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Functionally significant coronary artery disease impairs myocardial blood flow and

can be detected non-invasively by myocardial perfusion imaging. While multiple

myocardial perfusion imaging modalities exist, the high spatial and temporal resolution

of cardiovascular magnetic resonance (CMR), combined with its freedom from ionising

radiation make it an attractive option. Dynamic contrast enhanced CMR perfusion

imaging has become a well-validated non-invasive tool for the assessment and

risk stratification of patients with coronary artery disease and is recommended by

international guidelines. This article presents an overview of CMR perfusion imaging

and its clinical application, with a focus on chronic coronary syndromes, highlighting its

strengths and challenges, and discusses recent advances, including the emerging role

of quantitative perfusion analysis.

Keywords: myocardial perfusion imaging (MPI), cardiovascularmagnetic resonance (CMR), quantitative perfusion,
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INTRODUCTION

Myocardial perfusion imaging (MPI) plays a central role in the diagnosis, management, and risk
stratification of patients with coronary artery disease (CAD) and is recommended by international
guidelines (1). Unlike angiographic imaging, which provides anatomical data on the patency of
major epicardial coronary arteries, MPI offers information on the downstream effects of epicardial
coronary stenoses, as well as the function of the coronary microcirculation (2). Whilst there are
a several non-invasive imaging modalities capable of MPI, cardiovascular magnetic resonance
(CMR) is unique in its ability to provide high-resolution myocardial perfusion data alongside
global and regional biventricular function, assessment of myocardial infarction, and without need
for ionising radiation. This article presents an overview of the CMR method of dynamic contrast
enhanced (DCE) perfusion imaging.

DYNAMIC CONTRAST ENHANCED PERFUSION IMAGING BY
CMR

DCE perfusion imaging is designed to track and display the first passage of a contrast agent (CA)
bolus through the myocardium during maximal coronary vasodilation, and often during resting
conditions (Figure 1) (3).
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FIGURE 1 | Dynamic contrast enhanced perfusion CMR tracks and displays the first passage of an injected contrast agent bolus through the heart. Mid ventricular

slice (A) pre-contrast arrival; (B) contrast arrival in the right ventricle; (C) contrast arrival in the left ventricle (LV); (D) contrast arrival in the LV myocardium; (E) maximal

myocardial contrast between remote myocardium and the subendocardial region of relative hypoperfusion (white arrows); (F) second pass and redistribution of the

contrast agent. White stars identify a dark rim artefact, which can be seen on arrival of contrast in the LV prior to myocardial contrast enhancement.

The technique relies upon the heterogeneity of contrast
perfusion in myocardium supplied by obstructed vs.
unobstructed coronary arteries. Flow limiting stenoses blunt
the augmentation of myocardial perfusion during hyperaemia,
manifesting as a relative perfusion defect at stress, which
is not seen at rest, compared with myocardium subtended
by unobstructed coronary arteries (Figure 2) (4). Maximal
coronary vasodilation is typically achieved with an intravenous
adenosine infusion or a bolus injection of the adenosine
receptor agonist regadenoson. Both adenosine and regadenoson
produce coronary vasodilatation by their agonistic action
on the A2a receptors found in coronary smooth muscle
and endothelial cells, inducing hyperpolerization of smooth
muscle and release of nitric oxide (5). The phosphodiesterase
enzyme inhibitor dipyridamole can also be used to induce
coronary vasodilation. Dipyridamole inhibits cyclic adenosine
monophosphate degradation and blocks cellular reuptake of
adenosine, thereby increasing the circulating concentration of
endogenous adenosine (6).

Basic Principles
The clinical feasibility of tracking the first-pass of contrast
through the myocardium with CMR was first demonstrated by
Atkinson et al. in 1990 who used an inversion recovery gradient
echo (GRE) sequence to track the first-pass of CA through
rodent and human hearts (2, 7). Following an intravenous
injection of CA, multiple (typically 3 short-axis) images of the
heart are acquired, each with a different anatomical location

and cardiac phase, which remain constant across sequential
cardiac cycles (8). On arrival of the CA to the myocardium, the
paramagnetic gadolinium chelate interacts with water molecules
within the extracellular space, reducing T1 relaxation times
and thus increasing signal intensity on a T1 weighted image.
Areas of relative hypoperfusion therefore appear hypointense in
comparison to well-perfused myocardium (4). In contemporary
perfusion sequences, T1-weighting of images is typically achieved
by use of a 90◦ saturation recovery (SR) radiofrequency
pulse. A 180◦ inversion recovery pulse can generate greater
contrast between normal and hypoperfused myocardium but is
limited by longer imaging times and sensitivity to heart rate
variations and miss-triggers, which can result in incomplete
magnetisation recovery and signal intensity variation. Thus,
saturation-prepared sequences are the current standard (2, 4).
Preparation pulses are typically non-selective in order to reduce
myocardial sensitivity to through-plane motion as well as achieve
uniform contrast enhancement in the left ventricular (LV) blood
pool.Whilst use of a single shared SR preparation offers increased
efficiency, typically, separate SR preparations are used for each
imaging slice to ensure uniform image quality (4).

