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Abstract

Background

Sampling methods have proven to be a very efficient and intuitive method to understand
properties of complicated spaces that cannot easily be computed using deterministic meth-
ods. Therefore, sampling methods became a popular tool in the applied sciences.

Results

Here, we show that sampling methods are not an appropriate tool to analyze qualitative
properties of complicated spaces unless RP = NP. We illustrate these results on the exam-
ple of the thermodynamically feasible flux space of genome-scale metabolic networks and
show that with artificial centering hit and run (ACHR) not all reactions that can have variable
flux rates are sampled with variables flux rates. In particular a uniform sample of the flux
space would not sample the flux variabilities completely.

Conclusion

We conclude that unless theoretical convergence results exist, qualitative results obtained
from sampling methods should be considered with caution and if possible double checked
using a deterministic method.

Introduction

Given a space S C R", we are interested in computing a set of sample points sy, .. ., sy € S that
represent the space S and its properties. Thus, by randomly generating sample points this offers
one approach to overcome the curse of dimensionality. For example, if S is a polyhedron, we
can compute nearly uniformly distributed sampling points of S in polynomial time [1] and
from this approximate the volume of the polyhedron [2, 3]. In contrast no deterministic poly-
nomial-time algorithm can compute the volume of convex sets with less than exponential rela-
tive error in n [4, 5].

Thus, sampling methods are nowadays used in many application areas, for example in the
analysis of flux spaces in genome-scale metabolic networks. A genome-scale metabolic net-
work models the chemical reactions possible in an organism. Using the assumption that no
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internal substance can be over- or under-produced a flow problem is obtained. This then
leads to a polyhedron of feasible flows (also called fluxes) through the network (called flux
space):

F={veR":Sv=0,(<v<u}

Here, S € R™" is called the stoichiometric matrix. It encodes for each reaction r € R = {1,
..., n} which and how much of the metabolites M = {1, .. ., m} are consumed resp. produced.
¢, u are bounds on the reaction rates. Due to the size of these networks, deterministic methods
to enumerate extreme points and thus a representative set of feasible flows [6, 7] are
unpractical.

Therefore, tools and methods have been developed to sample the whole flux space [8-11] or
only the extreme points [12] and then used to derive biological insights [13-16]. Typical prop-
erties that are analyzed are correlations between fluxes through different reactions [17-20], or
the distribution of flux rates through a given reaction [21]

While points in polyhedra can be sampled efficiently (in theory), often additional con-
straints are added to make the results more biological reasonable. However, this often makes
the space of feasible solutions non-convex and associated decision problems NP-hard. This is
for example the case with “looplaw”-thermodynamic constraints [21, 22], here sloppily repre-
sented using the phrase “v thermo. feasible”

T = {v € F : v thermo. feasible}

To test how well sampling works, we consider the scenario that we want to decide if the flux
space has a given property. In Practical Obstructions to Sampling we consider the problem of
determining if positive resp. negative flux through a reaction is possible. There, we show that
with artificial centering hit and run (ACHR) [8, 23] we cannot determine this property cor-
rectly for several reactions in genome-scale metabolic networks. In particular, the artifacts are
not only observed in non-convex flux spaces, but also for polyhedral flux spaces.

In Theoretical Obstructions to Sampling we show that for the non-convex flux space T this
problem is not specific to ACHR, but more fundamental. Therefore, we generalize the problem
to decide if a space S has a given property (formulated as a decision problem Pros) by using a
sampling algorithm. We define the concept of non-trivial polynomial time sampling algorithm
and show how it can be used to solve decision problems in randomized polynomial time. We
show that if the decision property is NP-hard, then there exists no polynomial time sampling
algorithm that samples S in a non-trivial way w.r.t. to the property formulated by Pros unless NP
= RP, where RP is the class of problems that can be solved in randomized polynomial time [24].

Practical Obstructions to Sampling

Thermodynamic constraints are an additional source of constraints that have been used in the
analysis of metabolic networks [25-34] and were also used in sampling methods [21, 35, 36].
However, most thermodynamic constraints are computationally difficult, since they are non-
convex. Here we use so-called “looplaw”-thermodynamic constraints.

