modeling rating data
(Kroonenberg, 2008, Chapter 14; Murakami &
Kroonenberg, 2003). The Tucker3 analysis method is
described in more detail in Online Appendix B. All
data modeling and analyses were performed using the
N-Way toolbox for MATLAB (Andersson & Bro, 2000).

The Tucker3 analysis produced principal components,
which can be thought of as the quintessential variables of
each mode. To identify the three-way model that
involves the lowest number of principal components
while still accounting for the main behavior of the
data, the scree plot of Figure 1 should be considered.
This plot describes the variability accounted for in
Tucker3 models using different combinations of compo-
nents. The triplets on the plot refer to the number of
modal components (scale scene subject). By definition,
any PCA always lists the largest component first,
which corresponds to a (1 1 1) model. The most inform-
ative point on the plot is where the addition of new com-
ponents does not add any significant information
anymore by modeling with more principal components.
This appears in Figure 1 either at (2 3 2) or (2 3 3), where
a knee point shows as the curve turns and asymptotically
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approaches 100% of explained variability. The (2 3 2)
model turned out to be much more parsimonious than
the (2 3 3) model and allowed a coherent interpretation
within the theoretical and empirical framework of the
experiment, as it contained only three elements in the
core array—the three-dimensional array that weighs
and combines the different modes to produce data
points (see Online Appendix B). Henceforth, only the
(2 3 2) model will be discussed. The final model—two
of the three component loading matrices—and the sim-
plified core array (Tables 5, 7 and 8) constitute the com-
plete model parameters.1 These parts of the model will be
described in ‘‘Results’’ section. The explicit Tucker3
model ~xijk is described as follows:

~xijk ¼ ai1g111cj1bk1 þ ai2g221cj1bk2 þ ai1g132cj2bk3 ð1Þ

where the elements a, b, c, and g relate to the loading
scale matrix A, scene matrix B, subject matrix C, and the
core array G, respectively. The indices i, j, and k run
through all scale 14l435, scene 14l414, and subject
14l465 data points, respectively. The first term on the
left connects the first scale, scene, and subject compo-
nents; the second term connects the second scale and
scene with the first subject components, whereas the
last term connects the first scale with the third scene
and second subject components. See ‘‘Results’’ section
for a detailed analysis.

Results

Acoustic Scene Classification

The CAE framework was applied to the 14 ARTE scenes
to break down their complexity into the nine character-
istics described in Table 2. The results are summarized in
Table 4. This breakdown is coarse-grained, as it imposes
a binary classification of characteristics that can vary
continuously. This was done on purpose to indicate
whether these aspects appear significant in the scenes
or not and thereby to guide and inform the design of
the exploratory study described later, including the ana-
lysis of the resulting data.

The information on multiple sound sources (1) and
sound source diversity (2) was taken from an analysis
of the data from Part A of the questionnaire (see
later), where the subjects were asked to identify all the
sound sources they could hear in the individual scenes.
As shown in Table 4, all recorded scenes contained mul-
tiple sources, and most of them provided significant
source diversity. The number of identified sources that
were confirmed by expert listeners (see earlier), and also
used as a scale in the main experiment (see later), ranged
from two sources (i.e., many people talking and sibilant
speech) in Church 2 (#6) to 18 sources in Café 1 (#9;
Weisser, 2018, Chapter 5). The most dominant sources
are mentioned in Table 3. Source–source interaction (3)
was present in most scenes and mainly referred to con-
versations between two or more people. Reverberation
(4) was also present in most scenes, and, if applicable, the
corresponding reverberation time (RT60) is given in
Table 3, ranging from 0.2 s in the Living Room (#5) to
1.2 s in the Church (#4 and #6). Nonuniform medium for
sound propagation (5) was not addressed. Even though
strong winds in some of the original recordings of the
semiopen environments (i.e., the Train Station #11 and
the Street/Balcony #12) may have resulted in a nonuni-
form medium, the wind also corrupted the microphone
array recordings (Weisser et al., 2019) and the corres-
ponding sound samples could not be utilized here.
Loudspeaker amplification systems (6) were present in
some scenes, and mostly referred to incidental music or
television, except for the Train Station (#12), where an
amplified announcement dominated a part of the scene.
All observed source–environment adaptation (7) referred
to the Lombard effect, except for the library, where
people whispered due to social norms. Cues of other
modalities (8) were not addressed because the study
only considered audio recordings. The receiver’s task
(9) was part of the design of the main experiment and
is addressed in the next subsection.

