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ABSTRACT During the 1960s, small quantities of radioactive materials were codis-
posed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in
3-meter-deep, unlined trenches. Chemical and microbial analyses, including func-
tional and taxonomic information derived from shotgun metagenomics, were col-
lected across a 6-week period immediately after a prolonged rainfall event to assess
the impact of changing water levels upon the microbial ecology and contaminant
mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly al-
tered the redox balance in the trench water, strongly impacting microbial function-
ing as well as the radiochemistry. Two contaminants of concern, plutonium and am-
ericium, were shown to transition from solid-iron-associated species immediately
after the initial rainwater pulse to progressively more soluble moieties as reducing
conditions were enhanced. Functional metagenomics revealed the potentially impor-
tant role that the taxonomically diverse microbial community played in this transi-
tion. In particular, aerobes dominated in the first day, followed by an increase of fac-
ultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period,
the functional and taxonomic profiles depicted an anaerobic community distin-
guished by a higher representation of dissimilatory sulfate reduction and methano-
genesis pathways. Our results have important implications to similar near-surface en-
vironmental systems in which redox cycling occurs.

IMPORTANCE The role of chemical and microbiological factors in mediating the bio-
geochemistry of groundwaters from trenches used to dispose of radioactive materi-
als during the 1960s is examined in this study. Specifically, chemical and microbial
analyses, including functional and taxonomic information derived from shotgun met-
agenomics, were collected across a 6-week period immediately after a prolonged
rainfall event to assess how changing water levels influence microbial ecology and
contaminant mobility. Results demonstrate that oxygen-laden rainwater rapidly al-
tered the redox balance in the trench water, strongly impacting microbial function-
ing as well as the radiochemistry. Two contaminants of concern, plutonium and am-
ericium, were shown to transition from solid-iron-associated species immediately
after the initial rainwater pulse to progressively more soluble moieties as reducing
conditions were enhanced. Functional metagenomics revealed the important role
that the taxonomically diverse microbial community played in this transition. Our re-
sults have important implications to similar near-surface environmental systems in
which redox cycling occurs.

Received 28 March 2017 Accepted 20 June
2017

Accepted manuscript posted online 30
June 2017

Citation Vázquez-Campos X, Kinsela AS, Bligh
MW, Harrison JJ, Payne TE, Waite TD. 2017.
Response of microbial community function to
fluctuating geochemical conditions within a
legacy radioactive waste trench environment.
Appl Environ Microbiol 83:e00729-17. https://
doi.org/10.1128/AEM.00729-17.

Editor Joel E. Kostka, Georgia Institute of
Technology

Copyright © 2017 Vázquez-Campos et al. This
is an open-access article distributed under the
terms of the Creative Commons Attribution 4.0
International license.

Address correspondence to T. David Waite,
d.waite@unsw.edu.au.

GEOMICROBIOLOGY

crossm

September 2017 Volume 83 Issue 17 e00729-17 aem.asm.org 1Applied and Environmental Microbiology

http://orcid.org/0000-0003-1134-5058
http://orcid.org/0000-0002-5411-3233
https://doi.org/10.1128/AEM.00729-17
https://doi.org/10.1128/AEM.00729-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:d.waite@unsw.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1128/AEM.00729-17&domain=pdf&date_stamp=2017-6-30
http://aem.asm.org


KEYWORDS shotgun metagenomics, radionuclides, plutonium, americium, functional
profile

The rapid expansion of an emerging nuclear industry immediately following World
War II resulted in substantial volumes of low-level radioactive waste (LLRW) being

generated from nuclear fuel cycle, weapons production, medical radioisotope, and
radiochemical research activities. Although there was no consensus at this time,
low-level waste (and in some cases more-active material) was commonly disposed of by
burial in shallow trenches, as evidenced in the United States at Maxey Flats (1), Oak
Ridge (2), and Hanford (3, 4), in Canada at Chalk River (5), in the United Kingdom at
Harwell (6) and at an LLRW disposal site (7), in Lithuania at Maišiagala (8), and more
recently in Ukraine at Chernobyl (9), to name but a few. This was also the case for
Australia’s only nuclear (research) reactor at Lucas Heights. Known as the Little Forest
Legacy Site (LFLS), radioactive materials, including minor amounts of 239�240Pu and
241Am were placed in narrow (0.6-m), 3-m-deep, unlined trenches from 1960 to 1968
(10–12). Large volumes of contaminated nonradioactive materials and equipment were
also disposed of in these trenches (10).

The LFLS trenches were excavated within undisturbed geological matrices of red-
brown and gray clay (primarily kaolinite and illite/smectite) derived from the underlying
weathered shale, interspersed with minor phases of hematite and goethite (11, 13). The
site was chosen in part due to the low hydraulic conductivities of these materials (�9
to 66 mm/day) in order to isolate the LLRW from waters associated with the local
hydrology cycle (10–12). However, an unintended consequence of this (also experi-
enced at other disposal sites) has been that periodic intense rainfall and prolonged dry
conditions can facilitate complete saturation and desaturation of the more-permeable
waste material via surface infiltration and evapo(transpi)ration/leakage mechanisms,
respectively. Elaborating further, this frequently results in infiltrating water filling up the
more-porous trenches to the surface (akin to a “bathtub”), which has been shown to be
a primary mechanism for the dispersion of contaminants 239�240Pu and 241Am (10).
Furthermore, this has allowed for redox cycling to occur unabated in the LLRW trenches
since their construction, potentially promoting redox-tolerant plasticity in the microbial
communities present (14).

With actinide mobility, in many instances, strongly dependent on their oxidation
state (15), microbial communities can potentially play decisive roles in determining the
fate and mobility of such elements in the environment. In general, microbial commu-
nities can influence actinide chemistry by partaking in redox (16–18), dissolution (19,
20), precipitation (21, 22), sorption (23), and/or methylation (24) reactions, which may
either enhance or retard contaminant mobility.