For the toy network shown in Fig 1 “looplaw”-thermodynamic constraints imply that posi-
tive flux through r; and r, at the same time is not possible, because they form a stoichiometri-
cally balanced internal cycle. Similarly, positive flux through ry, 3, and r4 at the same time is
also not possible. This implies that the flux space looks as shown in Fig 2. Clearly, this flux
space is not convex. Furthermore, we observe that if we sample the flux space uniformly, we
would not sample any flux with positive flux through ry, since the flux space with positive flux
through r; is 1-dimensional while the rest of the flux space is 2-dimensional.
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Fig 1. Toy network. Internal reactions rq, rp, r3, r4 are irreversible. By thermodynamics, it is not possible to
have non-zero flux through ry and also to have a non-zero flux through one of r,, r3 or r, at the same time.

doi:10.1371/journal.pone.0135636.g001

For “looplaw”-thermodynamic constraints we showed that deciding if a reaction can carry
positive flux is NP-hard [37]. Thus, according to our theoretical results in Theoretical Obstruc-
tions to Sampling, it should be harder to sample flux spaces with thermodynamic constraints
than without. Therefore, we test how well we can predict the reactions with variable flux rates
by sampling fluxes through the network. Finding all reactions with variable flux rate is called
flux variability analysis (FVA). If it is applied without thermodynamic constraints, it can be
solved efficiently using linear programming [38, 39]. With thermodynamic constraints, we can
typically solve it in practice using mixed integer linear programming techniques (MILP) [21,
37]. For a good sampling algorithm we expect that for every reaction that can have positive flux
(as determined by FVA) we also get samples whith positive flux through the reaction. There-
fore, we count for how many of the reactions we fail this goal, i.e. where we do not even obtain
a single sample with a positive flux through the reaction.

V3 — U4y

= U1

Fig 2. Flux space of toy network. The gray area denotes the flux space. In this example it was assumed
that input/output flux values are constrained to at most 1. It can be seen that flux v4 through ry is exclusive to
fluxes v, and v through r» and r3 respectively. Since fluxes through r, can be combined with fluxes through rs,
the flux space with v,, v3 > 0 is two-dimensional, while the flux space with v > 0 is only one-dimensional.
Hence, a uniform sample of the flux space would almost surely have zero flux through ry.

doi:10.1371/journal.pone.0135636.9002
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Of particular interest are the reactions R of reactions contained in internal cycles, because
they are affected by thermodynamic constraints. The reader is referred to [37] for more details
and a precise definition. The reactions not contained in internal cycles R™“ on the other hand
should not be affected by “looplaw”-thermodynamic constraints [37]

Method

To verify the impact of the theoretical results, we implemented the following computational
experiment to analyze the difference between sampling with thermodynamic constraints and
without thermodynamic constraints. For a given metabolic network with flux space P (with or
without thermodynamic constraints) we do the following:

1. Sample n points in the flux space P.
2. Run flux variability analysis (FVA) on P and define:
o R, = reactions that can have positive flux,
» R_:=reactions that can have negative flux.
3. From this we define the following 4 reaction classes:
« RE=RNR,
« RYC=RYNR,
e RE=RENR_
« RM=RM NR_
4. For each reaction class A C R, we count the number of reactions for which we never sam-

»
pled positive flux 7/ and then compute the ratio 7 = |"7ﬁ‘.
5. For each reaction class A C R_, we count the number of reactions for which we never sam-
P
7

pled negative flux 7/} and then compute the ratio 7 := %’l.

We do this for the steady-state flux space F (without thermodynamic constraints) and for the
thermodynamically constrained flux space T. Since positive lower bounds and negative upper
bounds for reactions in internal cycles make it already NP-hard to find a thermodynamically
feasible flux distribution, we set all positive lower bounds and all negative upper bounds to 0.