To ensure adequate coverage of the 16 standard AHA
segments, guidelines recommend a minimum acquisition of 3
short-axis myocardial slices, in addition to a minimum spatial
resolution of 3 × 3mm (3, 9). In order to accurately display
changes in signal intensity over time, imaging should ideally
be acquired for consecutive R-R intervals during the first
passage of the contrast bolus (3). During pharmacologically
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FIGURE 2 | First-pass perfusion images at pharmacologically induced stress (top) and at rest (bottom). An inducible perfusion defect is seen in the Inferior and

inferoseptal segments when compared with the remote segments, consistent with flow limiting disease in the right coronary artery. As is typical of perfusion defects

secondary to obstructive coronary stenoses, contrast hypoenhancement is most pronounced in the subendocardial region.

induced stress, the R-R interval can be short and thus rapid
data acquisition is needed to meet these high spatial and
temporal demands. A standard spatial resolution of 2–3mm
can be achieved with a fast read-out sequence, such as fast
GRE, balanced steady state free procession (bSSFP) or hybrid
echo planar imaging, combined with spatial under-sampling
(2). Increasing data sampling speeds further can be used
to achieve even higher in-plane spatial resolution (1–2mm)
and/or greater spatial coverage. Conventional spatial-under-
sampling techniques, such as parallel imaging, are limited to∼2-
fold acceleration owing to a significant signal to noise (SNR)
penalty above this acceleration level. However, under-sampling
in both the spatial and-temporal domain can significantly
increase data acquisition speed without compromising on
either SNR or temporal resolution (10). Higher in-plane
spatial resolution (1–2mm) can reduce endocardial dark-
rim artefact and improve the image quality and diagnostic
accuracy for the detection of CAD including in single-
vessel and multivessel disease (10, 11). If the spatio-temporal
acceleration is used to increase spatial coverage, additional
short-axis myocardial slices or even 3-dimensional (3D)
myocardial perfusion data for whole-heart coverage can be
acquired. 3D perfusion CMR is highly accurate to detect
CAD as defined by invasive coronary physiology, however,
any clinical benefit over conventional 3 short-axis high-
resolution myocardial slices remains unclear (12, 13). Use of
multiband radiofrequency pulses for simultaneous multi-slice
data acquisition has been proposed as a strategy to increase

spatial coverage whilst maintaining in-plane spatial resolution,
however, this method still awaits clinical validation in patients
with CAD (14).

In the clinical setting, perfusion CMR is performed at either
1.5 Tesla (T) or 3T field strengths, with 1.5T being more
widely available. A major advantage of perfusion CMR at 3T
is the superior SNR that can be obtained. The higher field
strength also improves contrast enhancement, and importantly,
offers improved diagnostic accuracy for the detection of single
vessel and multivessel CAD (15, 16). Despite the overall image
quality being superior at 3T (10), the associated increased
field inhomogeneities heighten the sensitivity to susceptibility
artefacts (17). Use of a GRE readout as opposed to a bSSFP
readout is therefore preferred at 3T to minimise this undesirable
consequence (18).

Artefacts
An in-depth review of imaging artefacts is beyond the
scope of this review, however, two types of artefact are of
particular importance in DCE perfusion CMR imaging and
warrant brief discussion. Despite high data acquisition speeds,
DCE perfusion imaging is susceptible to both in-plane and
through-plane motion, which can be cardiac or respiratory
related, and results in image artefacts (4, 19). This can be
exacerbated by a high respiratory rate during pharmacologically
induced stress. In-plane motion can be reliably corrected in-
line after data acquisition (20), however, through-plane motion
remains problematic and highlights the importance of patient
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education and focus on gentle controlled breathing during
the acquisition of stress images. Another important artefact in
DCE perfusion CMR imaging is the subendocardial dark-rim
artefact. There are several causes of dark-rim artefacts, the most
common being Gibbs ringing, cardiac motion and magnetic
field inhomogeneities resulting from the strong paramagnetic
properties of a gadolinium based CA arriving in the heart (19).
The dark-rim artefact is of particular importance as it can mimic
inducible perfusion defects and reduce diagnostic accuracy.
However, dark-rim artefacts do have features which enable an
experienced reader to differentiate them from true perfusion
defects. Typically, unlike true inducible perfusion defects, dark-
rim artefacts appear on arrival of contrast in the LV blood pool,
lead to a signal reduction compared with baseline (pre-contrast),
are usually only one pixel wide, andmost frequently appear in the
phase encoding direction (21). An example of a dark-rim artefact
is shown in Figure 1.

