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Abstract: Alterations of heart rate variability (HRV) are associated with various (patho)physiological
conditions; therefore, HRV analysis has the potential to become a useful diagnostic module of
wearable/telemedical devices to support remote cardiovascular/autonomic monitoring. Continuous
pulse recordings obtained by photoplethysmography (PPG) can yield pulse rate variability (PRV)
indices similar to HRV parameters; however, it is debated whether PRV/HRV parameters are
interchangeable. In this study, we assessed the PRV analysis module of a digital arterial PPG-based
telemedical system (SCN4ALL). We used Bland–Altman analysis to validate the SCN4ALL PRV
algorithm to Kubios Premium software and to determine the agreements between PRV/HRV results
calculated from 2-min long PPG and ECG captures recorded simultaneously in healthy individuals
(n = 33) at rest and during the cold pressor test, and in diabetic patients (n = 12) at rest. We found
an ideal agreement between SCN4ALL and Kubios outputs (bias < 2%). PRV and HRV parameters
showed good agreements for interbeat intervals, SDNN, and RMSSD time-domain variables, for total
spectral and low-frequency power (LF) frequency-domain variables, and for non-linear parameters
in healthy subjects at rest and during cold pressor challenge. In diabetics, good agreements were
observed for SDNN, LF, and SD2; and moderate agreement was observed for total power. In
conclusion, the SCN4ALL PRV analysis module is a good alternative for HRV analysis for numerous
conventional HRV parameters.

Keywords: pulse rate variability; pulse wave analysis; photoplethysmography; telemedicine

1. Introduction

The time duration between heart beats (interbeat intervals, IBIs) continuously changes,
even at rest. These alterations are referred to as heart rate variability (HRV) and are brought
about by various oscillating regulatory mechanisms that directly or indirectly affect heart
rate (HR). These processes dominantly act by modifying the balance of sympathetic and
parasympathetic effects on the heart; however, HR fluctuations due to other regulatory
mechanisms (chemical, hormonal, and hemodynamic factors) also participate [1–4]. Control
mechanisms contributing to HRV are diverse (e.g., respiratory rhythm, oscillations of
baroreceptor activity, thermoregulation, etc.) and operate at different timescales [2,3,5,6].
In general, fluctuations of parasympathetic activity occur at higher frequencies, whereas
those of sympathetic activity and hormonal effects at lower frequencies [6].

HRV analysis provides indices that characterize the variability of the IBIs (time-domain
parameters) [2] and also that reflect the contribution of control mechanisms oscillating at
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different frequencies to this variability (frequency-domain parameters). In addition, so-
called non-linear parameters that characterize the unpredictability of HR are also derived.
HRV analysis is performed by analyzing normal-to-normal (i.e., non-arrhythmic) IBIs of
sequential heartbeats acquired from continuous ECG recordings of various lengths (from
2 min to 24 h) [1,5,7]. In general, healthy people tend to have higher HRV values, which
reflect the flexibility of regulatory systems to respond to different cardiovascular and
homeostatic challenges [8–13], whereas depressed HRV has been associated with a wide
variety of diseases and pathophysiological disorders. Moreover, alterations of certain HRV
indices have been proposed to be applicable for assessment of prognosis in post-infarction
patients and in patients with congestive heart failure [14–26].

These observations indicate that HRV analysis has a promising potential to evolve to
a useful medical tool to monitor cardiovascular status. Since physiological fluctuations
of autonomic functions make HRV parameters highly variable even within the same in-
dividual, HRV evaluation offers the most benefit if regular measurements are available.
This can be easily accomplished by using telemedical and wearable monitoring systems
equipped with HRV analysis modules. Nowadays, photoplethysmography (PPG)-based
devices to monitor heart rate and oxygen saturation are very common both in clinical
practice and everyday activities. PPG is a technique that detects blood volume changes in
the tissues with an optical method. The PPG signal is an invaluable source of information
of cardiovascular and autonomic functions. Among others, continuous PPG recordings
obviously offer the opportunity to determine IBIs from which pulse rate variability (PRV)
indices similar to HRV indices can be derived. However, it is debated whether PPG-based
PRV indices can be interpreted similarly to HRV parameters, since IBIs are defined as RR
intervals from ECG, and as pulse durations from PPG are not obviously identical. RR
intervals signify the duration of the electrical cardiac cycle, which may slightly differ from
PPG pulse durations (most often defined as peak-to-peak intervals of PPG pulse waves),
since the timing of peripheral pulse peaks is influenced by several additional factors includ-
ing the dynamics of ventricular ejection, elasticity of large arteries, peripheral resistance,
and the propagation velocity of the pulse wave [27–29]. Moreover, this implies that PRV
parameters may bear additional information about cardiovascular functioning, which is
not available in HRV indices. Disparities between HRV and PRV have already been studied
by several researchers, and various HRV and PRV indices have been reported to highly
correlate in healthy individuals [30–39]. However, most of these studies are restricted to
selected HRV parameters and resting healthy conditions. Comprehensive investigations
covering numerous HRV indices [27,31,34] (including time-domain, frequency-domain,
and non-linear parameters in the same study) and studies focusing on agreements between
HRV and PRV parameters under autonomic challenge [39] and in diseased conditions are
scarce in the literature.