For the sampling method we chose to use the ACHR method implemented in the COBRA
toolbox [40], since it is one of the most established tools for sampling flux spaces. They also
offer a flag to activate thermodynamic constraints. Unfortunately this flag has no effect in the
current version (2.0.5). Hence, we implemented a simple post-processing step to turn thermo-
dynamically infeasible fluxes into thermodynamically feasible fluxes by deleting internal cycles
[37]. To check that our results are not an artifact of our post-processing step, we also imple-
mented the post-processing method suggested by Schellenberger et al. [21], where for each
sample point a thermodynamically feasible flux vector is computed that minimizes the L'-
norm distance to the sample point. We remark that this method solves an MILP in the post-
processing step and hence, cannot be considered a polynomial-time sampling method.

The sampling method was run with default parameters, except that the number of points
per file is half the number of output points. This means that for each sample point ACHR per-
formed at least 200 steps and potentially biased samples from the beginning were dropped. We
choose 10000 output points, since this allowed to run the analysis in a couple of hours. In
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contrast, the variability of reactions (with and without thermodynamic constraints) can be
computed deterministically using the FVA-method in [37] in a few minutes.

We selected a set of genome-scale metabolic networks based from the BiGG-database [41] as
a test-set, since these networks are well curated and well established test-networks. We did not
select Human Recon 1., since we were not able to run thermodynamically constrained flux vari-
ability analysis on it. Instead, we also added the more recent E. coli iJO1366 network [42]. Also,
we did not select the M. barkeri network because the sampling algorithm from the COBRA
toolbox crashed. The matlab scripts for the computations can be found in S1 code.

Results

The computed results for 10000 samples using the cycle deletion method [37] can be seen in
Fig 3. The L'-minimization method [21] was not practically applicable for most of the test net-
works, because it took more than 10 minutes to compute the closest thermodynamically feasi-
ble flux vector for even the first sample point. Only for H. pylori iIT341 and S. cerevisiae
iND750 this was a feasible approach. For these networks, however, already the simple cycle
deletion method already managed to sample non-zero fluxes for all reactions in internal cycles
that can have non-zero flux. Hence, these results are not separately shown.

We observe that the ratio of reactions where no positive/negative fluxes were sampled is
larger for the case with thermodynamic constraints than without. Also, as expected, the results
for RN are the same for Fand T.

0.35 T T T T T T T T
I E. coli iAF1260

0.3 | [ E. coli ij 01366 ]
: [ H. pylori iIT341
[ M. tuberculosis iNJ 661

0.25 [C—1s. aureus iSB619 i

' _ [_—1s. cerevisiae IND750

0.2 -

I 1
rf.

0.15 +
H ”H_‘ ploh mllT
T rT r.F

T

01 i

0.05

T T F F
Ne  Tee  Tee e T De e Toxe

Fig 3. Sampling results with 10000 sample points. The y-axis shows the ratio for how many reactions that
can have positive/negative flux the sampling method did not sample at least one such flux vector.

doi:10.1371/journal.pone.0135636.9003
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Fig 4. Distribution of E. coli iAF1260 flux variability that is missed by sampling. Histograms (a) and (c) are for the flux space without thermodynamic
constraints, histograms (b) and (d) are with thermodynamic constraints. The bins in histograms (a) and (b) count the number of reactions with the respective
lower and upper bounds computed by FVA. Bounds equal to O are not counted. Histograms (c) and (d) show, for the lower and upper bounds shown in (a)
and (b), the number of reactions for which no negative resp. positive flux has been sampled. For all histograms, bin sizes of length 20 were chosen. We

remark that zero flux is always possible. Therefore, the flux bounds directly relate to the possible flux range.

doi:10.1371/journal.pone.0135636.g004

However, we are surprised to find that even without thermodynamic constraints, we miss
about 5% of all possible reaction directions. This shows us that ACHR might not be a very
good approach for sampling steady-state flux spaces of genome-scale metabolic networks, as
has also been observed in [43].