QUALITATIVE STRESS PERFUSION CMR

Qualitative stress perfusion CMR is one of the most robust
non-invasive methods for the detection of CAD (22). The
visual assessment of myocardial contrast enhancement during
the first-passage of CA enables detection of regions of relative
hypoperfusion. Comparison of myocardial perfusion is made
between endocardial and epicardial regions as well as between
myocardial segments. Significant inducible perfusion defects are
more severe at the subendocardium, appear on the arrival of
CA to the myocardium, are more than 2 pixels wide, and must
persist beyond the peak myocardial enhancement. Furthermore,
for a perfusion defect to be significant for ischemia, it should
be present during stress but not at rest (if available) and, in the
context of CAD, have a distribution consistent with one or more
coronary territories (21). A transmural gradient of perfusion,
with more severe hypoperfusion in the subendocardial layers, is
usually observed in the involved segments (21, 23). Perfusion
imaging is read alongside the corresponding late gadolinium
enhancement (LGE) imaging, with matching LGE-perfusion
defects being considered negative for inducible ischemia (21, 24).

There are numerous single centre and multi-centre studies
demonstrating the accuracy of qualitative stress perfusion CMR.
In a large meta-analysis by Jaarsma et al. data was pooled from 22
studies that evaluated qualitative stress perfusion CMR against
anatomical luminal stenosis on invasive coronary angiography
(ICA) and found a patient level sensitivity and specificity of 90
and 74%, respectively (25). Using invasive fraction flow reserve
(FFR) as the reference standard, a more recent meta-analysis by
Kiaos et al. pooled 6 studies and found sensitivity and specificity
of 90 and 85%, respectively (26). More important for guiding
revascularisation decisionmaking is the ability of stress perfusion
CMR to accurately detect ischemia at the level of the perfusion
territory. In 2013 Ebersberger et al. evaluated 116 patients with
suspected or known CAD with qualitative stress perfusion CMR
at 3 Tesla and found a high diagnostic accuracy for detecting
diseased vessels (defined by invasive coronary angiography with
FFR) with an area under the receiver operator characteristic

curve (AUC) of 0.93, sensitivity of 89% and specificity of 95%
(27). Similar high diagnostic accuracies have also been reported
by others (23, 28, 29).

The accuracy of qualitative stress perfusion CMR has been
extensively compared with other non-invasive MPI modalities.
In 2008, the MR-IMPACT study was the first multicentre
multivendor study to demonstrate non-inferiority of stress
perfusion CMR to the then clinical standard single-photon
emission computerised tomography (SPECT) for the detection
of CAD in 42 patients against coronary angiography (lumen
stenosis> 50%) with AUCs of 0.86 and 0.75 for CMR and SPECT,
respectively (30). The subsequent larger MR-IMPACT II study
with 515 patients across 33 centres found superior sensitivity of
perfusion CMR over SPECT (0.67 vs. 0.59) but inferior specificity
(0.61 vs. 0.72) (31). In 2011 the single centre CE-MARC trial was
the first large scale prospective comparison of CMR vs. SPECT
for the detection of CAD on ICA (>70% stenosis) and found
superior sensitivities (87 vs. 67%) and similar specificities (83 vs.
83%) for CMR vs. SPECT (32, 33). In 2015, a meta-analysis by
Takx et al. compared the diagnostic accuracy of perfusion CMR
with other non-invasive MPI techniques and found perfusion
CMR had a similarly high diagnostic performance to positron
emission tomography (PET) and computerised tomography (CT)
perfusion and superior performance to SPECT and myocardial
contrast echocardiography. This analysis, which included 15
perfusion CMR studies with 798 patients, found a pooled
sensitivity and specificity for perfusion CMR of 0.89 and 0.87,
respectively, at the patient level and 0.87 and 0.91 at the vessel
level (22). It is noteworthy that this meta-analysis included CMR
studies analysed qualitatively as well as quantitatively.