Despite this, much of the scientific research to date has focused on isolated
individual species (such as those of Geobacter, Shewanella, and Clostridium spp.) and
their impact on actinide, particularly uranium, behavior. The challenge remains as to
how best to identify the role of microorganisms and their functioning within the wider
microbial community which may be undergoing external, environmental changes (25).
Furthermore, subsurface environments such as aquifers and shallow groundwaters,
aside from being poorly studied, have been shown to be havens for microbial novelty
not dominated by the well-characterized organisms listed above (26). Culture-
independent techniques, such as metagenomics, in which genomic sequences capture
the aggregate microbial ecology of a sample (27, 28) have the potential to enhance our
understanding of these complex biogeochemical systems.

The question remains at LFLS, and in similar contaminated redox-cycling environ-
ments, as to what function microbial communities may be performing in the direct or
indirect mobilization and/or retention of legacy radionuclides. As the establishment of
causality between the legacy contaminants and microbial communities cannot be
achieved in such a noninvasive environmental study, the aim of this research was to
understand the role that periodic inundation from a large rainfall event, and presum-
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ably oxygen penetration, had on the concomitant changes to chemistry-radiochemistry
and microbial communities in an LLRW trench environment. The two contaminants of
major concern, Pu and Am, were the focus of this research, with shotgun metagenom-
ics used to examine the microbial systems function and taxonomy.

RESULTS AND DISCUSSION
Water level changes and chemical analyses. The initial 220-mm rainfall event

resulted in trenches filling to capacity and discharging from the surface or porous
near-surface (0- to 0.2-m) in the “bathtub” mechanism described by Payne et al. (10)
(see Fig. S1 in the supplemental material). Despite the subsequent 47-day sampling
period receiving a further 72 mm of rainfall, which periodically increased trench water
levels, an overall decline in trench water levels was observed across the sampling
period (Fig. S1).

Across the sampling period and as the water level declined, the pH was observed to
increase from 6.30 to 6.60, whereas the Eh values decreased from 247 to 147 mV (Fig.
1). Of the cations and anions analyzed (Fig. 2), iron displayed one of the greatest
variations in concentration, increasing from 0.42 mM at day 0 to 1.00 mM by day 47. The
elevated concentrations of iron are unsurprising, given that the LLRW at LFLS was
disposed of in part within �760 steel drums (29) and buried within a highly weathered
shale geological matrix (11). The continuous presence of Fe(II), even at day 0, confers
reducing conditions in excess of Eh values recorded, casting uncertainty over the
absolute values supplied by the Eh probe. The increase in Fe(II) concentrations with
time was likely due to Fe(III) oxyhydroxide reduction, an observation supported by the
concurrent liberation of Si and P, two elements that are typically coassociated with
Fe(III)-oxyhydroxide at LFLS (30). The constant concentrations of expected conservative
elements Cl� and K suggest that the drop in the trench water level was due to
subsurface outflow rather than evaporative processes across the course of sampling.
Other important elemental transitions included a 10-fold decrease in dissolved sulfur

FIG 1 pH and Eh (standard hydrogen electrode corrected) measurements from the trench water across
the sampling period.

FIG 2 Temporal changes to element/ion concentrations in the trench water. Bars show the individual
concentrations of each element/ion over the five sampling days 0, 4, 6, 21, and 47.
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concentrations (presumed to be sulfate), from an initial concentration of 62.4 to 6.2
�M at day 47 (Fig. 2). Nitrate concentrations doubled between days 0 and 6 (from
0.24 to 0.55 �M), after which they decreased to below detection limits at days 21
and 47 (Fig. 2).

The total (unfiltered) 241Am activity increased from 15.7 to 27.8 Bq/liter (1.8-fold
increase), while the soluble (filtered) fraction increased 3.4 times (7.2 to 24.7 Bq/liter)
between days 0 and 47 (Fig. 3). Although the activity of the total 239�240Pu showed a
proportionally smaller increase than 241Am across the sampling period, from 30.4 to
45.6 Bq/liter (1.5 times), the soluble fraction increased from 0.21 at day 0 and reached
a maximum of 0.80 (35.1 Bq/liter) by day 21. Despite the low-flow sampling conditions,
the majority of 241Am and 239�240Pu in the trench water was solid associated at day 0.
This implies that the solid-associated actinides are relatively stable or easily (re)mobi-
lized and also that during the rapid influx of rainwater, when the trenches are filling up
(and potentially overspilling), colloidal transport is likely to be the major form of
contaminant movement at this site. Previous redox state measurements at LFLS found
that Pu was present in the Pu(IV) (64.5%) and colloidal/Pu(III) (35.5%) states while Am
was present exclusively as Am(III) (31). The vast quantities of Fe(II) as well as the results
of ancillary measurements (dissolved oxygen [DO], oxidation/reduction potential [ORP])
would suggest that Pu(IV) and Am(III) were again the dominant oxidation states of the
trench water contaminants. The results of all water quality parameters measured are
provided in Table 1.

Community composition. Community profiles showed that Bacteria dominated
over Archaea in the trench water across the entire sampling period. A total of 70 phyla
of the 85 included in the GreenGenes database were detected at some point, and 11
phyla with values of �1% of the total community were detected at all times. Eukarya
were found in low (�1% to �2%), nearly constant abundance throughout the samples.
Similarly, eukaryotic-specific family groups determined by MetaCyc reactions (RXNs)
were all below our threshold significance level. As such, they are not considered in
further detail or for the taxon abundance numbers throughout this paper.

