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Why Does the Severity of COVID-19 Differ With Age? 
Understanding the Mechanisms Underlying the Age Gradient in Outcome 

Following SARS-CoV-2 Infection

Petra Zimmermann, MD, PhD*†‡§ and Nigel Curtis, FRCPCH, PhD‡§¶    

Although there are many hypotheses for the age-related difference in the 
severity of COVID-19, differences in innate, adaptive and heterologous 
immunity, together with differences in endothelial and clotting function, 
are the most likely mechanisms underlying the marked age gradient. Chil-
dren have a faster and stronger innate immune response to SARS-CoV-2, 
especially in the nasal mucosa, which rapidly controls the virus. In con-
trast, adults can have an overactive, dysregulated and less effective innate 
response that leads to uncontrolled pro-inflammatory cytokine production 
and tissue injury. More recent exposure to other viruses and routine vac-
cines in children might be associated with protective cross-reactive anti-
bodies and T cells against SARS-CoV-2.

There is less evidence to support other mechanisms that have 
been proposed to explain the age-related difference in outcome following 
SARS-CoV-2 infection, including pre-existing immunity from exposure 
to common circulating coronaviruses, differences in the distribution and 
expression of the entry receptors ACE2 and TMPRSS2, and difference in 
viral load.
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Compared with adults, and in contrast to other respiratory 
viruses, children infected with severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), generally are asymptomatic 
or have mild disease with a significantly lower hospitalization rate 
and mortality.1–8

We have previously reviewed hypotheses for the age-related 
difference in the severity of coronavirus disease 2019 (COVID-19), 
separating them into factors that put adults at higher risk and those 
that protect children.8 Since then, more evidence has become avail-
able to support some of the hypotheses and make others less likely.

Here, we provide an updated review of the mechanisms that 
might explain the marked age gradient in the severity of COVID-19 
(Table 1 and Figure 1).

MECHANISMS WHICH ARE MORE LIKELY  
TO CONTRIBUTE TO THE AGE-RELATED 
DIFFERENCE IN SEVERITY OF COVID-19

Differences in Innate Immunity
Mucosal Innate Immunity

The control of SARS-CoV-2 requires an optimal early innate 
immune response. Children have a more robust innate immune 
response in their nasal mucosa when infected with SARS-CoV-2.9 
Melanoma differentiation-associated protein 5 (MDA5) has been 
identified as the major pattern recognition receptor for SARS-
CoV-2 on epithelial cells.10–12 Retinoic acid-inducible gene (RIG)-1 
plays an additional minor role.10–12 Children have a stronger innate 
immune response to SARS-CoV-2 by way of a higher basal expres-
sion of MDA5 and RIG-I on nasal epithelial cells, macrophages 
and dendritic cells.9 The activation of MDA5 and RIG-1 leads to 
the activation of interferon regulatory factor (IRF) 3 which subse-
quently results in production of interferon (IFN)-alpha.13 Although 
the expression of these pattern recognition receptors is similar in 
children and adults after five days of infection, an early response is 
necessary to quickly control SARS-CoV-2.9

Interferon (IFN)-alpha and -gamma are important components 
of the early innate immune response against SARS-CoV-2.14,15 Chil-
dren infected with SARS-CoV-2 have a higher expression of genes 
associated with IFN and NOD-, LRR- and pyrin domain-containing 
protein 3 (NLRP3) inflammasome signaling in their nasal epithelial 
cells, particularly in ciliated cells.9,16 The expression of these genes 
is associated with strong antiviral activity against SARS-CoV-2.17,18 
It has been hypothesized that, in contrast to infections with other res-
piratory viruses such as respiratory syncytial virus or influenza, there 
is a narrow window of opportunity for cells to express IFNs before 
SARS-CoV-2 shuts off the antiviral system.9,15,19–22