Multiple retrospective and prospective trials have
demonstrated the prognostic value of qualitative stress perfusion
CMR for risk stratification of patients with known or suspected
CAD (34, 35). A large meta-analysis of 15 pooled studies
evaluating 7,606 patients with known or suspected CAD
undergoing stress perfusion CMR found a positive stress
perfusion CMR was associated with an annualised event rate of
4.9% compared with only 0.9% in those with a negative study
(35). Consistent with this, and its high diagnostic performance,
stress perfusion CMR is an effective gatekeeper to invasive
evaluation and management of patients with angina. In 2016,
the CE-MARC II trial in patients with suspected angina found
initial investigation by CMR resulted in a lower probability
of unnecessary invasive coronary angiography than the since
updated UK National Institute for Health and Care Excellence
(NICE) guidelines–directed care, with no increase in adverse
events (36). More recently, the multi-centre MR-INFORM trial
demonstrated stress perfusion CMR can be used with the same
efficacy and safety as invasive FFR in the initial management
of patients with stable angina and risk factors for CAD (37).
The study randomly assigned 918 patients to either a perfusion
CMR scan or invasive coronary angiography with FFR, and
found non-inferiority of the CMR strategy for the composite
primary outcome of death, non-fatal myocardial infarction, or
target-vessel revascularization within 1 year. In addition, the
CMR based strategy was associated with a lower incidence of
coronary revascularisation. Using stress perfusion CMR as a
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gate-keeper prior to ICA is also a cost effective approach in
patients at intermediate risk of obstructive CAD (38).

Challenges of Qualitative Stress Perfusion
CMR
In addition to its strengths, qualitative stress perfusion CMR also
has its challenges:

(1) Operator training - Perfusion data interpretation is
subjective and as such is dependent on operator training
and experience. The high diagnostic accuracies reported
in the literature mostly come from experienced academic
CMR centres with expert readers. A study from Villa et al.
demonstrated that the level of reader training is the main
determinant of diagnostic accuracy in the identification
of CAD. They found Level 3 readers to have an 83.6%
diagnostic accuracy compared with 65.7 and 55.7% for level
2 and level 1 readers, respectively (39).

(2) Balanced ischemia, multi-vessel disease and ischemic
burden - Evidence of inducible myocardial ischemia is
associated with adverse prognosis (35). Furthermore,
prognosis worsens as the ischemic burden increases,
and only revascularisation of flow-limiting coronary
stenoses is associated with improved outcomes (40, 41).
Therefore, accurate detection and quantification of the
myocardial ischemic burden is of paramount importance
when stratifying patient risk and considering coronary
revascularisation. As aforementioned, qualitative stress
perfusion CMR relies upon the heterogeneity of myocardial
contrast perfusion associated with the presence or absence
of flow-limiting coronary stenoses. In situations of
global ischemia, such as three vessel disease (3VD) or
microvascular dysfunction (MVD), there is often an absence
of normally perfused reference myocardium and hence
qualitative assessment can be challenging. The detrimental
impact of “balanced ischemia” on diagnostic accuracy is
well-documented in SPECT with up to 20% of patients
with 3VD being incorrectly reported as normal (42), and
as few as 29% of patients having perfusion defects reported
in all coronary territories despite angiographically proven
3VD (43). Perfusion CMR has superior spatial resolution
to SPECT (typically 1.5–3 vs. 12–15mm) and is able to
overcome this limitation to some extent, however, the
diagnostic accuracy of qualitative assessment remains
lower in patients with multivessel CAD and MVD (44–47).
Kotecha et al. reported a diagnostic accuracy for qualitative
stress perfusion CMR at 1.5 Tesla of 40 and 48% for correct
classification of 3-vessel and 2-vessel CAD, respectively,
as proven with invasive coronary angiography and FFR
(48). Using a high-resolution perfusion CMR sequence,
Motwani et al. demonstrated a diagnostic accuracy of 57%
for detecting perfusion defects in all coronary territories in
patients with angiographically proven 3VD (49). Rahman
et al. recently reported a qualitative stress perfusion CMR
sensitivity of 41% and specificity of 83% with an AUC of 0.60
to detect MVD defined by invasive physiology (44).