Archaea oscillated between 2.6 and 10.6% of the classified reads with minimum and
maximum at days 4 and 47, respectively. Micrarchaeota and Parvarchaeota (superphy-
lum DPANN) were the most abundant phyla at all times with a combined 45.5 to 55.9%
of Archaea, while remaining sequences were shared in variable proportions between
the superphylum TACK and Euryarchaeota (Fig. 4). Although the fraction of TACK
decreased over time from 24.8% at day 0 to 12.4% at day 47, Euryarchaeota reached a
maximum at day 47, contributing 37.2% of all Archaea. These changes were derived
mainly from variations in the SAGMA-X family (Thaumarchaeota), related to the
ammonia-oxidizing archaeon “Candidatus Nitrosotalea” (32, 33), and in Bathyarchaeota
(Miscellaneous Crenarchaeotal Group [MCG]), which includes the only potential non-
euryarchaeal methanogens (33, 34) and/or one of the few acetogenic Archaea (35). The

FIG 3 Activity of filtered and unfiltered radionuclides measured in the trench water. Filtered fractions
(�0.45 �m, solid fill) are equivalent to soluble and smaller colloidal particles. Unfiltered fractions (full bar)
are considered total (soluble plus all suspended solids) concentrations. Error bars show the standard
deviations of triplicate measurements.
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increase in total abundance of Archaea over time was related to changes in ANME-2d
Methanoregulaceae and Methanosaetaceae families, implicated in methane metabolism
(36–38), as well as the Micrarchaeota and Parvarchaeota phyla.

Only 8 bacterial phyla grouped more than 5% of the total bacterial reads at any one
sampling point, and among them, only Chloroflexi, OD1 (Parcubacteria), OP11 (Microg-
enomates), OP3 (Omnitrophica), and Proteobacteria were within the 10 most abundant
bacterial phyla at all times (Fig. 4). The principal changes observed over time refer to
Proteobacteria, TM7 (Saccharibacteria), OP3, Acidobacteria, and OD1. While the propor-
tion of TM7 and Acidobacteria decreased from day 0, both OP3 and OD1 reached their
maximum by day 47 (18.9% and 14.7%). The Proteobacteria, often the most abundant
phylum, showed a conspicuous increase, mainly due to Betaproteobacteria, comprising
48.7% of all classified reads at day 4. The order Burkholderiales was identified as being
primarily responsible for this change (42.6% of total), especially the genus Ralstonia
(20.3%) within Oxalobacteraceae (34.0%). These bacteria were also responsible for the
altered functional profile observed at day 4.

Several studies focusing on the microbiology of groundwater or subsurface ecosys-
tems have demonstrated the existence of organisms able to pass through standard
0.22-�m filters (39–41). Despite this, a substantial portion of the Little Forest trench
water community corresponded to taxa known to be able to pass through 0.22-�m

TABLE 1 Geochemical parameters measured in the trench water

Parameter

Value at sampling day (date)a
Maximum
background
concnb0 (23 April) 4 (27 April) 6 (29 April) 21 (14 May) 47 (9 June)

Field parameters
pH 6.3 6.22 6.35 6.5 6.6 NA
Eh (mV)c 247 177 192 117 147 NA
DO (mg/liter) 0.5 0.6 0.6 0.6 0.5 NA
TDSh (g/liter) 0.115 0.12 0.118 0.156 0.185 NA
Temp (°C) 20.9 19.5 19.8 18.2 19.2 NA
Water level (m)d �0.89 �1.26 �1.36 �1.55 �1.64 NA

Radiochemistry (activity in Bq/liter)e

241Am (UF)f 15.68 � 0.38 22.85 � 0.58 22.09 � 0.55 25.4 � 0.64 27.8 � 1.49 NA
241Am (F)g 7.17 � 0.19 11.24 � 0.48 12.15 � 0.22 21.56 � 0.59 24.71 � 1.3 NA
239�240Pu (UF)f 30.44 � 0.9 40.53 � 1.22 41.71 � 1.29 43.66 � 1.27 45.6 � 2.43 NA
239�240Pu (F)g 6.46 � 0.21 16.28 � 0.51 17.73 � 0.56 35.11 � 0.99 26.93 � 2.36 NA

Chemistry
DOC (mg/liter) 4.07 4.15 5.30 5.91 6.77 0.04
Fe(II) (mM) 0.34 0.39 0.45 0.75 0.92 �0.01
Fe (mM) 0.42 0.45 0.46 0.80 0.99 �0.01
Na (mM) 0.73 0.70 0.70 0.79 0.85 �0.01
SiO2 (mM) 0.36 0.37 0.37 0.44 0.52 �0.01
Cl� (mM) 0.51 0.51 0.51 0.54 0.54 0.01
Mg (mM) 0.08 0.08 0.08 0.11 0.12 �0.01
Ca (�M) 33.43 30.69 34.18 41.42 50.40 0.25
K (�M) 31.71 32.48 32.74 31.97 32.23 0.31
Mn (�M) 1.80 1.86 1.64 2.00 2.55 �0.02
P (�M) 4.20 4.20 5.17 7.10 9.69 �1.6
S (�M) 62.36 62.36 59.25 28.06 6.24 �3.11
F� (�M) 2.63 2.11 2.11 3.16 4.21 �0.53
Br� (�M) 2.63 2.50 2.50 3.25 4.01 �0.13
I� (�M) 4.96 4.81 5.12 7.88 11.03 �0.22
NO3

� (�M) 0.24 0.24 0.55 0.00 0.00 �0.01
aDay count from the first day with no precipitation after the rainfall event. All dates are for the year 2015.
bHighest concentrations measured on multiple blanks (n � 5) processed in parallel with trench samples. NA, not applicable.
cCorrected values against standard hydrogen electrode.
dDepth below ground surface.
ePlus or minus 1 standard deviation.
fFiltered through 0.45-�m filter (soluble/colloidal).
gUnfiltered (total).
hTDS, total dissolved solids.
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filters, i.e., OD1, OP11, and DPANN. We suggest that this could be derived from the fast
precipitation of iron in our extracted trench waters, effectively entrapping cells, or that
they were attached to colloidal particles or to other cells. Still, it is possible that the
numbers for these “ultrasmall” taxa could be underestimated in our results.