Compared with adults, healthy children also have much 
higher numbers of immune cells in their upper respiratory tract, 
especially cells of the innate immune system, such as neutrophils 
and natural killer cells.9,23 In adults, infection with SARS-CoV-2 
leads to a large influx of immune cells to the upper respiratory tract 
that is not observed in children.9 However, SARS-CoV-2-infected 
children have a more pronounced activation of CCL3 and C-X-C 
chemokine receptor (CXCR) 1/2 expression in neutrophils in the 
upper respiratory tract.9 Furthermore, children have higher levels of 
certain cytokines and chemokines (specifically, IFN-alpha 2, IFN-
gamma, C-X-C motif chemokine ligand 10 (CXCL10), interleukin 
(IL)-1beta, IL-8 and IL-17) in their nasal fluid.16,24

Systemic Innate Immunity
In comparison to children with other common respiratory viral 

infections, those with COVID-19 have a greater change in innate and 
T cell-mediated immune responses over time.25 Children with SARS-
CoV-2 infection show a marked reduction in myeloid cells.25 They 
have low levels of dendritic cells, natural killer cells and classical 
((CD14+CD16-), intermediate (CD14+CD16+) and non-classical 
(CD14-CD16+)) monocytes in blood.26 Adults with COVID-19, 
especially severe COVID-19, also have low levels of dendritic and ISSN: 0891-3668/22/4102-0e36
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natural killer cells, but only show a decrease of non-classical mono-
cytes, while classical and intermediate monocytes, which contribute 
to the cytokine storm, increase.26–29 Non-classical monocytes have 
anti-inflammatory properties and are important for endothelial integ-
rity.30 Interestingly, low numbers of non-classical monocytes are also 
found in children with pediatric multisystem inflammatory syndrome 
temporally associated with SARS-CoV-2 (PIMS-TS).31 Adults with 
COVID-19 have high numbers of neutrophils in blood, which may 

form extracellular traps that can activate the coagulation cascade 
and have been implicated in microangiopathy and thrombosis.27,28,32 
The high neutrophil to lymphocyte ratio found in adults with severe 
COVID-19 is rarely observed in children.33,34

There are also age-related differences in serum levels of 
cytokines. Compared with adults, children with COVID-19 have 
higher levels of CXCL10, GM-CSF, IL-17A and IFN-gamma early 
in the disease, but not tumor necrosis factor (TNF) or IL-6.33,35,36 In 
addition, in children, genes associated with IFN responses have ear-
lier expression in the blood, similar to the earlier and greater expres-
sion of these genes in nasal epithelial cells.9,16,36 One small study 
found similar levels of serum IFN-gamma and TNF-producing T 
cells, but lower IFN-gamma production in convalescent plasma of 
infants after mild COVID-19 compared with their parents.37 Com-
pared with older children, infants with COVID-19 have lower levels 
of neutrophils, lymphocytes and complement C3c, but higher lev-
els of lymphotoxin beta, IL-10, IL-6 and procalcitonin.38 Compared 
with children with mild COVID-19, those with severe COVID-19 
have lower levels of T cells, natural killer cells and a limited IFN 
response, but higher levels of IL-6 and IL-10 in blood.16,39

In contrast to the increased NLRP3 activity in the nasal epi-
thelium observed in children, increased NLRP3 activity is found in 
the blood in elderly adults and is associated with a predisposition to 
cytokine storm and increased COVID-19 severity.40–43 Early control 
of inflammation, as occurs in children, might limit disease severity.36

Differences in Adaptive Immunity
Mucosal Adaptive Immunity

SARS-CoV-2-specific immunoglobulin (Ig) A and IgG lev-
els in nasal fluid have mostly been reported to be similar in children 
and adults.16 However, one study in adults reported that specific IgA 
levels in nasal fluid were inversely correlated with age.44 A small 
study showed that children can have IgA in their saliva without 
having had a positive respiratory SARS-CoV-2 polymerase chain 
reaction, which raises the possibility that a local immune response 
might prevent the establishment of an infection.45 One hypothesis 
for this is that individuals might be protected from SARS-CoV-2 
due to pre-existing immunity to commonly circulating human coro-
naviruses (HCoVs).46 Adding to the evidence that mucosal immu-
nity is important for controlling SARS-CoV-2 are the results from 
a study showing that adults who remain seronegative after mild 
COVID-19 have IgA antibodies with neutralizing activity in nasal 
fluid and saliva.44