As evident from Table 4, the acoustic scenes varied
along seven different complexity characteristics,
although the combination of possible characteristics
did not vary systematically between scenes. Moreover,
the diffuse noise scenes were devoid of any obvious com-
plexity according to the CAE framework and were
mainly included as controls.

Model Prediction

The chosen (2 3 2) Tucker3 model explained 41.66% of
the variability of the complete set of 31,672 data points
collected from 65 subjects in 14 acoustic scenes using
35 scales from the developed complexity questionnaire.
The robustness of model variability to outliers and miss-
ing data was cross-validated using a jackknife procedure
(Jolliffe, 2002, pp. 120–127; Kroonenberg, 2008,

Table 5. The Core Array, G, of the (2 3 2) Tucker3 Model,

Simplified by Forcing the Smallest Terms to Zero.

Scene 1 Scene 2 Scene 3

Subject Component 1

Scale 1 99.65 0.00 0.00

Scale 2 0.00 41.30 0.00

Subject Component 2

Scale 1 0.00 0.00 �38.87

Scale 2 0.00 0.00 0.00

10 Trends in Hearing



pp. 188–189) and found only a 0.06% drop in explained
variability when 1/9th or 1/13th of the data were replaced
at random. Similarly, replacing the data in the array with
the repeated condition for every subject (1/14th of the
data) caused a maximum drop of only 1% in the
explained variability. The repeated condition was used
also to obtain a test–retest reliability measure using
Pearson’s correlation between all replicated rounds over
all variables and environments and their first presenta-
tion. The resulting correlation of R¼ .79 indicates a rea-
sonable test–retest reliability (Crocker & Algina, 2008,
pp. 131–146). Hence, the chosen (2 3 2) Tucker3 model
was confirmed as a robust model of the data.

Core array. The core array of the (2 3 2) Tucker3 model
was optimized for simplicity by forcing the minimally
contributing elements to zero (see Equation 1)—costing
only a 0.2% loss of explained variability (originally,
41.87%) through additional core array elements. The
resultant three nonzero elements (g111, g221, and g132)
are given in Table 5 and represent the most salient con-
nections between the two scale modes, three scene
modes, and two subject modes of the (2 3 2) Tucker3
model. Table 6 gives the explained variation (sum of
squares) that is distributed between the component con-
nections. The core element g132, for instance, refers to the
Scale 1 component connected to the Scene 3 and Subject
2 component and explains 11.48% of the modeled data.

Scale mode. The scale mode of the model has two princi-
pal components, which span the scale space and are
plotted as vectors in the joint biplot of Figure 2, along
with the first two scene components that are given as
points (see later). Several clusters are visible, which are
summarized in Table 7. Most ratings are organized along
the angled x-axis in what could be considered a measure
of perceived ‘‘Comfort,’’ as it maps on the left-side posi-
tive attributes: pleasant sounding (Question #22) and
highly intelligible (with target speech, #26). On the
right side, it maps most other attributes, which are gen-
erally uncomfortable: loud (#8), annoying (with and
without target speech, #10, #27), fatiguing (with and
without target speech, #17, #30), difficult with target

speech (#28), difficult to listen to the phone (#9), stressful
(#20), hard to focus (with and without target speech,
#18, #29), disturbing during target speech (#24), difficult
to maintain attention (#19), and effortful during target
speech (#31). The second scale component lined up with
the ratings of ‘‘variability’’ (#11) and is surrounded to its
left by realism (with and without target speech, #6, #33),
familiarity (#5), event count (#1), and event score
(#1–#3). An additional cluster appears to contain com-
binations of the comfort and variability components:
complexity (with and without target speech, #21, #32),
busyness (#7), distraction (with and without target
speech, #12, #25), and effort (without target speech,
#23). The rating of ‘‘distinction’’ (#13) is also a combin-
ation of comfort and variability, but mirrored to the
other side of the variability axis than complexity,
which sets it apart. Finally, some attributes are obviously
much weaker than others (shorter vectors represent
smaller correlations) and do not map well to the two
principal scale components. These are envelopment
(#14), spaciousness (#15), presentation order, and test
time to completion of Parts AþB and C. Both difficulty
(to complete Part A, #4) and reverberance (#16) have
similar direction as loudness and fatigue but are much
weaker and therefore less dominant.