A complete taxonomic profile of all sample replicates at each individual time point
is provided in the supplemental material. An important aside to be noted with these
data is the inherent reproducibility between sample triplicates. This finding provides a
level of reassurance with regard to the aggregate nature of these water samples, often
neglected in similar studies.

Carbon cycling. Initial time points were characterized by a significantly (P � 0.05)
higher relative abundance of RXNs using molecular dioxygen as the substrate, such as
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cytochrome c oxidase (CYTOCHROME-C-OXIDASE-RXN, EC 1.9.3.1 [Fig. 5A]) (MetaCyc
RXN notations are shown here in all-uppercase format to provide an exact match
with the MetaCyc database), quinol-cytochrome c reductase (1.10.2.2-RXN), and
several mono- and dioxygenases. This was combined with a significantly (P � 0.05)
lower relative abundance of methanogenesis-related RXNs, nitrogenase (ferredoxin,
NITROGENASE-RXN), rubisco (RIBULOSE-BISPHOSPHATE-CARBOXYLASE-RXN), or heterolac-
tic fermentation (PHOSPHOKETOLASE-RXN). The catalase (CATAL-RXN, EC 1.11.1.6/21 [see
“Reactive oxygen species detoxification” in the supplemental material]) gene’s relative
abundance was highest at day 4 along with those of several ABC transporters and
phosphotransferases, e.g., D-ribopyranose, D-xylose, spermidine, or L-arginine, as well as
assimilatory sulfur and nitrogen pathway RXNs (refer to the supplemental material for
details). The higher relative abundances of all these genes at day 4 suggest a metab-
olism more dependent on oxygen, i.e., aerobic, or at least microaerophilic (see “Nitro-
gen cycling” below). It also confers a higher dependence on available organic carbon
(viz., heterotrophy) or on the presence of decaying complex organic matter (42). These
interpretations are collectively supported by the geochemical measurements, including
the higher Eh values, decreasing concentrations of sulfur, and absence of nitrate, along
with lower iron concentrations across the first sampling points.

Regarding the source of the organic fraction, the results suggest that soil particles
and associated organochemicals were mobilized from material above the trenches via

FIG 5 Changes in the relative abundances of selected RXNs over time. (A) Cytochrome c oxidase; (B) cellulase; (C)
malate synthase; (D) 5-methyltetrahydrosarcinapterin:corrinoid/iron-sulfur protein co-methyltransferase (CH3-
HSPT:Fe-S protein Co-MT); (E) sulfite reductase; (F) superoxide dismutase.
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advective transport mechanisms during and immediately after rainfall. This was evi-
denced by the increased proportion of soil-associated Actinobacteria at day 0, which
diminished to 0.71% by day 4 (Fig. 4). Furthermore, the presence of genes encoding
enzymes representing chitin degradation, such as chitobiase (RXN-12625, EC 3.2.1.52),
diminished progressively until day 47, indicating a potential one-off provision of chitin,
matching the leaching hypothesis (see Fig. S2 in the supplemental material). In addi-
tion, numerous facultative and strict anaerobes can degrade chitin and/or chitobiose
(43–45), which lessens the likelihood of the alternative hypothesis that chitin depletion
could be derived from the intrinsic lack of chitobiase in anaerobes.

The other primary biopolymer found in soil is cellulose (46). The relative abundance
of cellulase (RXN-2043, EC 3.2.1.4) showed no significant differences between days 0,
21, and 47 (P � 0.172), suggesting a consistent supply of cellulose (Fig. 5B). The
exception, noted at day 4, can be explained by the proliferation of Burkholderiales. The
constant abundance of cellulose is unsurprising given the historical records, which
indicate that a range of organic (particularly cellulose-based) compounds were codis-
posed of in the LFLS trenches (11). This hypothesis accords with previous stable isotope
measurements, which identified the degradation of legacy organic matter as being
responsible for enriched �13C (inorganic) values measured near the trench (11).

Lignin is present to a lesser or greater extent in all plant biomass. From the list of
enzymes in the literature capable of degrading lignin (47, 48), only below-threshold
levels of certain genes were detected: versatile peroxidase (RXN0-267, EC 1.11.1.16), dye
peroxidase (RXN-11813, EC 1.11.1.19), and laccase (LACCASE-RXN, EC 1.10.3.2). The
overall lack of genes for proteins capable of lignin degradation strengthens the
hypothesis that trench waste material is the source of cellulosic material rather than
being derived from the degradation of plant material from the topsoil.

The two fundamental genes representing the glyoxylate pathway, isocitrate lyase
(ISOCIT-CLEAV-RXN, EC 4.1.3.1) (see Fig. S3 in the supplemental material) and malate
synthase (MALSYN-RXN, EC 4.1.3.2) (Fig. 5C) showed between 3 and 4 times higher
relative abundance on days 0 and 4 than on day 47. This pathway facilitates the use of
short-chain carbon compounds (C2 or C3) for anabolic purposes, compounds especially
generated during anaerobic processes. Although the glyoxylate pathway genes have
been previously detected in organisms living in anaerobic environments (49), they were
absent from strict anaerobic organisms based on the results from EggNOG (50), KEGG
(51), and UniProtKB (52) databases (as of 24 May 2017). This finding supports the
hypothesis that trench waters became anoxic as the water level declined, promoting
conditions that favor the development of strict anaerobes. Furthermore, the aerobic
community that developed immediately after the rainfall event likely utilized (and
benefited from) the short-chain carbon compounds generated by preceding anaerobic
conditions.