Our research group has recently introduced a telemedical system (SCN4ALL) that
is designed for the remote monitoring of cardiovascular patients and is based on the
photoplethysmographic (PPG) detection and analysis of the digital arterial pulse wave [40].
The system analyzes continuous 2-min long PPG recordings, which are used to evaluate
morphological pulse characteristics [40]. In order to offer the most benefit for our users,
we have also elaborated an automated algorithm for PRV computation and equipped
the telemedical system with a PRV analysis module. The ultimate aim of this study is
the comprehensive assessment of the performance of the SCN4ALL pulse rate variability
analysis module.

First, we aimed to assess the agreements between the most widespread conventional
HRV and PRV indices computed from ECG and PPG captures, respectively. For this
purpose, we simultaneously recorded ECG and PPG on healthy individuals at rest and also
under cold pressor challenge, when the autonomic balance was disrupted. We calculated
IBIs and 17 HRV parameters from both captures using a clinically validated and widely
accepted algorithm (Kubios HRV Premium) [41] and then compared the results with Bland–
Altman analysis. The agreements of HRV and PRV parameters were also investigated in
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diabetic patients in order to assess if the interchangeability observed in healthy individuals
also holds for diseased conditions.

Automated algorithms used for HRV analysis use slightly different mathematical
approaches for the power spectral and non-linear analysis of HRV. In this study, we also
aimed to validate our proprietary SCN4ALL algorithm to a clinically accepted algorithm
in order to show its reliability before introduction to clinical research and practice. For
this purpose, we performed PRV analysis on 2-min long PPG recordings both with the
Kubios HRV Premium [41] and the SCN4ALL algorithms and compared the results with
Bland–Altman analysis.

2. Materials and Methods
2.1. Subjects

A total of 33 informed and consenting healthy (M/F: 14/19, age between 19 and
55, mean ± SD: 32.1 ± 9.7 years) and 12 type 2 diabetic (M/F:5/7, age between 43–79,
mean ± SD: 61.1 ± 12.8 years) subjects participated in this study. None of the healthy vol-
unteers had a history of cardiovascular disease, or cardiovascular medication, and none of
them reported any symptoms that may affect autonomic balance (sleep deprivation, stress,
headache, etc.). The participating diabetic patients had been treated for type 2 diabetes for
more than one year. The study was approved by the Regional and Institutional Committee
of Science and Research Ethics at Semmelweis University (approval number: 120/2018).

2.2. Measurements of HRV
2.2.1. Signal Recording

ECG. Einthoven II lead ECG was recorded with the Biopac BSL MP45 data acquisition
system (Biopac Systems Incl., Goleta, CA, USA). For ECG recording, disposable ECG elec-
trodes were attached to the right shoulder, left lower abdomen, and right lower abdomen,
and then connected to the negative, positive, and ground wires of a Biopac SS2LB electrode
lead set, respectively. The signal was amplified by a Biopac MP45 data acquisition unit,
which was directly connected to a desktop computer. BSL 3.7.7 software was used to
capture ECG for 2 min at a sample rate of 1000 Hz. ECG recordings were saved as .acq
files and were used to identify RR intervals by the Kubios HRV Premium analysis software
(Kubios Ltd., Kuopio, Finland) [41]. RR intervals were used as IBIs (IBI-ECG) to calculate
HRV parameters (for details, see data analysis).