One potential cause for the bad performance of ACHR is that the flux space of metabolic
networks is badly conditioned, i.e., that there exist reactions with very low variability and reac-
tions with high variability. While this is indeed the case (see Fig 4a and 4b), it does not appear
to be the primary cause, since not only reactions with very low variability are missed (see Fig 4c
and 4d). From Fig 4 we also see that there exists an assymmetry between lower flux bounds
and upper flux bounds, which could be a reason for the different results for positive and nega-

tive directions in Fig 3.
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Theoretical Obstructions to Sampling

Let ProB: 7 — {0, 1} be an NP-hard decision problem on a set 7 of inputs (commonly we use
the set of words over the alphabet {0, 1} as input, i.e., 7= {0, 1}* and the length of an input is
just the length of the word). To solve Pros by sampling, we require that the structure of the
sampling space represents ProB in a certain way. This we encode using a function & that maps
every input I € Jinto a subset of R”, i.e. an element of the powerset of R” (P(R")). This space
AX(I) will be the space from which we will draw samples. Note that we will make no assump-
tions on the size of n compared to the input size |I|. Additionally, we use a test-function f that
tests whether a point of the sample-space x € A(I) has a non-trivial property, i.e. {1, x) > 0.

Definition 1 (Sampling space) Given a decision problem Pros: 7 — {0, 1}, we call (&, f) a
sampling space for Pros if X': 7— P(R") and f: Tx R" — R satisfy:

o f(I, x) is continuous in x for all x € R".

o f(I, x) can be computed in time polynomial in the encoding length of I and x. For x € R with-
out a finite encoding length, we assume that f(I, x) is well defined, but its computation does
not terminate.

o Itholds for all I € Jthat

PROB(I) = { 1 wexW): f(Lx)>0

0 otherwise.

For example, let us assume that we want to know whether a given reaction r € R can have
positive flux in the flux space F of a given metabolic network. Thus, a problem instance I
encodes a metabolic network M{I) and a target reaction r(I). It follows that (X, f) with X(I) =
F(I) and f(I, x) = pr,(;)(x) for all I € [Jis a sampling space, where F(I) is the flux space of the
metabolic network M(I) and pr,(x) denotes the flux through reaction r in the flux vector x.

Let (Q, F, P) be a probability space, i.e., a sample space Q, events F, and probability function
P. Tt will serve us as the space from which we draw the seeds for the sampling algorithm. Here,
we assume that the sampling method is given as a function S: Jx N x Q — R”, i.e., for every
time point we get a sample. With this formalism we want to capture the behavior of random-
walk sampling methods that do a random walk through A{(I) and can be run for arbitrarily
long times to improve the sampling result. Classical sampling algorithms can also be captured
by this formalism by iteratively running the sampling method and computing a consensus
value. If the sampling algorithm did not produce a result for an (early) time point, it could sim-
ply return a default value. Since we will only consider asymptotic behavior, this will not be of
any importance.

Definition 2 (Feasible Sampling Algorithm) S: 7x N x Q — R" is a feasible sampling
algorithm, if there exists a polynomial p : N — R such that

S(Lk,w)e X(1I) Vk>p(I]),I€ T, 0eQ

Definition 3 (Polynomial Time Sampling Algorithm) S: 7x N x Q — R" is a polynomial
time sampling algorithm if there exists a polynomial g : N x R* — R" and for every I € Ja ran-
dom variable X : Q — R" such that

o S(I k, w) for I € Jand w € Q can be computed in time O(k),

e S(I, k, -) — X in distribution for k — oo, and
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o S(I, k, -) converges to X in polynomial time, i.e., for every closed set A C R" holds

IP(S(Ik,") € A) — P(X € A)| < &

for all k > q(|I|, e7").

Assume there exists such a sampling method S: Jx N — R” that samples the feasibility
space X(I) of the NP-hard optimization problem Pros for each given instance I € Jin a non-
trivial way, i.e., without losing any features (represented by f):

Definition 4 (Non-trivial Sampling Algorithm) S: 7x N x Q — R" is a non-trivial sam-
pling algorithm w.r.t. f+ Tx R" — R if for every I € J there exists a random variable X : Q —
R" such that

e S(I, k, -) — X in distribution for k — oco.
o If 3x € A() with f(1, x) > 0, then
Pf(,X)<0)=t<1

with %—t < p(|I|) for a polynomial p.