Scene mode. The loading matrix of the scene mode has
three components (see Table 8). The first two compo-
nents become clear when plotted together with the two
scale components on a joint biplot (Figure 2) that illus-
trates how the two modes interact. The third scene com-
ponent mainly helps to understand the differences
between subjects and is further described later. The two
scale and two scene components are connected through a
single-subject component that is reflected in the two lar-
gest core array elements (see Table 5). The corresponding
joint biplot was constructed by considering only part of
the Tucker3 model, which contains a single ‘‘slice’’ r of
the core array that connects the scene and scale matrices
via AGrB ¼ A�rB

�
r . By then removing the second subject

component, the core array G was reduced to the top
2� 3 matrix G1 of Table 5. Finally, G1 was decomposed
using the singular value decomposition of Gr ¼ UrLrVr0

and its factors were divided between A and B
(Kroonenberg, 2008, pp. 273–274) resulting in the fol-
lowing equation:

A�r ¼
I

J

� �1=4

AUrL
1=2
r B�r ¼

J

I

� �1=4

BVrL
1=2
r ð2Þ

where the new components A�r and B�r are scaled accord-
ing to the number of scales and scenes in the data to not
bias their apparent length in the plot as they are unequal
(i.e., I¼ 35 scales vs. J¼ 14 scenes). This operation
effectively rotates and scales the components so that

Table 6. The Relative Contribution of the Core Array Elements

to the Total Variation Explained by the Simplified (2 3 2) Tucker3

Model.

Core

element gijk

Explained

variation (%) Value

Sum of

squares

g111 75.53 99.65 9,930

g221 12.97 41.30 1,706

g132 11.48 �38.87 1,510
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they can be projected onto a single plane and plotted
together with the two scene components into a joint
biplot (Figure 2). In this joint biplot, the distance
between the scenes (points) and the scales (vectors),
that is, the projection from the point to a vector, corres-
ponds to how closely that scale describes the particular
scene. As the weights of the core array also scale this
projection, the joint biplot correctly displays the import-
ance of the different components in relation to one
another. Figure 2 therefore illustrates how the scene
components can be understood through the overlaying
scales. Similarly to the scale components, the first scene
component accounts for scene pleasantness/comfort/
noisiness and the second for scene richness/variability/
familiarity in the second component.

Subject mode. Two subject components were considered
to model the main features of the prototypical subject
behavior. The first component is the most dominant one
and, combined with the two scale and two first scene
components in the core array, accounts for about
88.5% of the total core variability (sums of squares),

which gives the average listener’s response. The second
subject component accounts for the remainder of 11.5%
(see Table 6) and represents a subset of the subjects that
reacted differentially to some of the scenes. The second
component is expressed only through the third scene
component (Table 5), which suggests again that their
combination is necessary to represent different subjective
preferences about the scene attributes.

To get a handle on the meaning of the second subject
component, it was examined how it correlates with dif-
ferent mean scale ratings throughout the test. Strong cor-
relations (with R2 4 :5) were found with phone listening
(Question #9, R2 ¼ :51), annoyance (#10, R2 ¼ :52), fati-
gue (#17, R2 ¼ :54), focus (#18, R2 ¼ :51), stress (#20,
R2 ¼ :54), disturbance during speech (#24,R2 ¼ :66), dis-
traction during speech (#25, R2 ¼ :57), annoyance during
speech (#27, R2 ¼ :67), focusing during speech (#29,
R2 ¼ :72), fatigue during speech (#30, R2 ¼ :73), com-
plexity during speech (#32, R2 ¼ :63), and effort during
speech (#31, R2 ¼ :78), which is plotted in Figure 3.
Therefore, the difference in behavior between subjects
was evident mainly when they had to attend to speech
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or perform a speech-related task. However, not all scenes
elicited this difference between subjects. If only the four
scenes are analyzed that did not contain any obvious
speech (the Library, two Diffuse Noise scenes, and
Street/Balcony), all of the aforementioned R2 values
dropped below.2 to .3. In contrast, if only the scenes
that were dominated by speech were analyzed (the
Office, Church 1 and 2, Living Room, Café 1 and 2,
Dinner Party, Train Station, and Food Courts 1 and 2),
then the R2 values stayed close to their original values.