Systemic Adaptive Immunity
In relation to adaptive immunity, rapid and coordinated 

appearance of SARS-CoV-2-specific CD4+ and CD8+ T cells 
in blood is associated with faster clearance of SARS-CoV-2 and 
milder COVID-19.47 Children with COVID-19 have higher lym-
phocyte counts, with a higher proportion of innate lymphoid and 
non-clonally expanded naïve T cells in the blood.48,49 Children 
also have higher numbers of T follicular helper cells, which are 
important for an early antibody response.50 Furthermore, they have 
lower T cell responses to S and ORF1 proteins and reduced CD4+ 
T cell effector memory.16,35,49,50 Results of T cell responses against N 
and membrane proteins are conflicting with some studies showing 
lower levels in children50 and others higher levels.16,35,49

Adults infected with SARS-CoV-2 typically have a decreased 
lymphocyte count, with reduced numbers of naïve CD4+ and CD8+, T 
regulatory and memory T cells.51–53 One study reported that acute and 
memory SARS-CoV-2-specific CD4+ cells increase with age.50 T cell 
exhaustion with impaired effector activity has been observed in adults 
with severe COVID-19.28,34 Poor and uncoordinated T cell responses, in 
addition to a scarcity of naïve T cells have been found in elderly adults 
and are associated with poor outcomes from COVID-19.28,54,55

TABLE 1. Summary of Mechanisms Proposed  
to Contribute to the Age-Related Difference in the 
Severity of COVID-19

Mechanisms with the strongest supporting evidence to date

1. Differences in innate immunity

 In response to SARS-CoV-2, children have:
 • a stronger mucosal innate immune response, which helps clear  

 the virus9,16,23,24

 •  lower levels of neutrophils, which have been associated with 
microangiopathy and thrombosis27,28,32

 •  differences in cytokines levels with a lower tendency to develop  
a cytokine storm26–29,33,35

2. Differences in adaptive immunity

 In response to SARS-CoV-2, children have:
 • higher lymphocyte counts with a higher proportion of naïve  

 T cells, T regulatory cells and T follicular helper cells48–50

 • lower T cell responses to spike and ORF1 proteins16,35,49,50

 Results from studies are inconsistent in relation to:
 • T cell responses against nucleocapsid and membrane proteins;  

 studies show both lower50 and higher16,35,49 levels in children
 • differences in SARS-CoV-2-specific mucosal and serum antibody  

 levels27,28,32,35,37,38,44,58–62

3. Heterologous immunity and off-target effects of vaccines

 Children have:
 • more recently been vaccinated with BCG, MMR, Tdap and other  

 vaccines which might offer indirect protection against  
 COVID-1967,68,70,75–78,81–87,96

 • more frequent recurrent or concurrent infections which might  
 induce an enhanced state of activation of the immune system101

4. Differences in the endothelium and clotting function

 Children are:
 • less prone to endothelial damage and abnormal clotting110

Mechanisms with less supporting evidence to date

1. Pre-existing immunity from exposure to commonly 
circulating human coronaviruses

 • Although antibodies against HCoVs can be cross-reactive, they  
 might not be cross-neutralizing16,35,49,58,118,135–139

 • Role of cross-reactive T cells in relation to SARS-CoV-2 also  
 remains unclear121,122,149

 • There is conflicting evidence on whether children or adults have  
 higher levels of antibodies and T cells cross-reactive between  
 HCoVs and SARS-CoV-235,118,128-130

2. ACE2 and TMPRSS2

 • There is conflicting evidence on whether children have lower  
 numbers and different distribution of ACE2 and TMPRSS2  
 across body sites9,16,24,154,156–158