Both acetoclastic and hydrogenotrophic methanogenesis pathways were evident from
the functional profile analysis. Similar maximum relative abundances, about 1.4 	 10�4, of
5-methyltetrahydrosarcinapterin:corrinoid/iron-sulfur protein co-methyltransferase (RXN-
12908, EC 2.1.1.245) (Fig. 5D) and coenzyme F420-dependent hydrogenase (COENZYME-
F420-HYDROGENASE-RXN, EC 1.12.98.1) (see Fig. S4 in the supplemental material),
which are specific RXNs for the methanogenesis from acetate and H2 and CO2, were
observed at day 47. The presence of methanogenesis-specific RXNs is supported by
previous isotopic measurements, showing �2H enrichment, relative to �18O, in the vicinity
of the trenches (11). Concurrently, the taxonomy revealed the presence of the ANME-2d
division contributing up to 13.8% of all Archaea at day 47 (1.5% of the community). The
ANME-2d division was initially linked to the anaerobic oxidation of methane using
NO3

� (36) or even NO2
� (53), constituting one of the primary methane sinks under

anaerobic conditions. However, recent research has shown that some of the members
of this taxon are able to utilize Fe(III) in place of NO2

� or NO3
� (38, 54, 55). This provides

a more reasonable explanation given the limited nitrate present and abundance of iron
during the later sampling days.
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Sulfur cycling. The relative abundance of sulfite cytochrome c reductase (SULFITE-
DEHYDROGENASE-RXN, EC 1.8.2.1) (see Fig. S5 in the supplemental material), involved
in the assimilatory reduction of sulfate, peaked at day 4, with �10 times higher relative
abundance than on day 0. At the same time, dissimilatory sulfate reduction RXNs, e.g.,
dissimilatory sulfite reductase (HYDROGENSULFITE-REDUCTASE-RXN, EC 1.8.99.3), fol-
lowed the opposite trend, with a maximum at day 47 (Fig. 5E). The combined relative
abundance of all the putative sulfate-reducing bacterium (SRB) taxa detected (mainly
Syntrophobacterales, Thermodesulfovibrionaceae, and Desulfobacterales) also increased
over time, from 2.3% of the total prokaryotes at day 0 to 4.9% at day 47. Dissimilatory
sulfate reduction is one of the major redox processes in both natural (56) and artificial
(57) anaerobic environments. The 10-fold reduction in the sulfur concentration is
thought to result from the loss of dissolved sulfate via reduction to sulfide and
subsequent precipitation of insoluble heavy metal sulfides, particularly FeS. This inter-
pretation is supported by the lack of measurable sulfides in the trench water (see
“Chemical analyses of trench waters” below), along with previous reports showing
sulfate reduction based on isotopic fractionation and severe (10- to 100-fold) depletion
in sulfate concentrations in trench waters relative to surrounding wells (11). The
potential contribution of sulfate- and nitrite-dependent anaerobic methane oxidation
(S-DAMO and N-DAMO, respectively) was discounted due to the near-complete ab-
sence of ANME taxa (Archaea) aside from ANME-2d, and NC10 (Bacteria) (see “Carbon
cycling” above) (38, 53, 58, 59).

Nitrogen cycling. The (inorganic) nitrogen cycle was represented mostly by RXNs
related to denitrification and assimilatory nitrogen reactions, primarily dissimilatory
nitrate reductase (RXN-16471, EC 1.7.5.1) (see Fig. S6 for a complete profile of the
N-associated RXNs), although nitrogen fixation (NITROGENASE-RXN, EC 1.18.6.1) was
the predominant N-associated RXN. All other prominent N-associated RXNs peaked at
day 4 with the exception of hydroxylamine reductase (HYDROXYLAMINE-REDUCTASE-
RXN, EC 1.7.99.1) and ammonia oxygenase (AMONITRO-RXN, EC 1.14.99.39). The in-
crease in nitrate concentrations observed between days 4 and 6 (0.236 and 0.552 �M,
respectively) might be derived from the oxidation of NO by nitric oxide dioxygenase
(R621-RXN, EC 1.14.12.17). This surge in the relative abundance of nitrogen metabolism
RXNs (at day 4) coincided with an increased dominance of Betaproteobacteria, mostly
Burkholderiales. Betaproteobacteria have been linked to denitrification processes in a
uranium-polluted aquifer in Rifle, CO, USA (60), and they may play a similar ecological
role at LFLS. However, the increase in nitrate concentrations could equally be indicative
of NO or NO2

� oxidation, originally produced by the aerobic oxidation of ammonium
by the Thaumarchaeota (61, 62).

The inorganic nitrogen cycling results provide important information regarding the
transition from aerobic to anaerobic conditions as the water level declines. The com-
peting requirements of nitrate respiration, which necessitates oxygen-limiting condi-
tions at a minimum (63), and NO dioxygenase, needing molecular oxygen, collectively
suggest that at day 4 the trench waters were no longer aerobic but more likely
microaerophilic/hypoxic. However, many facultative anaerobes are capable of using
nitrate as an alternate electron acceptor when oxygen is not available. As such, the high
relative abundance of nitrate reducing enzyme genes at day 4 (viz., dissimilatory nitrate
reductases) could be a confounding effect associated with the increased abundance of
Burkholderiales. This was confirmed by searching the denitrifying pathway in KEGG
(map00910) (as of 8 July 2016) (51).