PPG. For recording the PPG signal, a finger-clip transmission pulse oximeter (Berry
Pulse Oximeter, Shanghai Berry Electronic Tech Co., Ltd., Shanghai, China) was attached to
the left index finger. Pulse wave detection and analysis were performed by the SCN4ALL
telemedicine system (E-Med4All Europe Ltd., Budapest, Hungary). In the system, the
pulse oximeter communicates via Bluetooth connection with a mobile application, which
initiates and terminates data acquisition and transmits the recording to a cloud-based
automated algorithm, which has been developed by our research group. First, the signals
sampled at a frequency of 200 Hz are upsampled to 1000 Hz; then, the algorithm identifies
the pulse cycles and peak-to-peak intervals as IBIs (IBI-PPG). Time series of IBI-PPG were
used to calculate PRV parameters (for details, see data analysis). Data captured by the
SCN4ALL system is stored on a cloud-based server equipped with safe data protection,
which conforms to the applicable regulations ((EU)2016/679) [40].

2.2.2. Protocol

We performed the measurements on 33 healthy and 12 diabetic participants under
the following conditions: measurement took place in a quiet room at room temperature,
in a sitting, resting position, with hands held quietly on a table. The pulse oximeter
was placed on the left index finger, and the ECG electrodes were attached as described
above. After mounting the devices, participants were instructed to minimize movements.
Measurements were initiated after 10 min of rest. First, we measured the blood pressure
of the participants with an Omron M3 Intellisense arm-cuff blood pressure meter 3 times,
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with 2-min intervals between the measurements (OMRON Corporation, Kyoto, Japan).
Afterwards, ECG and PPG signals were simultaneously recorded for 2 min using Biopac
3.7.7 software and SCN4ALL application, respectively.

After completion of the resting examination, the healthy volunteers remained seated,
and we repeated the measurements in these subjects also during a cold pressor cardiovas-
cular challenge, which was applied to disturb the resting autonomic balance. First, we
measured the participants’ blood pressures. Then, the right hand was immersed in a bowl
of cold water (+3–5 ◦C). ECG and PPG recordings were initiated simultaneously with the
cold pressor challenge and lasted for 2 min. Blood pressure measurements were repeated
immediately after the termination of the 2-min recording period.

2.3. Data Analysis

In the analysis, only those recordings were evaluated that consisted of normal-to-
normal IBIs. For this reason, results of 3 healthy subjects were completely excluded from
the study, because in 2 cases, previously unknown arrhythmia was seen on the ECG, and in
1 case, the PPG was contaminated with motion artefacts. Four additional healthy subjects
were excluded from the ‘cold pressor test’ study either for not tolerating the challenge
or for producing numerous PPG artefacts. Therefore, in the healthy group, results of
control measurements are presented for 30 (M/F: 14/16, age range 19–55, mean ± SD:
33 ± 9.7 years), and those of the cold pressor study for 26 subjects (M/F: 11/15, age range
19–55, mean ± SD: 33 ± 9.9 years).

We calculated HRV/PRV parameters from the two detection modalities (ECG and
PPG) by three methods:

1. ECG recordings (.acq files captured by the Biopac system) were opened in Kubios
HRV Premium software (ver. 3.3.1), which identified RR intervals (IBI-ECG) and
then computed HRV parameters. As only non-arrhythmic recordings were used, the
calculations were made using no artefact correction and with unfiltered settings. As a
result, HRV-ECG values were generated.

2. We saved peak-to-peak intervals calculated by the SCN4ALL algorithm from each
PPG recording (IBI-PPG) as .csv files. The PRV analysis of the IBI-PPG datasets were
executed with Kubios HRV Premium, with the same settings as in Point 1. As a result,
PRV-Kubios values were created.

3. The automatic algorithm of the SCN4ALL system was also used to calculate PRV
parameters from IBI-PPG data to produce PRV-SCN4ALL values. The functions of the
algorithm were programmed in Matlab. The algorithm uses the statistical approaches
recommended by the ‘Task Force of the European Society of Cardiology and the
North American Society of Pacing Electrophysiology’ [5] to determine time-domain
parameters. For frequency-domain analysis, a power spectrum density estimate
was calculated by the algorithm using a Fast Fourier Transform (FFT)-based Welch’s
periodogram method. After obtaining the FFT spectrum, absolute power values for
each frequency band were calculated by simply integrating the spectrum within the
band limits. To compute non-linear PRV parameters, detrended fluctuation analysis
was performed according to the work of C.G Peng et al. [42]. SCN4ALL also displays
a Poincaré plot with SD1 and SD2 parameters. Poincaré plot is a graph of IBI(n)
on the x-axis versus IBI(n + 1) on the y-axis [43,44]. SD1 is the standard deviation
of the distance of the points from the “x = y” axis and reflects short-term changes,
whereas SD2 is the standard deviation of the distance of the points from the “x = −y +
2xIBI(mean)” axis [44,45]. SD1 and SD2 determine the length and width of a fitted
ellipsis, respectively, the center of which is at the coordinate of (IBI(mean);IBI(mean)).
In fact, SD1 and SD2 can be mathematically derived from time-domain indices;
therefore, we calculated SD1 and SD2 as follows [44,46–48]:

SD1 = rMSSD× 1√
2
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SD2 =
√

2× SDNN2 − SD12

Comparison of the HRV and PRV results derived according to points 1 and 2 describes
the agreement between the ECG and PPG methodologies (performed for healthy indi-
viduals at rest and during cold pressor test and for diabetic subjects at rest). In contrast,
comparison of the PRV results between points 2 and 3 provides information about the
performance of the SCN4ALL PRV analysis engine compared to the widely used and
clinically accepted Kubios HRV Premium analysis [41]. The analysis was performed for a
wide range of HRV/PRV parameters, which are listed in Table 1.

Table 1. Heart rate variability parameters analyzed in the study.

Time-Domain Parameters

Mean IBI The mean normal-to-normal interbeat interval (IBI)
SDNN The standard deviation (SD) of IBIs (NN: normal-to-normal IBI)
MHR Mean heart rate

RMSSD The square root of the mean squared differences of successive IBIs
pNN50 The proportion of differences of successive IBIs exceeding 50 ms (NN: normal-to-normal IBI)
MnHR Minimum heart rate
MxHR Maximum heart rate

Frequency-Domain Parameters

LF power Absolute power of the low-frequency (LF) band (0.04–0.15 Hz)
HF power Absolute power of the high-frequency (HF) band (0.15–0.4 Hz)

LFnu Relative power of the low-frequency (LF) band expressed in normalized units (nu)
HFnu Relative power of the high-frequency (HF) band expressed in normalized units (nu)
Ptotal Total spectral power (P)

LF/HF ratio Ratio of low frequency (LF) to high frequency (HF)

Non-Linear Parameters

SD1 Standard deviation (SD) 1 of the Poincaré plot representing the length of the ellipse fitted to the plot
SD2 Standard deviation (SD) 2 of the Poincaré plot representing the width of the ellipse fitted to the plot

SD1/SD2 The ratio of SD1 and SD2
DFAα1 Short term fluctuation slope (α1) obtained by detrended fluctuation analysis (DFA)

2.4. Bland–Altman Analysis

The agreements between HRV/PRV parameter values (HRV-ECG vs. PRV-Kubios
and PRV-Kubios vs. PRV-SCN4ALL) were assessed by Bland–Altman analysis [49,50].
The differences of measurements were plotted against the means of the measurements.
Bias was defined as mean difference and is presented with 95% confidence intervals
(C.I.). To calculate percentage bias, bias is expressed as the percentage of the mean of the
measurements. Limits of agreement were calculated as bias ± 1.96 standard deviation.
The analysis was performed with MedCalc Statistical Software v.19.6.4 (MedCalc Software,
Ostend, Belgium).

3. Results
3.1. Agreements between ECG-Based HRV and PPG-Based PRV Parameters

The Bland–Altman plots used for the analysis of agreement between PRV and HRV
parameters derived from 2-min long PPG and ECG recordings, respectively, are shown
in Figure 1. In this setting, conventional HRV indices were calculated by the algorithm
of the Kubios HRV Premium software. The values of variables referring to IBI duration
(IBI, mean HR, minimum HR, and maximum HR) are apparently identical in PPG and
ECG based calculations (Figure 1A, and Supplementary Figure S1A). Among time-domain
parameters, SDNN and RMSSD showed good agreement. The percentage biases were
−3.2% (95% C.I.: −5.2; −1.2) and −9.5% (95% C.I.: −14.3; −4.6), respectively, indicating
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that the values calculated from PPG recordings are slightly higher. However, in the case
of pNN50, the bias was −27.3% (95% C.I.: −53.2; −1.4) (Figure 1A). Among frequency-
domain parameters, good agreement was observed for total and low-frequency spectral
power (percentage bias −8.2% (95% C.I.: −10.6; −5.8) for total power (Ptotal); and −2.7%
(95% C.I.: −4.9; −0.5) for LF) (Figure 1B and Supplementary Figure S1B)). However, the
agreement for high-frequency power was weaker (percentage bias−26.5% (95% C.I.: −35.6;
−17.5) (Supplementary Figure S1B)), with significant overestimation of the parameter by
the PPG based calculation. The calculated non-linear parameters (DFAα1, SD1, SD2, and
SD1/SD2) each showed good agreement (Figure 1C).
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Figure 1. Bland–Altman plots of HRV/PRV parameters computed by the Kubios Premium algorithm from 2-min long ECG
(indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings captured under resting
conditions. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of successive IBIs
exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LF/HF (ratio of low frequency to high
frequency), LF (absolute power of the low-frequency band (0.04–0.15 Hz)), HF (absolute power of the high-frequency band
(0.15–0.4 Hz)). (C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the line of identity),
SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1 (short term
fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences (indicated as
‘Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/− 1.96 standard deviations (SD) and
their confidence intervals.