 • ACE2-angiotensin system is affected by many factors  
 other than age154–157,160,164–170

 • ACE2-angiotensin system is complex and also involved in  
 regulating immune responses171

3. Viral load

 • Children and adults have similar viral loads and shedding from  
 the respiratory tract16,179–181

ACE2, angiotensin-converting enzyme 2; BCG, Bacillus Calmette-Guerin; 
COVID-19, coronavirus disease 2019; HCoVs, human coronaviruses; MMR, measles-
mumps-rubella; ORF, open reading frame; SARS-CoV-2, severe acute respiratory tract 
coronavirus 2; Tdap, tetanus-diphtheria-pertussis; TMPRSS2, transmembrane serine 
protease 2.
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In children, during COVID-19, genes associated with B cell 
activation are expressed earlier.36 In relation to differences in levels 
of SARS-CoV-2-specific antibodies between children and adults, 
the evidence is conflicting. An early increase of IgA, IgM and, 
to a lesser extent IgG, is associated with asymptomatic and mild 
SARS-CoV-2 infection.27,56 An early rise in antibodies is observed 
in children.27,28 One study reported that infants have lower serum 
SARS-CoV-2-specific IgG levels compared with older children,38 
another that children have lower serum SARS-CoV-2 neutralizing 
antibody levels compared with adults35 and one that adults with 
severe COVID-19 have higher levels of specific IgA antibodies.32 
Another study reported children were less likely than adults to sero-
convert to SARS-CoV-2.57 However, there are also studies which 
report higher levels of specific IgG in children compared with 
adults.58 One small study found higher levels of serum spike-spe-
cific IgG and IgA in infants after mild COVID-19 compared with 
their parents.37 Yet another study did not find differences in serum 
SARS-CoV-2-specific IgG levels between children and adults.59 
When interpreting these results, it is also important to consider that 
antibody levels depend on both disease severity, with more severe 
disease leading to higher antibody levels, and the timing of meas-
urement after the infection.44,60,61 A further possible explanation for 
the conflicting results is the target of the antibody measured. One 
study found that children have lower levels of IgG against the spike 
(S) and nucleocapsid (N) protein, but higher levels of antibodies 
against non-structural proteins (NSP) and open reading frames 
(ORF), which are known IFN antagonists.62

Heterologous Immunity and Off-Target Effects  
of Vaccines

Heterologous immunity describes immune responses gener-
ated by an antigen providing immunity against other (unrelated) 

pathogens.63–65 This includes innate and adaptive immune responses 
and can result from natural infection or vaccination.63,66

COVID-19 severity is reported to be lower in individuals 
who have been vaccinated with measles-mumps-rubella (MMR) 
or tetanus-diphtheria-pertussis (Tdap) vaccine.67 As children have 
generally been more recently vaccinated with these vaccines, this 
might contribute to the age-related difference in COVID-19 sever-
ity.68

MMR vaccines contain attenuated enveloped ribonucleic 
acid (RNA) viruses that have glycoprotein spikes, similar to SARS-
CoV-2 and also share other sequence homologies.69,70 Cross-reac-
tive epitopes have also been found between antigens included in 
Tdap and SARS-CoV-2.71 It has therefore been hypothesized that 
MMR and Tdap vaccination might lead to cross-protective anti-
bodies and T cells that protect against COVID-19.72–74 In one small 
prospective study, MMR-vaccinated participants who later devel-
oped COVID-19, all had a mild course.75 Another, much larger 
case-control study, showed that MMR vaccination might have a 
protective effect against COVID-19 in males but not females.76 A 
case-control study in children also showed that children vaccinated 
with a measles-containing vaccine had lower infection rates with 
SARS-CoV-2 and, if infected, had milder symptoms.77 Another 
study found that the outcome of COVID-19 inversely correlated 
with levels of rubella-specific antibodies70 and another with levels 
of mumps-specific antibodies.78 An interim analysis of an ongoing 
randomized control trial (RCT) of MMR to reduce SARS-CoV-2 
infection and severity in health care workers reported that MMR 
reduces the risk of symptomatic infection.79 A second RCT to 
investigate the influence of MMR on the severity of COVID-19 is 
also ongoing.80 In individuals after SARS-CoV-2 infection or after 
COVID-19 vaccination, enhanced in vitro T cell responses to com-
ponents of the MMR and Tdap vaccine have been found.67 Identical 