In summary, a small yet consistent difference was
observed in how subjects reacted to background speech,
as some subjects found it more difficult than others to
accommodate to it. This is best seen in their higher self-
reported listening effort when attending to target speech,
which suggests that some people are more distracted than

Table 7. The Loading Matrix A of the Two Scale Components,

Grouped According to the Clusters They Form on the Joint Biplot

in Figure 2.

Scale Component 1 Scale Component 2

Pleasantness 0.141 �0.088

Intelligibility 0.177 �0.126

Loudness �0.176 0.137

Phone listening �0.229 0.107

Annoyance �0.212 0.198

Annoyance speech �0.242 0.046

Attention �0.211 0.027

Stress �0.185 0.074

Disturbance speech �0.255 0.068

Focus �0.193 0.045

Focusing speech �0.224 0.033

Fatigue �0.218 0.148

Fatigue speech �0.250 0.066

Effort speech �0.254 0.041

Difficulty speech �0.200 0.096

Difficulty �0.070 0.051

Variability �0.133 �0.386

Familiarity �0.097 �0.416

Realism �0.059 �0.299

Event count �0.051 �0.321

Event score �0.010 �0.249

Realism speech �0.070 �0.263

Complexity �0.199 �0.176

Complexity speech �0.234 �0.150

Effort �0.173 �0.073

Busyness �0.217 �0.129

Distraction �0.175 �0.099

Distraction speech �0.242 �0.098

Distinction 0.072 �0.245

Presentation order 0.002 0.129

Time AB �0.011 �0.090

Time C �0.016 �0.045

Envelopment �0.036 0.092

Spaciousness �0.035 0.108

Reverberance �0.077 0.054

Table 8. Loading Matrix of the Three Scene Components (B).

Scene

Component 1

Scene

Component 2

Scene

Component 3

Library 0.413 �0.353 0.117

Office 0.135 �0.207 0.377

Diffuse Noise 1 0.411 0.456 0.147

Church 1 0.224 0.000 0.231

Living Room 0.119 �0.257 0.298

Church 2 0.086 0.123 0.426

Diffuse Noise 2 0.223 0.559 0.261

Cafe 1 �0.118 �0.255 0.296

Cafe 2 �0.083 �0.261 0.199

Dinner Party �0.057 �0.006 0.341

Street/Balcony �0.318 0.155 0.221

Train Station �0.210 �0.100 0.286

Food Court 1 �0.407 0.112 0.186

Food Court 2 �0.432 0.226 0.150

Note. The first component mainly drives the comfort ratings, whereas the

second drives the variability. The third component is only required to

reveal the second subject component (see later).
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others by speech interferers and therefore may be also
more susceptible to informational masking (Kidd,
Mason, Richards, Gallun, & Durlach, 2008). No obvious
predictors could be identified for why these subjects differ
using demographic information available, such as age,
hearing loss, and gender. It should be emphasized that
the core array elements that are associated with this sub-
ject effect connect it to both the comfort and the variabil-
ity scale components (in addition to the third scene
component). Comfort is weighted 3 times more strongly
than variability but both increase/decrease with back-
ground speech.