When Bland–Altman analysis was performed on HRV vs. PRV parameters calculated
from 2-min ECG and PPG recordings obtained from healthy individuals during cold
pressor test, similar tendencies could be observed with similar IBI durations, and with
good, clinically acceptable agreements for SDNN, RMSSD, total power, and LF; and also,
for non-linear parameters (Figure 2 and Supplementary Figure S2.).
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Figure 2. Bland–Altman plots of HRV/PRV parameters computed by the Kubios Premium algorithm from 2-min long
ECG (indicated as ‘parameter name-ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained during cold
pressor test. (A) Time-domain parameters: IBI (interbeat interval), SDNN (the standard deviation of IBIs), RMSSD (the
square root of the mean squared differences of successive IBIs), pNN50 (the proportion of differences of successive IBIs
exceeding 50 ms). (B) Frequency-domain parameters: Ptotal (total spectral power), LF/HF (ratio of low frequency to high
frequency), LF (absolute power of the low-frequency band (0.04–0.15 Hz)), HF (absolute power of the high-frequency band
(0.15–0.4 Hz)). (C) Non-linear parameters: SD1 (Poincaré plot standard deviation perpendicular to the line of identity),
SD2 (Poincaré plot standard deviation along the line of identity), SD1/SD2 (ratio of SD1-to-SD2), DFAα1 (short-term
fluctuation slope obtained by detrended fluctuation analysis). Bias is calculated as the mean of differences (indicated as
‘Mean’—blue solid line) and is presented with 95% confidence intervals (green) and +/− 1.96 standard deviations (SD) and
their confidence intervals.

In diabetic individuals, the Bland–Altman analysis showed good agreements be-
tween HRV and PRV values for IBI durations (Figure 3A), SDNN (Figure 3A), LF power
(Figure 3B), and SD2 variables (Figure 3C) (percentage bias < 10% for each parameter).
Slightly weaker, moderate agreements were observed for total power (Figure 3B; percent-
age bias −14.2% (95% C.I.: −23.3; −5.1)); and for DFAα1 non-linear parameter (Figure 3C;
percentage bias 13.8% (95% C.I.: 0.0; 27.6)). However, in case of RMSSD and pNN50 time-
domain variables (Figure 3A); HF and relative (HFnu, LFnu, LF/HF) frequency-domain
indices (Figure 3B and Supplementary Figure S3); and SD1 and SD1/SD2 non-linear pa-
rameters (Figure 3C), the agreements were found to be insufficient (percentage bias > 20%).
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3.2. Agreements between PRV Calculations of the SCN4ALL and Kubios HRV
Premium Algorithms

Comparison of the PRV parameters calculated by the SCN4ALL and the Kubios HRV
Premium algorithm from 2-min long PPG recordings showed perfect agreement in case of
all PRV variables. For time-domain and non-linear variables (Supplementary Figure S3),
the percentage biases were smaller than 0.5%. In case of frequency-domain variables,
these values were below 2% and well within the clinically acceptable limits and with no
significant difference between the outputs of the two algorithms (Figure 4).

The agreement between the outputs of the algorithms remained unaltered when 2-
min long recordings acquired in healthy subjects during cold pressor test (Figure 5 and
Supplementary Figure S5) and in diabetic patients at rest (Figure 6 and Supplementary
Figure S6) were used for analysis.
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4. Discussion