Iron cycling. Temporal increases in Fe(II) concentrations, such as those experienced
in the later anoxic periods of the sampling, may be associated with the use of Fe(III)
during anaerobic respiration, previously attributed to decaheme c-type cytochromes
from the OmcA/MtrC family present in iron-reducing bacteria (FeRB) such as Shewanella
spp. and Geobacter spp. (64). However, their representation in the trench water
metagenome data was scarce (relative abundance, �10�6). It is known that for respi-
ration to occur, FeRB often require direct physical contact with Fe(III) solids (65). As only
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aqueous/suspended-phase sampling was permissible at LFLS, it is possible that the
underrepresentation of an FeRB community was due to our sampling regime in which
the solid phase was largely excluded.

The genes associated with RXNs specific to the Fe(II) oxidation pathway (via rusti-
cyanin, PWY-6692), i.e., ubiquinone-cytochrome-bc1 reductase (EC 1.10.2.2, RXN-15829)
and aa3-type cytochrome oxidase (EC 1.9.3.1, RXN-15830), were present, despite no
iron-rusticyanin reductase (EC 1.16.9.1, RXN-12075), cyc2, being found under the estab-
lished threshold (maximum value, �3 	 10�6) (66). The presence of both cytochromes
may be explained by the fact that HUMAnN2 could not distinguish between the
“generic” quinol-cytochrome c reductase (RXN-15816, EC 1.10.2.2) and cytochrome c
oxidase (CYTOCHROME-C-OXIDASE-RXN), particularly when analyzing short reads.

The presence of 1.9% of Gallionellaceae (over the total community composition) at
day 0 and that of 2.9% of Crenothrix, a non-iron-oxidizing bacterium (non-FeOB) usually
associated with Fe-mineralizing biofilms (67), suggests the existence of transient mi-
croaerophilic iron-oxidizing activity in the trench water despite the extremely low
relative abundance of cyc2. Waste disposal records from LFLS indicate that numerous
steel drums (�760) were codisposed of in the trenches (29). Based on the active sulfate
respiration observed in the trench waters, we would expect that iron/steel materials
may have suffered microbially induced corrosion (MIC) (68), potentially contributing to
the elevated Fe(II) concentrations. However, the main iron MIC product is likely FeS (68),
which can be utilized by Gallionella ferruginea (Gallionellaceae), an FeOB (69). Further-
more, this process would also provide an explanation for a persistent source of Fe(III)
(oxy)hydroxides and their ongoing interaction with the S cycle.

Previous research on soils experiencing fluctuating redox conditions and active iron
cycling has shown that they frequently lack “typical” Fe(III)-respiring bacteria (70),
because these organisms are outcompeted by sulfate respiration (71). Despite Fe(III)
being a more thermodynamically favorable electron acceptor, it is commonly acknowl-
edged that sulfate respiration often outcompetes Fe(III) respiration in both high- and
low-sulfate environments (71, 72). High levels of sulfate reduction in low-sulfate
environments, akin to the LFLS trenches, has been previously observed to occur in the
presence of crystalline Fe(III) oxyhydroxides that partially reoxidize sulfide generated by
SRB to elemental sulfur (72). This mechanism provides a plausible explanation for our
observations at LFLS. The large concentration of dissolved Fe(II) in the trench waters
would likely contribute to the Fe(II)-catalyzed transformation of amorphous ferrihydrite
to more crystalline, thermodynamically favorable forms (73, 74), although this would be
limited to some extent by the large concentrations of dissolved organic matter and
silica (75). Furthermore, the abiotic reduction of crystalline Fe(III) oxyhydroxides would
severely limit the energy acquisition by FeRB, and therefore, the FeRB would only
outcompete SRB when sulfate and other reducible sulfur compounds were totally
consumed.

Alternatively, fermentative bacteria coupling the oxidation of a range of organic
compounds to the reduction of ferric iron (76–78) may play an integral role in
maintaining the elevated Fe(II) concentrations observed within the trenches. One
example is the organism Propionibacterium freudenreichii, which has previously been
observed to reduce Fe(III) by using humic substances as an electron mediator (79). In
this regard, both heterolactic and propionic acid fermentation pathways showed high
relative abundances based on phosphoketolase (PHOSPHOKETOLASE-RXN, EC 4.1.2.9)
and methylmalonyl-coenzyme A (methylmalonyl-CoA) decarboxylase (RXN0-310, EC
4.1.1.41), respectively (see Fig. S7 in the supplemental material). Their decrease in
relative abundance (at day 4) could be explained by the lack of fermentative pathways
present in the genomes associated with the population shift, i.e., increase in Burkhold-
eriales. This was confirmed by searching (as of 8 June 2016) methylmalonyl-CoA
decarboxylase and phosphoketolase in the KEGG maps (map00640 and map00030,
respectively).
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Synthesis of trench processes and radiochemical mobilization implications. The
biogeochemistry of this dynamic system is conceptually described by the elemental
cycling schematic shown in Fig. 6. Immediately following the rainfall event, the Eh