FIGURE 1. Mechanisms proposed to contribute to the age-related difference in the severity of COVID-19.
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T cell receptor clonotypes can be found on T cells activated by 
SARS-CoV-2, Tdap or MMR antigens, consistent with heterolo-
gous immunity.67 Another study reports that antibodies induced by 
inactivated poliovirus vaccination bind the RNA-dependent RNA 
polymerase of SARS-CoV-2 and inhibit infection of Vero cells in 
vitro.81

Another vaccine proposed to provide beneficial effects 
against COVID-19 is Bacillus Calmette-Guérin (BCG). Ecologic 
studies claim to identify associations between countries’ BCG vac-
cination policy and their COVID-19 rates and severity.82–87 But such 
studies are subject to confounding by timing of the study in rela-
tion to the epidemic in each country, lockdown and other mitiga-
tion measures, testing and reporting rates, and are also limited by 
inaccurate BCG vaccination status reporting.88–91 Furthermore, it 
is unlikely that the beneficial effects of BCG vaccination last for 
many years as they are likely abrogated by the impact of interven-
ing vaccines and other factors that also modulate the immune sys-
tem. Consistent with this, some ecologic studies92,93 and retrospec-
tive case-control studies94,95 have not found any protection against 
COVID-19 from BCG given many decades earlier. One RCT in 
the elderly reported that BCG reduced the incidence and severity 
of COVID-19.96 Larger RCTs of BCG to reduce the severity of 
COVID-19 are ongoing.97,98

Children infected with SARS-CoV-2 often have co-
infections with other viruses (including commonly circulating 
HCoVs).7,99,100 Frequent recurrent or concurrent infections could 
induce an enhanced state of activation of the immune system, 
including epigenetic changes inducing trained immunity, making it 
more effective in clearing SARS-CoV-2.101

Differences in the Endothelium and Clotting 
Function

Widespread endothelial injury and coagulation activation 
by SARS-CoV-2 is a key feature of severe COVID-19.102 This is 
associated with thromboembolisms, such as deep vein thrombosis 
and pulmonary emboli, as well as arterial thrombosis or micro-
vascular thrombosis.102–106 When SARS-CoV-2 binds to the ACE2 
receptor, the expression of the receptor is downregulated, result-
ing in increased levels of angiotensin II, which is associated with 
inflammation, endothelial dysfunction and a procoagulant state.102 
Endothelial damage leads to the release of plasminogen activator 
inhibitor 1 and to the activation of tissue factor, which leads to fur-
ther inflammation and induction of the thrombotic cascade.107 This 
increases endothelial damage and platelet activation.108 Platelets 
express both ACE2 and TMPRSS2 and can therefore be directly 
activated by SARS-CoV-2.109

The endothelium in children is less “pre-damaged” com-
pared with adults and the coagulation system also differs, which 
makes children less prone to abnormal clotting.110 In adults with 
COVID-19, the overall rate of venous thrombosis is approxi-
mately 14 to 20%, and of arterial thrombosis 2%.111,112 Higher 
rates are observed in adults admitted to intensive care.111,112 
Thrombotic coagulopathy has been observed in SARS-CoV-2-in-
fected children of all age groups, often occurring during hospi-
talization and despite thromboprophylaxis, and is associated with 
a high mortality of up to 28%.113,114 Although the incidence is less 
well described in children, it is much lower than in adults. One 
study reports rates of 2% in children with COVID-19 and 7% in 
children with PIMS-TS.114 Children above the age of 12 years, 
those with cancer or a central venous catheter are at higher risk 
for thromboembolic events.114 Of note, however, thromboembolic 
events have also been observed in children with asymptomatic 
SARS-CoV-2 infections.114