Additional Analyses

Complexity ratings. The main goal of this exploratory
study was to identify the attributes that contribute to
the perceived complexity of an acoustic scene. Thereby,
it was inherently implied that subjects were able to con-
sistently and meaningfully rate acoustic scene complexity
without any further clarification or training. This was
confirmed by the strong weighting of the complexity
scale within the Tucker3 model (Table 7) as well as by
the decent test–retest reliability, which found a Pearson’s
correlation coefficient of R¼ .81 and R¼ .78 for the
complexity with and without target speech, respectively
(Questions #21 and #32). The quality of the complexity
data is further illustrated by considering the spread of
the mean complexity ratings shown in Figure 4 as a func-
tion of acoustic environment (with and without target
speech) as well as the relatively small 95% confidence

intervals shown by the error bars. The complexity data
reveal that the subjects utilized almost the entire rating
scale, and the nonoverlapping confidence intervals found
between many environments indicate significant differ-
ences between those environments. It is interesting to
note that in two scenes the complexity rating increased
significantly when subjects were asked to attend to add-
itional target speech, that is, the Living Room and the
Street/Balcony scenes. Both had strong modulated
maskers—television speech, or noisy traffic—that readily
interfered with speech reception but were apparently less
complex on their own. As Figure 2 reveals, the mean
rating of busyness (#7) is very close in length and direc-
tion to the mean rating of complexity (#21). If the scene
average is considered, then busyness and complexity
have a correlation of R2 ¼ :97 (no-target speech) and
R2 ¼ :92 (with target speech), whereas if the individual
data are considered, then it drops to R2 ¼ :52 and
R2 ¼ :49, respectively. Therefore, it appears that subjects
closely associate the notions of scene busyness and
complexity.

General Discussion

Principal Component Analysis

Most of the observed data could be modeled using two
principal components of the scale mode and their equiva-
lent scene mode components as well as one subject com-
ponent (i.e., five components in total). A persistent
second subject component with its corresponding third
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Figure 4. The scene complexity ratings averaged over all 65 subjects, ordered by increasing sound pressure level (dB SPL) from left to

right. The error bars are the Tukey–Kramer 95% confidence intervals of pairwise comparisons of all ratings.
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scene component accounted for a smaller fraction of
the total variation but highlighted an interesting
subject effect.

The first and most dominant scale component, com-
fort, included on the negative end various unpleasant
attributes that listeners rated highly in the environ-
ments—annoyance, disturbance, distraction, loudness,
fatigue, stress, difficulty to focus, difficulty to attend to
speech, or talk on the phone—and two positively phrased
qualities on the other end—pleasantness and high speech
intelligibility. These relations are in line with a previous
survey that found subjective comfort to be associated
closely with quiet–noisy and pleasant–unpleasant sub-
jective ratings of outdoor urban soundscapes (Kang &
Zhang, 2010). The loudness rating question (#8) referred
explicitly to the sound being comfortable or uncomfort-
able (see Online Appendix A), although subjective com-
fort is not exactly equivalent to perceived noise level,
despite a strong correlation (Yang & Kang, 2005).
Nonequivalence between these two factors is also visible
in Figure 2, which shows that loudness does not fully
account for the comfort component, as they are not
exactly collinear. Nevertheless, the comfort component
is strongly driven by the acoustic energy in the scene,
which in most cases was the result of many incoherent
sources of the same type being mixed together. The food
courts clearly contained many more people talking than
the Church scenes, which contained more distinct and
sporadic conversations. Similarly, the Street/Balcony
scene had heavy traffic that contained numerous vehicles.
The Library, in contrast, contained many different sound
events, which were all relatively quiet.

The second scale component, variability, appears to
be more suitable to describe the diversity of the sound
events, rather than their quantity. The subjective ratings
of variability itself, the nominal subjective event count,
and the event score all fit this notion well. The Diffuse-
Noise sound scenes, with their monotonous sound, were
perceived as completely unvarying to all subjects,
whereas the Café and Train Station scenes sounded
highly variable. The inclusion of the diffuse sound field
scenes was central in revealing this component.