In our study, using Bland–Altman plots, we have shown that PRV and HRV calcula-
tions (obtained from PPG and ECG recordings, respectively) are in good agreement for
several conventional HRV/PRV parameters when the analysis is performed using short
(2-min long) recordings. Apparently, there is no significant difference in mean interbeat
intervals defined from PPG and ECG captures, and for several HRV/PRV parameters
computed by the Kubios software, the limits of agreement are within 10% (i.e., SDNN and
RMSSD among time-domain variables, total power and LF frequency-domain indices, and
non-linear parameters). The agreement of HRV parameters obtained by the two methods
prevailed even if the resting autonomic balance had been disrupted by a cardiovascular
challenge (cold pressor test). In diabetic individuals, the good agreements between HRV
and PRV indices were also valid for SDNN, LF, and SD2 indices, and moderate agreements
could be detected between total spectral power and DFAα1 values. However, for parame-
ters that are considered to be conventional markers of short-term HRV, weaker agreements
were found. We have also shown that the outputs of the PRV algorithm of the SCN4ALL
telemonitoring system are in perfect agreement with the values computed by Kubios HRV
Premium when the analysis is performed on data derived from short (2-min long) PPG
captures. Our study extends our scientific knowledge about the interchangeability of HRV
and PRV analysis with relevant new pieces, as it is a comprehensive investigation covering
a large number of HRV/PRV parameters and assessing their agreements not only in healthy
individuals at rest but also under autonomic challenge and in diabetes.

Autonomic function has been in the focus of research for decades, and several non-
invasive techniques have been proposed for its evaluation (ECG, PPG, electroencephalogra-
phy, sudomotor function, etc.) [51–53]. Many of these may also be incorporated in remote
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monitoring systems, and experiences acquired in signal analysis of one method have
often facilitated progression in the procession of other signals. Using the HRV analysis
approach for PPG signals is a good example of this. However, in the literature, it is con-
troversial whether HRV parameters calculated from time series of RR intervals obtained
from ECG recordings and from pulse durations obtained from PPG signals or continuous
non-invasive blood pressure monitoring (e.g., Finapress) can be used alternatively [54].
Nowadays, the number of wearable and telemedical devices that are equipped with either
ECG or PPG detectors dynamically increases [55,56]. This may open new prospects for sci-
entists and physicians to exploit the opportunities offered by HRV/PRV analysis in patient
evaluation. However, most of our scientific knowledge on HRV alterations in different
(patho)physiological conditions relies on ECG-based studies, mostly following a task force
statement of the European Society of Cardiology and the North American Society of Pacing
Electrophysiology [5]. Therefore, it is important to assess the agreement between HRV and
PRV under different (physiological and pathological) conditions in order to confidently
accept the PPG-based PRV-analysis as a reliable alternative to monitor HRV changes. So
far, several studies have compared PRV to the gold standard of ECG-derived HRV [30–39].
Some publications found good agreements between PRV and HRV, especially in younger
subjects and at rest [31,57], or during sleep [58], and mostly in time-domain parameters.
However, some studies have found weaker agreements between HRV and PRV values for
HRV indices, which are generally influenced by short-term regulatory fluctuations (RMSSD,
pNN50, HF, LF/HF, SD1) [32,34,36,54,59–61]. Their results indicate that PRV overestimates
HF but underestimates LF/HF ratio and LF percentage. However, it is notable that this is
observed more often in continuous blood pressure monitoring studies (Finapress) than in
PPG studies. There is sparse evidence of whether frequency-domain PRV variables behave
similarly to HRV variables and have some value in diagnosing autonomic function [38,62].
In our study, we have shown that among time-domain variables, PPG-based and ECG-
based SDNN and RMSSD values have good agreements (Figure 1A). Similar to previous
studies, pNN50 was overestimated when PPG-based IBIs were used [27,32,34,36,54,59].
On the other hand, total spectral power and low-frequency power computed from PPG
and ECG had similar values (Figure 1B). Interestingly, high-frequency power was signif-
icantly overestimated by the PPG-based analysis (Figure 1B). This is in agreement with
some studies, in which similar observations were made for certain frequency-domain vari-
ables [32,34,36,39,54,60,61,63]. It has been speculated that the reason for this disparity in
HF power and other indices reflecting short-term variability is that spontaneous breathing
rate lying within the HF frequency band has a greater impact on PRV than on ECG-based
HRV [54,59,62,64].

We also observed good agreements for non-linear parameters. The relevance of these
parameters in HRV analysis is not completely established, and there is no consensus on the
measurement duration which can yield clinically informative non-linear variables [65–67].
Moreover, some of these parameters are in a direct mathematical relationship with other
parameters and bear the same information (e.g., SD1 and RMSSD). Anyway, our results
show that PPG-based PRV analysis is a good alternative for HRV analysis in case of
non-linear parameters, too.