MECHANISMS WHICH ARE LESS LIKELY  
TO CONTRIBUTE TO THE AGE-RELATED 
DIFFERENCES IN SEVERITY OF COVID-19

Pre-existing Immunity from Commonly Circulating 
Human Coronaviruses

Commonly circulating human coronaviruses (HCoV-229E, 
-HKU1, -NL63 and -OC43) are responsible for approximately 6 
to 8% of acute respiratory tract infections and most individuals 
develop immunity to HCoVs during childhood.2,115,116 Individuals 
who have not been infected with SARS-CoV-2 can therefore have 
cross-reactive, neutralizing and non-neutralizing antibodies, and T 
cells against the S protein (up to 5%), N protein (up to 24%) and 
ORF regions of SARS-CoV-2.117–125 Seroprevalence depends on 
geographical location.119

Despite seroconversion at an early age, re-infections with 
HCoVs later in life are common.126,127 There is conflicting evidence 
on whether children or adults have higher levels of cross-reactive 
antibodies and T cells. Some studies report that levels of neutraliz-
ing and non-neutralizing cross-reactive antibodies, as well as cross-
reactive T cells, increase with age,128,129 while other studies report 
higher levels of these antibodies in SARS-CoV-2-uninfected chil-
dren and adolescents130 or no differences between age groups.35,118 
One study found higher cross-reactive IgA and IgG levels in 
healthy elderly adults and higher IgM levels in healthy children, 
suggesting that children have a less-experienced but more polyre-
active humoral immunity.131

Delayed production of neutralizing antibodies during a 
SARS-CoV-2 infection is associated with increased mortality.132 
Antibodies against commonly circulating HCoVs are boosted 
during a SARS-CoV-2 infection.118,133,134 Importantly, however, 
although antibodies against HCoVs can be cross-reactive, they do 
not necessarily protect against SARS-CoV-2, as they are not neces-
sarily cross-neutralizing.35,58,118,135–139 One study, however, reported 
that a recent documented history of a common cold caused by 
HCoV is associated with lower rate of admission to intensive care 
unit and lower mortality from COVID-19.140 Another study showed 
a correlation between pre-existing antibodies against HCoV-OC43 
and COVID-19 severity, but not between antibodies against HCoV-
NL63, -229E and -HKU1, indicating that cross-protection might 
differ between different HCoVs and SARS-CoV-2.141 Consistent 
with this, one study found higher antibody levels against HCoV-
229E but not -OC43, and higher levels of cross-reactive antibod-
ies in children compared with adults.142 SARS-CoV-2 and HCoV-
NL63 both use ACE2 as an entry receptor.143 However, sequencing 
data shows SARS-CoV-2 is more closely related to HCoV-OC43 
and -HKU1 than -NL63 and -229E.143 There is a region coding for 
11 amino acids that is highly conserved between SARS-CoV-2 
and all four HCoVs, which overlaps with the S2 fusion peptide in 
SARS-CoV-2.144 It has been suggested that cross-reactive antibod-
ies against S2 might provide neutralizing activity and protection 
against SARS-CoV-2.133,134 One study reported that pre-existing 
S2-specific antibodies against HCoV-OC43 are associated with 
mild COVID-19.145 These antibodies are more frequently present 
in children and adolescents.130 Another study found cross-reactive 
antibodies against SARS-CoV-2 ORF-1 in pre-pandemic samples, 
but not against protein S or N. The presence of these antibodies was 
associated with milder COVID-19.144 As discussed above, higher 
antibody levels against ORF (IFN antagonists) are found in chil-
dren with COVID-19 compared with adults.62 This could indicate 
that antibodies against ORF play a role in controlling SARS-CoV-2.