We can then use S to construct a probabilistic algorithm that will decide Pros. The probabi-
listic algorithm that we are going to construct will belong to the class RP (randomized polyno-
mial time) [24].

Definition 5 (Complexity Class RP) A decision problem p is in RP if there exists a probabi-
listic algorithm that

« runs in polynomial time,
« if the answer to p is NO, it outputs NO, and
« if the answer to p is YES, it outputs YES with probability at least 3.

Since RP = NP is an open problem in theoretical computer science, it is very unlikely that a
given probabilistic polynomial-time sampling algorithm of the thermodynamically constrained
flux space actually solves the RP = NP problem. Hence, it is much more likely that the sam-
pling algorithm samples the feasible flux space incompletely.

Theorem 1 Let Pros: J — {0, 1} be an NP-hard decision problem with sampling space (X, f).
Unless RP = NP, there exists no feasible, non-trivial, polynomial time sampling algorithm S : J
xNxQ—R"

Proor Assume there exists such a sampling algorithm. We construct an algorithm in RP for
Pros.

For I € Jdefine t(I) :== P(X € A(])) for A(I) := {x € R": {1, x) < 0}. Since f{I, -) is continu-
ous, it follows that A(I) is closed and Borel-measurable. Hence, t(I) is well defined.

By Def. 2 and Def. 3 there exist polynomials kp:N — R", g: N x R* — R" that satisfy for all
Ie JweQ k> k),

Sk, w) € X(I) (1)
and for all € > 0, k > g(|I], £ ") (since A is closed)

P(S(Lk,-) € A()) — P(X € A(I)) < e. 2)

We assume w.l.o.g. that g(m, €) > ko(m) forallm € N, e € R".
Algorithm1l ProbabilisticAlgorithm for Pros. kg is the polynomial fromDef. 2
and gis thepolynomial fromDef. 3.
k = max{q (|1,7%), k(I) }
choose randomw € Q
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compute a sample X, :=8(I, k, o)
if f(I, X;) <0 then
return NO
else
return YES
endif
Lemma 1 For a given input I € Jand t > t(I) Algorithm 1 returns NO with probability at

most 1 if Pros(I) = 1 and it always returns NO if Pros(I) = 0.
Proor Case: There exists a x € AX(I) with f{x) > 0:

By (Eq 2) it follows for all k > g(|1|, £”") that:

P(f(S(ILk,-) <0)<t()+e<t+e

1-¢

By choosing £ = 5, we obtain

Thus, Alg. 1 will return NO although the correct answer is YES with probability at most

Case f(x) <0 for all x € X(I):

It follows that f{S(I, k, w)) < 0 for all w € Q, k > ko(I) by Def. 2. Hence, the answer of the
algorithm will always be NO, if the correct answer is NO.

To prove that the problem would be in RP, we still have to increase the probability of YES

in the positive case. This can be done by re-running the algorithm.

p(Ip—1
Pl

that ;= = p(| I |) and #(I) < t. Hence, we can apply Lemma 1 without having to know #(I).

and it follows

By Def. 4 there exists a polynomial p with —— < p(]I|). We choose t =

1-t(I) —

By construction of Alg. 1 the computation of X takes time O(g(| I |,1%)). We observe that
the encoding for the computed sample X is bounded by the computation time O(q(| I |,-2)).

Y1t

Hence, by Def. 1 there exists a polynomial g such that the runtime of Alg. 1 is bounded by

O(g(IT]a(11.:)).
To obtain a correct result if the correct answer is YES with probability at least 1, we re-run

the algorithm at least ﬁ times with independent choice of w € Q for each run and return
%\ 71
YES if one of the runs returned yes.