reached its most-oxidizing value (247 mV) with the microbial community characterized
by higher relative abundances of pathways related to aerobic (or at least microaero-
philic) heterotrophic metabolism and one capable of chitin degradation. Although
conditions were not strongly oxidizing, this pulse of oxic water would be sufficient to
induce the abiotic oxidation of part of the large store of dissolved Fe(II), likely forming
a combination of the reactive Fe(III) oxyhydroxides ferrihydrite and silica-ferrihydrite,
along with the more-crystalline oxyhydroxide lepidocrocite, as has previously been
observed in these trench waters (30). As both Am(III) and Pu(III)/(IV) are known to
strongly sorb to sediments and iron oxides (15), it is of little surprise to observe the
greatest proportions of (suspended) solid-associated actinides at this time point (day 0)
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(Fig. 3). Note that even though most Am (54.3%) and particularly Pu (78.8%) were
associated with a solid fraction of �0.45 �m, they were still extracted from the trench
under our low-flow sampling method. This finding implies that colloid-associated Pu,
and to a lesser extent Am, remains mobile within the trench waters, congruent with
observations from other legacy radioactive waste sites (80). Interestingly though, the Pu
migration distance away from source at LFLS in groundwater has been shown to be
much smaller (�1 order of magnitude less) than in other legacy locations such as the
Nevada Test Site (81), Rocky Flats (82), and Mayak (83). We attribute this to a low-
permeability soil matrix, inhibiting downward migration to the connected/permanent
water table, coupled with the biogeochemical conditions within the trenches them-
selves. The high concentrations of Fe(II), circumneutral pH, and proliferation of aerobic
heterotrophs drive the rapid formation of large quantities of Fe(III) oxides. The quantity
of Fe(III) oxides that form upon oxic rainwater intrusion is evidently sufficient to contain
the bulk of contaminants within the trenches during “bathtub” overflow events. The
rate of Fe(II) oxidation is likely to be crucial for the ongoing attenuation of Pu and Am
at LFLS (30).

By day 4, as water levels rapidly decrease, an increase of Burkholderiales (Betapro-
teobacteria) generates a functional profile disturbance, and while the aerobic profile is
maintained, it is also the time point at which nitrogen cycling (e.g., nitrate respiration)
becomes most active (Fig. 6, green circle number 2). Therefore, day 4 represents a
potential transition away from oxic conditions derived from rain infiltration, though this
sequence of events is somewhat confounded by the microbial growth lag phase
associated with aerobic respirators.

Over the following weeks (days 21 and 47), the microbial community transitions to
a functional profile dominated by carbon fixation, methanogenesis, and sulfate respi-
ration pathways (Fig. 6, green circles 3, 8, 9, and 12). The increase in anaerobicity
correlated with increasing concentrations of soluble Fe and soluble radionuclides and
a depletion of sulfate and nitrate. In the case of Am, although the total activity
increased gradually as the water level in the trench declined, the soluble fraction
increased by a greater proportion (Fig. 3). This indicates that either a desorption or a
dissolution process occurred. The concomitant increases in the soluble Am fraction and
Fe(II) concentrations point toward reductive dissolution of Fe(III) oxyhydroxides as a
major driver behind Am solubilization.

The Pu behavior in the trenches presents a more-complex temporal dynamic due, in
part, to its more-varied redox chemistry. As conditions become more reducing over
time, one would expect to observe soluble Pu activities increase, both through the
dissolution of Fe(III) oxides and, to a lesser extent, from Pu(IV) to Pu(III) reduction. In an
interesting point of difference from Am, our results show that Pu proportionally
remained in the particle-associated fraction for a substantially longer period, even as
the dissolved Am(III) activity and Fe(II) concentration increased. The reason for the
differing solution/solid-phase partitioning observed for Pu and Am is not clear based on
the evidence at hand. The inability to sample solid materials from within the trenches
has limited more-conclusive understanding. However, we suggest that the differing Am
and Pu associations are likely due to different redox states, based on the previous
measurements at LFLS, which showed a dominant Pu oxidation state of �4 (31).
Electrostatically, Pu(IV), as the neutral hydrolyzed cation Pu(OH)4(aq) or as an intrinsic
colloid, is more likely sorbed or incorporated into positively charged pseudocolloids
such as Fe(III) oxides than Am3�. This is supported by research showing the highly
reversible nature of Am(III) sorption onto poor crystalline iron colloids (84) and asso-
ciation with carbonate- and exchangeable sites on clays (85).

Conclusions. The inability to comprehensively access and sample within legacy
radioactive waste environments hampers our ability to comprehend cooccurring ele-
mental cycling and microbial metabolism, potentially curtailing our ability to effectively
manage and remediate such sites. The trench-sampling point at LFLS is therefore a
particularly useful resource for such research. In this study, our coupled use of metag-
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enomics and chemical analyses has provided a previously unattainable level of under-
standing for the LFLS trench water, highlighting the responsiveness of the microbial
community to external changes and dynamic nature of the resulting chemistry. The
combined results show that the trench waters contain a taxonomically diverse micro-
bial community, which has likely evolved in response to variations in energy sources
supplied by frequent redox fluctuations. When combined with the complex nature of
the waste form, a myriad of microenvironments have developed within the trenches,
allowing for simultaneous O, N, Fe, S, and C elemental cycling, as shown by cooccurring
metabolic reactions in the aggregate water samples. Consequently, it can be inferred
that Pu and Am are subject to persistent reducing conditions (as evident from active
iron oxide dissolution, sulfate reduction, and methanogenesis) when the water level is
low between rainfall events. These reductive processes maintain Pu and Am solubility,
despite the occasional onset of oxidizing conditions associated with rainfall events.
Ultimately however, the high concentrations of Fe present and the tendency of Fe(II) to
be relatively rapidly oxidized to strongly sorbing Fe(III) (oxy)hydroxide solids on expo-
sure to oxic conditions result in limited transport of Pu and Am.

Although the findings described above are intrinsically linked to the specific site
under investigation, they provide important generic insights into the dynamic biogeo-
chemical behavior of iron-rich, redox-cycling environments. Of particular interest is the
rapid response of the microbial community to dynamic redox conditions and the
potential impact upon persistent contaminant solubility and enhanced mobility.