There is also a theoretical risk that higher levels of non-neu-
tralizing cross-reactive HCoVs antibodies might lead to more severe 
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COVID-19 through antibody-dependent enhancement (ADE).128 In 
ADE, pre-existing non-neutralizing antibodies can bind to virions, 
which can then more easily enter and replicate in macrophages and 
granulocytic cells, leading to higher viral loads.146,147 To date, there 
is scant evidence for ADE in COVID-19.

T cells that are cross-reactive between commonly circulat-
ing HCoVs and SARS-CoV-2 have been identified in a number 
of studies.120–125 In one study more than half of participants with 
no known exposure to SARS-CoV-2 had T cell activity against 
SARS-CoV-2.125 There is a correlation between levels of specific 
IgA and IgG and specific T cell responses.148–150 Few studies have 
compared T cell immunity against HCoVs in different age groups, 
but one study reported lower levels of T cells against HCoVs in 
older adults.124 However, as with cross-reactive antibodies, the 
role of cross-reactive T cells in relation to SARS-CoV-2 remains 
unclear.121,122,149 It has been suggested that the presence of cross-
reactive CD8+ T cells is associated with milder COVID-19 dis-
ease,120,122,123,149,151,152 but also that pre-existing T cells with low 
avidity, which are usually present in higher numbers in the elderly, 
negatively impact T cell responses to SARS-CoV-2.129

ACE2 and TMPRSS2
Angiotensin-converting enzyme 2 (ACE2) receptor, present 

on multiple different cell types throughout the body, is the main 
receptor for the entry of SARS-CoV-2 into human cells.153–155 
Transmembrane serine protease 2 (TMPRSS2), is the key entry-
associated protease, cleaving and activating the SARS-CoV-2 S 
protein, which greatly facilitates entry of the virus into cells.

It has been postulated that different distribution of ACE2 and 
TMPRSS2 across body sites between children and adults, as well 
as lower affinity of ACE2 for SARS-CoV-2 in children, contribute 
to the age-related differences in the severity of COVID-19.154 How-
ever, the many studies on this topic report conflicting results. Some 
studies report lower expression of ACE2 and TMPRSS2 in the nasal 
epithelium in children compared with adults,154,156,157 while others 
did not find age-related differences.9,16,24,158 One study reported that 
the expression of neuropilin-1 (NRP1), a protein that promotes 
virus interaction with ACE2, is lower in the nasal epithelium of chil-
dren.159 A study in adults showed that ACE2 and TMPRSS2 in the 
oral mucosa are higher in elderly compared with young adults.160 
Conflicting results have also been reported for the expression of 
ACE2 and TMPRSS2 in lungs. Some studies report that the expres-
sion of ACE2 and TMPRSS2 in lungs increases with age,154,157,161,162 
while others report a higher expression of ACE2 in lungs in children 
compared with elderly adults159 or no difference between the age 
groups.163

Intestinal expression of TMPRSS2 and NRP1 has been 
reported to be similar between children and adults, while intes-
tinal ACE2 expression might be higher in children, which might 
explain the higher frequency of gastrointestinal symptoms in this 
age group.158

The conflicting results on the expression of ACE2 and 
TMPRSS2 reflect the fact that the ACE2-angiotensin system is 
complex. Apart from age, the ACE2-angiotensin system is affected 
by many other factors, including genetics, sex, smoking, diet, 
vitamin D, body-mass index, drugs and comorbidities includ-
ing diabetes mellitus, chronic obstructive pulmonary disease and 
hypertension.154–157,160,164–170 ACE2 is not only an entry receptor 
for SARS-CoV-2 but also plays an important role in regulating 
immune responses, especially in the lungs. After SARS-CoV-2 
enters cells, ACE2 receptors are down-regulated, which prevents 
them from converting angiotensin II to angiotensin-(1–7). The con-
sequent excess of angiotensin II might be partly responsible for the 
organ injury in COVID-19,171 as serum levels of angiotensin II are 

significantly elevated in SARS-CoV-2-infected patients and there is 
a positive correlation with viral load and lung damage.172