The additional scales that mapped to the variability
component, realism and familiarity, may have been inad-
vertently confounded by the choice of scenes. The
Diffuse-Noise scenes contained the lowest number of
sound events, but were also unfamiliar to almost all par-
ticipants, and were judged to be completely unrealistic.
The Church scenes were rated higher on realism and they
contained more events (mostly conversations), but they
generally did not represent a convincing prototypical
church, which resulted in significantly lower ratings
than for most of the other scenes (Weisser et al., 2019).
This was largely due to its uncharacteristically low rever-
beration time of 1.2 s, the everyday contents of the

conversations it captured, and the lack of any ceremonial
cues, such as an ongoing sermon or live music.
Moreover, many test subjects verbally reported that
they are not church-goers, so they were unfamiliar with
this environment to begin with. All other scenes, in com-
parison, contained more distinctly recognizable sound
events and were rated to be much more familiar and
realistic.

Reverberation, envelopment, and spaciousness nei-
ther mapped clearly onto the two scale components,
nor did they result in an additional independent compo-
nent. In general, these ratings did not vary much between
the scenes. A possible explanation to that was the usage
of the ambisonic reproduction system. All scenes were
spatialized in the same way, so subjects may have reacted
to that uniformity. Reverberation in the recorded scenes
did vary significantly (Table 3), but may have been con-
founded with the overall level, as louder scenes tended to
be recorded in larger spaces (the Street/Balcony being the
notable exception). This can be noticed in the joint biplot
of Figure 2, where reverberance is parallel to comfort.
Nevertheless, the effect of reverberation on the sound
events may have been secondary to their overall level.
This can account for the low correlation between rever-
berance and comfort, which is seen in the short length of
its vector compared with the others in the joint biplot.

The first two scale components, comfort and variabil-
ity, are mirrored in the two scene components, as proto-
typical scenes may be placed somewhere on the plane
that is described by the level of comfort and degree of
variability they induce. The description is correct for the
average listener, who is represented by the first subject
component. However, the individual reaction to domin-
ant background speech in the scenes systematically
modulates this average response for a subset of the lis-
teners. Modeling this effect requires the third scene and
second subject components. Unfortunately, the third
scene component does not map directly to any attribute
in the scenes, but can only be understood as a necessary
feature to reorder the ratings for the different scenes,
when the second subject component is moved away
from its mean value. These extra components therefore
should be included in the modeling when dealing with
environments that contain background speech, if indi-
vidual variation is to be accounted for. Finally, add-
itional factors such as familiarity, realism, or
envelopment may all be valid attributes of scenes as
well but could not be disentangled from others with
the scenes selected in this study.

The rating of subjective distinction of sound events in
space is set apart—halfway between the components, but
in opposite direction to complexity on the comfort
axis—may also be interpreted in light of the above.
Quieter scenes with fewer sound events, that is, rated
of higher comfort, are usually indicative of sparser
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auditory displays, which enable easier stream segrega-
tion, a quality that was referred to as ‘‘hi-fi soundscapes’’
(Schafer, 1994, pp. 43–44). The contribution of the vari-
ability component to distinction may be that sound event
diversity facilitates segregation. For example, segregat-
ing one out of many talkers is a more difficult task than
distinguishing between a coffee machine and background
music.

Perceived Scene Complexity

Subjects had no difficulty relating to the term scene com-
plexity and reliably rating it, and they closely associated
it with busyness. This can be seen by having complexity
ratings that are both interpretable and reproducible. In
addition, the test subjects did not ask for any clarifica-
tions regarding the questions related to complexity.
Complexity turned out to be composed of at least two
separate components. The ratings of the subjective com-
plexity shifted when the task focus was switched from a
more general scene analysis in Parts A and B of the
questionnaire to the target speech in Part C. In the
latter case, it was more strongly affected by the comfort
component and was driven very close to the ratings of
scene busyness and distraction. Possibly, this is because
speech reception is more susceptible to masking by other
speech (Kidd & Colburn, 2017; Kidd et al., 2008).
Further examination of the subject components showed
that the degree to which subjects were affected by speech
in the relevant scenes was individual. However, the
between-subject source of variation is unknown. It is
possible that using a more fine-tuned selection of
scenes, extra dimensions of complexity that are hidden
now might appear, such as familiarity and envelopment.
Also, scene complexity generally increased with loudness
(Figure 4)—a natural side effect of having more acoustic
sources in the environment. By artificially matching the
levels of different scenes, another hidden aspect of the
perceived complexity may be revealed. Only the Diffuse-
Noise scenes were repeated at two levels, where the
louder presentation (68.3 dB SPL) was rated as slightly
more complex than at a lower presentation level (58.3 dB
SPL). Level-dependent complexity rating difference was
insignificant (half a rating point) for no-target speech,
one-way analysis of variance p4 :05, Fð1, 128Þ ¼ 2:69,
and significant (one full point) with target speech,
p5 :01, Fð1, 128Þ ¼ 13:91.