Although several studies have shown correlations between PRV and HRV variables,
these were observed at rest or during sleep. However, exercise, stress, or changing position
were observed to diminish these agreements. The authors speculated that in physically
active states, the disagreement is most probably due to motion artefacts [34,39]. On the
other hand, the disparity between PRV and HRV variables can also be the consequence
of the altered autonomic balance, which may affect pulse rate and heart rate differentially.
In our study, we used the cold pressor cardiovascular challenge to disrupt the resting
autonomic balance. This allowed examination of the effects of altered autonomic func-
tion without producing motion artefacts. Although not every subject had the same usual
and expected cardiovascular response during the test, there was some disruption of the
autonomic balance in every case (average increase in systolic pressure: 5.4 ± 7.7 mmHg,
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average increase in diastolic pressure: 3.7 ± 6.6 mmHg). The agreements in the PPG- and
ECG-based analysis described at rest could also be observed during the cold pressor test
(Figure 2, and Supplementary Figure S2), implying that PPG-based PRV analysis can be
applicable also in conditions in which altered autonomic function has been described by
HRV analysis. In our study, we chose a cold pressor test to modify autonomic balance,
because this allowed us to avoid undesirable motion artefacts. However, this may have
limitations, as in another study it has been shown that whole-body cold exposure has
differential effects on HRV and PRV parameters, thereby modifying the agreements be-
tween them [27]. It was speculated that this can be most probably due to the unbalanced
influence of cold exposure on central and peripheral sympathetic activity. In our study,
cold exposure on one hand did not abolish the agreements of HRV and PRV parameters,
presumably because its effects differ from those of whole-body cold exposure.

We have also conducted a pilot study to assess the agreements between HRV and PRV
indices in type 2 diabetic patients in order to find out whether the agreements observed
in healthy individuals are also valid in a diseased condition. Diabetes is characterized
by reduced total and LF power, and also by the decrease of HRV parameters that signify
mainly short-term variability (SDNN, RMSSD, pNN50, HF) [68–71]. These alterations
are caused by the deleterious effects of the impaired glucose metabolism on autonomic
nerves [70]. We found that for several relevant HRV parameters, such as SDNN, LF power,
and SD2 parameters, good agreements can be detected between HRV and PRV derived
values. Moreover, we observed moderate agreements (bias < 15%) in case of DFAα1 and
total power. However, in case of those parameters that describe short-term variability
(RMSSD, pNN50, SD1) though both HRV and PRV values tended to be lower in the
diabetic group, the HRV-PRV agreements were weaker than those observed in healthy
individuals. Our results suggest that several conventional HRV/PRV parameters can be
used interchangeably not only in healthy but also in diabetic individuals; however, there are
other parameters with non-negligible disparities. It does not necessarily imply that those
parameters that show weaker agreements in our study are not worth evaluating. However,
our findings highlight the relevance of larger-scale comparative HRV vs. PRV studies to
verify whether diabetes or various other disease conditions are associated with typical
alterations of these PRV variables. Data mining techniques to identify correlations between
PRV patterns and different diseases could effectively improve our scientific knowledge
in this field. As a result, we may identify the differences even in localized autonomic
responses accounting for HRV and PRV disparities in order to establish sound diagnostic
indications for HRV and PRV analyses.

HRV algorithms used for calculation of HRV variables may apply different mathemat-
ical approaches. This may limit the comparison of studies and the valid interpretation of
the HRV variables and their alterations in different conditions. Therefore, we considered it
to be relevant to validate our algorithm to a clinically widely accepted and frequently used
HRV algorithm, the Kubios HRV Premium. In case of time-domain variables, we should
expect perfect agreement between algorithms, since these parameters are calculated as sta-
tistical parameters describing IBI variability using formulae recommended by a task force
statement [5]. However, for spectral analysis, two main different approaches can be used
to separate HRV into frequency components, namely Fast Fourier Transformation (FFT)
and autoregressive modeling [5]. For each approach, several slightly different functions
can be applied. The SCN4ALL algorithm uses an FFT-based Welch’s periodogram method,
which is similar to the one applied by the Kubios algorithm. For calculation of non-linear
parameters, the SCN4ALL algorithm uses detrended fluctuation analysis according to
the work of Peng et al. [42] and a Poincaré plot, which are characterized by SD1 and SD2
parameters defined in the “Methods” section above. Comparison of the SCN4ALL algo-
rithm outputs to the Kubios outputs by Bland–Altman analysis showed perfect agreement
between the methods when we analyzed 2-min long PPG-based IBI time series obtained
from either healthy individuals at rest and during cold pressor cardiovascular challenge or
from diabetic patients at rest. In case of those parameters where a simple mathematical for-
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mula is applied (time-domain variables, SD1 and SD2 non-linear variables), the negligible
differences between the SCN4ALL and Kubios results are attributable to slightly different
rounding schemes used by the algorithms.