Viral Load
There is little evidence to support the hypothesis that viral 

load is responsible for age-related differences in COVID-19 sever-
ity. Viral load in the respiratory tract has been associated with trans-
mission risk, disease severity and mortality of COVID-19.173–178 
Children and adults are mostly reported to have similar viral loads 
and shedding from the respiratory tract.16,179–181 However, one study 
found significantly greater viral loads in nasopharyngeal samples 
from children less than 5 years of age compared with older children 
or adults,182 and there are also studies which report lower viral loads 
in children compared with adults.24,183 An increased viral load in 
blood has also been associated with increased disease severity and 
increased cytokine storm.184–186

CONCLUSIONS
There are many hypotheses for the age-related difference in 

the severity of COVID-19, and it is likely that the explanation for 
the marked age gradient is multifactorial.8 The proposed mecha-
nisms that relate specifically to the pathogenesis of SARS-CoV-2 
seem more likely to be important than those that would also apply 
to other viral infections for which a similar age gradient is not seen. 
The latter include, for example, differences in vitamin D and mela-
tonin levels, and chronic cytomegalovirus infection.8

Differences in innate, adaptive and heterologous immunity, 
as well as differences in the endothelial and clotting function, are 
the most likely mechanisms to explain the observed age gradient 
in COVID-19. Children have a faster and stronger innate immune 
reaction to SARS-CoV-2, especially in the nasal mucosa, involv-
ing IFN signaling and the NLRP3 inflammasome, which is able to 
rapidly control the virus.9,16,23 In contrast, adults can have an overac-
tive, dysregulated and ineffective innate response leading to uncon-
trolled pro-inflammatory cytokine production and tissue injury.27 
Children also have a higher proportion of innate lymphoid and 
non-clonally expanded naïve T cells in the blood, while the elderly 
can have poor and uncoordinated T cell responses with additional 
scarcity of naïve T cells.48,54,55 More recent MMR and other vac-
cines might lead to protective cross-reactive antibodies and T cells 
against SARS-CoV-2.67,68,70,72–76,78 In addition to these differences 
in immune responses, immunosenescence187–192 and inflammag-
ing,40,41,193,194 as well as co-morbidities might contribute to more 
severe COVID-19 in elderly, as described in our previous review.8 
Another immunologic mechanism that might be important is the 
age-related increase in auto-antibodies against type I IFN.195

Mechanisms which are less likely to explain the age-related 
differences in COVID-19 are pre-existing immunity from commonly 
circulating HCoVs and differences in the expression of ACE2 and 
TMPRSS2, although evidence can be found both for and against these 
hypotheses. Studies investigating antibodies and T cells against HCoVs 
in children and adults also report conflicting results.35,118,128–130 Further-
more, it has not been proven that cross-reactivity between HCoVs and 
SARS-CoV-2 leads to cross-protection.35,118,135–138 Studies which have 
investigated the expression of ACE2 and TMPRSS2 in children and 
adults also report conflicting results.9,16,154,156–163 Moreover, the ACE2-
angiotensin system is complex and influenced by many other internal 
and external factors other than age.154–157,160,164–170 Although viral load is 
associated with COVID-19 severity and mortality, viral load between 
children and adults is similar, meaning this is also unlikely to contrib-
ute to the age-related difference in severity of COVID-19.16,179–181

It is likely that the age gradient in severity of COVID-19 
results from both factors that protect children and factors that make 
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the elderly more susceptible. It is possible that following exposure 
to SARS-CoV-2, immunologic factors in children are important in 
preventing infection or controlling the virus after infection, and 
age-related differences in endothelial and clotting function are 
more important in putting the elderly at risk of the complications of 
COVID-19 that lead to higher mortality.

SARS-CoV-2 is constantly mutating with new variants 
becoming better at evading host defenses; understanding the 
mechanisms underlying the age-related difference in the severity 
of COVID-19 will provide key insights into its pathogenesis and 
opportunities for prevention and treatment.
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