Subjective Complexity and the CAE Framework

All in all, the CAE framework was successfully employed
to qualitatively describe diverse acoustic situations and
identify their potential sources of complexity in a system-
atic way that would have been difficult to attain otherwise.
The analysis with the applied statistical model directly

addressed at least four of the nine characteristics of the
CAE framework (Table 2), although only three proved to
contribute significantly to subjective complexity.

The comfort component of the derived statistical
model is highly related to the first characteristic of the
framework, ‘‘Multiple acoustic sources distributed in
space,’’ at least in environments where high acoustic
energy is associated with multiple sources, as was the
case in most of the considered scenes. This was indeed
the most dominant characteristic that was hypothesized
to be relevant to the scenes (see Table 4). This is in line
with findings by Ghozi, Fraj, Salem, and Jaidane (2015),
where the number of similar sources was shown to par-
tially drive the complexity estimates in a survey of uni-
versity cafeteria during lunch. In that study, the
respondents’ rated complexity was correlated with the
approximate number of people present in the surveyed
cafeteria during lunch, which would be considered a
measure of comfort in this study. Interestingly, the
objective complexity of that scene, which was estimated
from audio recordings using an entropy measure, also
correlated with the occupancy level in the cafeteria.

Similarly, the variability component of the derived
statistical model may be understood as a direct measure
of the second characteristic of the framework, ‘‘Acoustic
source diversity.’’ In contrast, reverberation, a central
component of the fourth characteristic of the CAE
framework, could not be clearly resolved from other fea-
tures of the scenes and needs to be further investigated
using additional or different scenes.

The ‘‘receiver’s task’’ characteristic (9) directly
affected the perceived complexity when the subjects
shifted from general unfocused listening to the scenes
(questionnaire Part B) to attending to the target speech
(questionnaire Part C; see Figure 2). The receiver’s task
had an additional variation in the form of the sound
events distinction rating (Question #13), which may be
seen as a fundamentally different task to the explicit
complexity rating, as it required an analytic listening to
sound objects, rather than synthetic listening to the
entire scene. It is simpler to perform when the events
sound very different from one another and the environ-
ment is quieter and also when the sound events are more
familiar. The effect can be seen in Figure 2, where the
direction of the distinction and complexity vectors are
mirrored against the variability axis.

Many potential sources of complexity as encompassed
by the other CAE framework characteristics were not
addressed by the applied stimuli. Even though it is pos-
sible to generate stimuli that vary on these complexity
dimensions, the role such intricate acoustics may have in
making hearing-relevant situations sound more complex
is unknown. This means that variants of perceived scene
complexity exist that are not covered by these stimuli and
are not addressed in this study. However, adding more
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systematic variations in complexity would have been in
conflict with the main approach of this study, that is, to
use a set of different realistic everyday scenes.

Limitations

At this point, it is still unknown how the subjective com-
ponents derived from the statistical model relate to
acoustic measures that are inherent to the scenes and
their recordings. Whereas the comfort component is
strongly related to the SPL of the environments, it is
unclear how variability can be best measured acoustic-
ally. A successful measures may need to quantify the
temporal, spectral, and spatial variability of the acoustic
scenes as captured by the auditory system. Therefore, it
is likely that hearing loss will have an effect on such a
complexity measure, as it is typically accompanied by
degraded temporal acuity, spectral selectivity, and spa-
tial resolution. A more quantitative approach will be
necessary if realistic scene complexity is to be integrated
in more advanced hearing research and hearing-device
design and evaluation, where a growing interest in real-
world performance drives much of the present work.
Future research will have to address this aspect in depth.