Since the probability of NO in one run is at most 1, it follows that the probability for NO

in all runs is at most
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We can estimate the number of iterations by observing that

et 22 ()
Pl 71 P -1 (i) -1
p(1])

1 B 1 |

Using the Theorem of I'Hopital we have

=

—1 -1
lim p T P
(P ) ;}Ln; Inp—1In(p—1)
1 i
i —p
Simy
p P;l
— lim _—pr
pmoo p—1—p
plp—1)
= lim p~*(p* — p)
p—0oo
=1

Hence, we can bound the number of iterations by

R
log, (t%l) log, (2555\;?1

Thus, we get a YES if the correct answer is YES with probability at least } after a running

o<g (|I,q<|l|713t))> logz(li)

t+1

= O(p(l1]))-
)

time of

< O(g (I}, q (|11, 2p(I1)))p(|1]))-

We have shown under the assumption of the existence of a sampling algorithm with the
given properties that Pros is in RP. Since Pros is also NP-hard, the existence of such a sam-
pling algorithm implies RP = NP. Hence, no such sampling algorithm can exist if RP # NP.

Discussion

We observe that the conditions that we require for Thm. 1 on the sampling algorithm are very
weak. We do not require uniform distribution, we only require that with some polynomially
small probability we also sample fluxes unequal to zero in our target distribution and that we
converge in polynomial time to this target distribution.

Assuming RP # NP, it follows that for every sampling algorithm on the thermodynamic
flux space there exist networks where the algorithm has one of the following properties:

o The sampling algorithm does not converge in polynomial time to the target distribution, or

« the target distribution is trivial (i.e., the probability of sampling 0 is 1).
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Of course, we may be lucky and the algorithm actually samples a non-trivial distribution for
the input networks. However the result says that there are networks for which the sampling
algorithm will only sample 0 fluxes for some reactions and indeed, we saw that this happens
also in practice not only for sampling the thermodynamically constrained flux space but also
the ordinary steady-state flux space. It might be a property of the ACHR method that even for
the ordinary steady-state flux space only 0 fluxes for some reactions are sampled, because in
theory classical hit and run sampling (with appropriate rounding to remove the heterogeneous
scales of metabolic networks) is guaranteed to sample uniformly [1]. De Martino et al. [43]
showed that indeed ACHR seems to have problems with high-dimensional instances, like 500
dimensional uniform hypercubes. Other sampling methods, e.g. loopy-belief propagation [10,
11] or poling-based methods [9] might not have these problems.

Unreliable sampling is very critical, since we then may be led to the false assumption that
the reaction is never used, although it actually could be. To make sure that such results are
true, it is essential to verify them with a deterministic method. In the case of deciding whether
flux is possible through a given reaction, we can decide this by solving an optimization problem
[21,37].

We have shown that sampling artifacts happen for the flux variability problem with thermo-
dynamic constraints (and in practice they even happen without thermodynamic constraints
with ACHR sampling). However, sampling is used to check a wide variety of different proper-
ties. Although the result does not directly imply that sampling results for these other properties
are unreliable as well, caution is highly advised. For example, consider correlation / flux cou-
pling analysis [20]. If a reaction always carries zero flux in all samples by an artifact, although it
can also carry non-zero flux, it follows that this reaction seems uncorrelated to all other reac-
tions. However, it may very well be correlated / coupled. In Fig 1, we see such an example.
Assume the flux space (see Fig 2) is sampled using a uniform distribution. Then, we will almost
surely never sample non-zero flux through reaction r;. Correlation analysis would yield that
flux through r; is uncorrelated (they are even independent) to flux through r, and r;, although
the fluxes are actually exclusive (e.g. r; and r, cannot carry flux at the same time). On the other
hand, if reaction r, would be removed (because it is simply the aggregation of r; and r,) the
result would change significantly. Then, with uniform sampling, positive fluxes through r; and
through r; would be sampled with equal probability.

Conclusion

Although sampling has been used successfully for the analysis of many different kind of prob-
lems, the results obtained by sampling should be used with caution. In the field of metabolic
network analysis in particular, we showed (assuming RP # NP) that for every polynomial-
time sampling method obeying thermodynamic constraints there exist networks for which the
sampling method will produce artifacts. Hence, qualitative results obtained by sampling com-
plex spaces should always be double checked by a different method.
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