Signal processing of telemedical systems may be prone to signal loss and uncertainty
due to multistep signal transformation [72,73]. This can be interpreted as the uncertainty of
the data used for classification. Effective classification of evidence requires the use of fuzzy
classifiers [74,75]. Based on multiple studies [76–78], the fuzzy data application allows to
increase the accuracy of the classification of uncertain data [79]. In the case of the PPG-
based system used in our study, there are two possible steps where signal loss may occur.
The first is the analog-to-digital conversion of the signal. In the case of heart rate variability,
only the quantization error can play a role. The SCN4ALL telemedicine system operates at
a sampling rate of 200 Hz, meaning that at a heart rate of 60 beats/minutes, it only creates a
0.5% error. This is clinically acceptable and does not affect the diagnostic value of the given
system. The second step where some information loss can be expected is at the filtering of
the digitized signal. However, it only affects the morphology of the PPG signal but not the
timely relations of the fiducial timepoints. Therefore, filtering the signal does not affect the
peak-to-peak distances of the pulse wave from which IBIs for PRV calculation are derived.
Furthermore, in our previous article [40], we examined how artificial non-variable PPG
signals generated by a simulator (both normal and simulated pathological signals) were
processed by the system, and the repeatability was found to be perfect in case of most
studied parameters [40]. Although this study focused on morphological parameters, we
also investigated the reliability of IBI determination, and the error (expressed as coefficient
of variation) was virtually zero. Our PRV analysis module uses only IBIs as detected signals
for further computation, so we think that signal loss and uncertainty have a negligible
effect on our analysis.

5. Conclusions

Our study showed that the HRV algorithm of the SCN4ALL system is as accurate as
the widely used Kubios HRV Premium algorithm for PRV analysis of short (2-min long)
time series of interbeat intervals obtained by PPG recordings. PRV analysis performed on
PPG pulse signals is in good agreement with ECG-based analysis for numerous clinically
relevant HRV parameters, including SDNN and RMSSD time-domain parameters, total
and low-frequency spectral power frequency-domain variables, and non-linear parameters
in healthy individuals at rest, and also under an autonomic challenge. Moreover, we
identified several parameters (SDNN, total power, LF, SD2, and DFAα1) that showed
moderate to good HRV-PRV agreements in diabetic patients. This indicates that these
parameters can be reliably used for HRV-based evaluation of autonomic function in healthy
and diabetic individuals regardless of whether ECG or PPG provides the time series of
interbeat intervals. Other conventional PRV parameters computed from PPG recordings
should be interpreted cautiously, keeping in mind that clinical evidence obtained on ECG-
based HRV alterations in different disease conditions can be applied with limitations.
Despite these limitations, we can claim that PPG-based PRV analysis of the SCN4ALL
system is suitable for evaluation of PRV alterations, and to pursue research to establish
the clinical relevance of PRV analysis in the follow-up of autonomic dysregulation in
various diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21165544/s1, Supplementary Figure S1: Bland–Altman plots of HRV/PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings captured in healthy individuals
under resting conditions; Supplementary Figure S2: Bland–Altman plots of HRV/PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from healthy individuals
during cold pressor test; Supplementary Figure S3: Bland–Altman plots of HRV/PRV parameters
computed by the Kubios Premium algorithm from 2-min long ECG (indicated as ‘parameter name-
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ECG’) and PPG (indicated as ‘parameter name-PPG’) recordings obtained from diabetic patients
under resting conditions; Supplementary Figure S4. Bland–Altman plots of HRV/PRV parameters
calculated by the SCN4ALL (indicated as ‘parameter name-SCN4ALL’) and the Kubios Premium
HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min long PPG recordings captured
in healthy individuals under resting conditions; Supplementary Figure S5: Bland–Altman plots of
HRV/PRV parameters calculated by the SCN4ALL (indicated as ‘parameter name-SCN4ALL’) and
the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms from 2-min long PPG
recordings obtained from healthy individuals during cold pressor test; Supplementary Figure S6:
Bland–Altman plots of HRV/PRV parameters calculated by the SCN4ALL (indicated as ‘parameter
name-SCN4ALL’) and the Kubios Premium HRV (indicated as ‘parameter name-Kubios’) algorithms
from 2-min long PPG recordings obtained from diabetic patients under resting conditions.
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