Several aspects of this work may limit its generalizab-
lity. By design, this study excluded all visual cues from
the virtual environment presentations. This, along with
the somewhat unusual task that lacks robust context
for the listener, arguably constrains the ecological valid-
ity of the test, and therefore the level of realism that can
be achieved with this particular method. This concern
may be exacerbated by the particular choice of questions
that went into the questionnaire that may create an
unknown bias in the subjective data obtained. That said,
the subjects reported that the questionnaire was straight-
forward to use and many commented that they found
the task engaging and stimulating because it related to
situations that they are generally familiar with from every-
day life. In addition, they found the sound reproduction
generally very convincing. The lack of visual cues was
noticed but at no point constituted an impasse to com-
pleting the task. Combined with the analysis that provided
a sensible and interpretable model, it suggests that there is
a great deal that may be learned about CAEs before
adding other modalities. Finally, the scene selection may
also constrain the generalization of the conclusions uni-
versally to arbitrary scenes—especially scenes recorded
outdoors in nonurban settings. This aspect of the test
also shows in the uneven treatment of different character-
istics of the CAE framework. Selection may also limit the
universality of the target speech used, which was one spe-
cific female voice, processed to sound realistic within the
scenes. However, some subjects noted that the fact that
the speech was shorter than the scene and repeated, made
it sound less realistic.

Another possible limitation is the sound presentation
method, which provides limited fidelity at high frequen-
cies, in direct proportion to the order of the reproduction
system. Ahrens, Marschall, and Dau (2018), for instance,
showed that the order of a horizontal ambisonic system
(lower and higher than the one used in this study) can
influence the spatial resolution of sound sources, which
may affect subjects’ apparent source width perception
and speech intelligibility that follows spatial release
from masking. It is possible that some of the busiest
scenes presented in this study were therefore more spa-
tially distorted than quieter scenes in a way that influ-
enced a subset of the ratings. However, as was suggested
earlier, the measured spatially related attributes contrib-
uted little to the variation and interpretation of the data
as a whole.

Finally, modeling the scene-based subjective ratings
required significant investment of time and attention
from the listeners, which resulted in a large amount of
data that are based on different individual references for
ratings. Several factors that were not estimated, such as
individual sensitivity to noise and spatial awareness, may
have also contributed to the spread of data. This means
that a substantial portion of the variation (58%) could
not be efficiently modeled using the three-way PCA.

Conclusions

The present work systematically probed the complexity
aspect in CAEs by proposing a general framework with
nine characteristics (Table 2), along with an empirical
method that tested the subjective evaluation of 14 real-
istic, everyday scenes. Three characteristics of the CAE
framework dominated the variation in the acoustic
scenes: multiplicity of sources (1), diversity of source
types (2), and the listener’s task (9). The subjective results
revealed two orthogonal components of scene complex-
ity—comfort and variability—driven by the scenes them-
selves that were characterized as varying along the same
two dimensions. An additional component was observed
when the acoustic scenes included significant back-
ground speech that can distract the listener while attend-
ing to target speech. Some listeners reacted more
strongly to this distraction than others, which affected
some of their ratings in relevant scenes, particularly the
listening effort rating while attending to target speech.
Other characteristics such as the amount of reverber-
ation (4) and interaction between the sources (3) may
have not been dominant enough in the considered acous-
tic environments to generate a clear effect on the sub-
jects’ ratings. Moreover, specific perceptual attributes
such as realism, familiarity, and envelopment may have
been confounded by the experimental design, and future
studies will need to investigate whether their influence on
perceived complexity is significant.
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Overall, subjects reported that they related well to the
task, despite the lack of visual cues and detailed explan-
ations of the various attributes in the questionnaire.
While being based on exploratory subjective ratings,
these results were statistically reliable. It remains to be
seen in a confirmatory study whether the long question-
naires can be reduced to a shorter one with less question
redundancy, which may still enable the reliable quantifi-
cation of the perceived scene complexity. It is suggested
that the CAE framework and empirical methods can be
utilized in hearing research and other relevant areas in
acoustics to systematically explore additional aspects of
complexity in real-world environments.
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