MATERIALS AND METHODS
Sample collection. Trench water samples were collected on five separate occasions across a

2-month period from LFLS. They were obtained from a screened polyvinyl chloride (PVC) pipe that
extends 1.55 m below the ground surface. This pipe provides the only point of access into the legacy
trenches and was opportunistically installed during the partial collapse of the trench surface. Further
details of the trench sampler have been previously described in the literature (10, 31). Briefly, a peristaltic
pump operating under a low flow rate was used to purge the borehole until chemical parameters,
particularly pH and oxidation/reduction potential (ORP), became stable (see the supplemental material).
Measurements were made using a multiprobe system (YSI 556 MPS) coupled to a 100-ml flow cell.
Stability usually took between 30 and 60 min, after which sample collection began. Chemical parameters,
along with the water depth, were monitored over the sampling period (typically some hours) on the day
of sampling to ensure that the water was representative of that particular period. The stability of flow cell
parameters and the fact that the water level did not decrease during the collection of 4 to 5 liters of
sample material provide assurance that the samples were representative of the particular event rather
than anomalous local conditions.

The sample collection period commenced (on 23 April 2015) immediately after a substantial rainfall
event, during which �220 mm of rain fell over 3 days (Fig. S1). Trench water samples were subsequently
collected on 27 and 29 April, 14 May, and 9 June 2015 (or days 0, 4, 6, 21, and 47 after the rain event)
(Fig. S1).

Samples for chemical analyses were collected both with and without an in-line filtration membrane
(0.45-�m polyethersulfone [PES], Waterra FHT-Groundwater) in prewashed and trench water-rinsed
high-density polyethylene (HDPE) bottles, except samples for organic carbon, which were collected in
glass bottles. Samples for radiochemical and cation analyses were acidified using double-distilled HNO3.
All samples were then stored at 4°C until analysis.

Samples for microbial analyses were collected by directly filtering the trench water using a sterile PES
0.22-�m syringe filter (Sterivex-GP; Merck Millipore) with the volumes of filtrate passing through the
membranes recorded (410.1 � 82.2 ml [mean � SD] per replicate). Filters were capped on site before
being stored at �18°C until analysis. Microbial sampling was performed in triplicate to assess inherent
variation.

Due to regulatory protocols governing sampling at the site, no solid-phase material could be
extracted from the trenches. As the surrounding geological materials into which the trenches were
excavated provide little resemblance both physically and chemically to the deposited waste within the
trenches, they were discarded as providing no useful information for this study. As such, all sampling
within the trenches pertains to the extraction of soluble or suspended solid phases from the screened
borehole.

Chemical analyses of trench waters. The primary radiochemical contaminants, 239�240Pu and
241Am, were separated from other radiochemical fractions using TEVA and TRU resin cartridges (86)
before measuring activity by alpha spectroscopy using a Canberra Alpha Analyst system coupled with
passive implanted planar silicon detectors (Canberra).

Cations (including Si, S, and P) were measured by either inductively coupled plasma atomic emission
spectroscopy (ICP-AES) or ICP mass spectrometry (ICP-MS) depending on relative concentration. Anions
(F�, Cl�, Br�, I�, PO4

3�, and NO3
�) were determined by ion chromatography (Dionex DX-600 IC System).
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Nonpurgeable dissolved organic carbon (0.45 �m filtered) was measured on freshly collected
replicate samples by combustion catalytic oxidation (TOC-5000A; Shimadzu) with the concentration
determined by a five-point calibration using newly prepared potassium hydrogen phthalate solu-
tions.

Ferrous iron concentrations from 0.45-�m-filtered samples were preserved in the field with ammo-
nium acetate-buffered phenanthroline solution (87). The absorbance of Fe(II) was measured at 510 nm
(USB4000; Ocean Optics) calibrated against a freshly prepared ammonium ferrous sulfate solution.

In-field measurements of dissolved sulfide were attempted using methylene blue colorimetry, but
any dissolved sulfide was consistently below detection limits (�1 �M) at all sampling time points.

All chemical analyses were performed in triplicate.
DNA extraction and sequencing. The PowerLyzer PowerSoil DNA isolation kit (Mo Bio) was used to

extract DNA from Sterivex filters according to the modified protocol of Jacobs et al. (88). Bead beating
was performed singularly in a PowerLyzer 24 Bench Top Bead-Based Homogenizer (Mo Bio) at 2,000 rpm
for 5 min.

DNA concentration and quality were evaluated with LabChip GX (PerkinElmer). Libraries were
prepared with the TruSeq Nano DNA Library Preparation kit and sequenced in a NextSeq 500 (Illumina)
with a 2 	 150-bp high-output run. Output consisted of paired-end reads with a median insert size of
�480 nucleotides (nt).

Data processing and functional analyses. Raw sequencing reads were preprocessed with Trim
Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove residual adapters
as well as short and low-quality sequences (Phred33 � 20) while keeping unpaired reads.

Taxonomic profiles were obtained from shotgun metagenomic data by extracting 16S rRNA gene
sequences with GraftM v0.10.1 (https://github.com/geronimp/graftM) and mapping them with the 97%
clustered GreenGenes database provided by GraftM developers (package 4.39).

Functional analyses of the metagenomic data were performed with HUMAnN2 v0.6.0 (89). Gene
families were grouped by MetaCyc reactions (RXN), keeping unmapped and ungrouped reads for
calculating copies per million and relative abundances. MetaCyc RXN groups were filtered, and only
those with at least two replicates from the same sampling time point with a relative abundance of 10�4

or higher were analyzed (89). MetaCyc RXN notations have been used within Results and Discussion to
provide an exact match with the database. RXNs can be considered equivalent to the more traditionally
used KO terms from the KEGG database. Grouping by GO terms, specifically performed to evaluate virus
presence, indicated values under the threshold levels for all the virus-specific GO terms identified. As
such, viruses were not taken in further consideration.

Analysis of variance was performed with the software package STAMP v2.1.3 (90) using the
Benjamini-Hochberg false-discovery rate approach (91) for correction of P values.

Accession number(s). The reads obtained in our study were deposited at the European Nucleotide
Archive (PRJEB14718/ERG009353).
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