(3) Prior coronary artery bypass grafting (CABG) - Evaluation
of myocardial perfusion in patients with prior CABG
is challenging. These patients frequently have complex
multivessel disease, established myocardial infarction, and
extensive collateralisation (50, 51). Increased contrast
dispersion, delayed contrast arrival at the myocardium
(52), and the variability of flow dynamics associated
with bypass grafts (53) add to the complexity and
likely contribute to the reduced diagnostic accuracy of
qualitative perfusion CMR compared with patients without
prior CABG (24, 50). In the largest study to date of
110 patients with prior CABG (and 236 with previous
percutaneous coronary intervention (PCI)), Bernhardt et al.
reported a sensitivity and specificity of 73 and 77%,
respectively, for detecting obstructive angiographic disease
in patients with prior CABG, while in patients with previous
PCI, a sensitivity and specificity of 88 and 90% were
reported (24).

QUANTITATIVE PERFUSION CMR

Analysis of myocardial and LV signal intensity (SI)-time curves
from DCE perfusion CMR enables quantitative and semi-
quantitative analysis of myocardial perfusion, which has been
proposed to offer a solution to some of the challenges of
qualitative assessment (54).

Semi-Quantitative Myocardial Perfusion
CMR
Whilst the field is moving toward absolute perfusion
quantification, prior to the recent technical developments
that made full quantification of myocardial perfusion possible,
various semi-quantitative measures of myocardial perfusion
were proposed. These methods describe the characteristics
of the myocardial SI-time curves without attempting to
estimate absolute myocardial blood flow (MBF). The most
commonly used of these is the maximal myocardial “upslope”
parameter, but others including “upslope integral ratio,” “contrast
enhancement ratio (CER),” and the “time to peak” have also been
evaluated (Figure 3) (21, 54, 55). Since myocardial perfusion
is driven by systemic arterial perfusion, semi-quantitative
parameters are dependent upon the underlying haemodynamic
conditions and can be normalised to enable comparison
of rest and stress values, as well as a comparison between
individuals (54).

Underlying haemodynamic conditions are partially reflected
by the shape of the arterial input, which can be measured from
the LV blood pool. Division of the myocardial parameter by
the equivalent arterial input function (AIF) parameter serves to
normalise perfusion parameters and defines a perfusion index
(PI). The ratio of the normalised stress and rest perfusion indices
defines a myocardial perfusion reserve index (MPRI), a non-
invasive surrogate for coronary flow reserve (CFR) and an index
of the functional severity of a coronary lesion (54, 56, 57). It is
noteworthy that this method of PI normalisation represents a
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FIGURE 3 | Baseline corrected signal intensity (SI)–time curves for myocardial

tissue (orange) and the arterial input function (AIF) (blue) sampled from the left

ventricular (LV) blood-pool. Various semi-quantitative perfusion parameters are

demonstrated. The dashed orange line represents the “upslope” parameter

and denotes the maximal rate of myocardial contrast enhancement. Division of

the myocardial upslope by the equivalent AIF upslope (dashed blue line)

defines the “upslope index,” which normalises for the haemodynamic

conditions and enables comparison between stress and rest, and calculation

of a myocardial perfusion reserve index. The area under the myocardial tissue

curve from the arrival of contrast at the myocardium to the time of peak

enhancement defines the “upslope integral ratio.” The area under the

myocardial curve from contrast arrival to the time of peak AIF enhancement

has also been used to define this parameter. The “time to peak” myocardial

enhancement is measured from the arrival of contrast in the LV blood pool

(dashed black line) to the time of peak myocardial enhancement. The “contrast

enhancement ratio” parameter is not displayed as this requires an uncalibrated

baseline (defined as SIpeak−SIbaseline )/SIbaseline (55). a.u., arbitrary units.

heuristic approach, and one which has been shown to under-
estimate perfusion reserve when compared against microspheres.
A more accurate MPRI requires the PI to be normalised by the
analogous AIF parameter as well as the time delay between the
foot of the tissue curve and peak tissue enhancement (58).

Perfusion dyssynchrony has previously been proposed for the
identification of hemodynamically significant CAD, as defined by
FFR, and is based on the analysis of the variance of the time to
peak across the LV myocardium (59).

Semi-quantitative parameters have been validated against
microspheres and coronary angiography for detection of
CAD with a high diagnostic accuracy (60–62). A recent
meta-analysis of 6 studies using semi-quantitative analyses
of myocardial perfusion at the territory level found pooled
sensitivity of 77% and specificity of 84% (63). However, there
are a number of drawbacks to semi-quantitative perfusion
reserve indices:

(1) The only modest gains over qualitative assessment come
at the expense of a significant time penalty necessary for
processing the perfusion data (64).

(2) When validated against microspheres, semi-quantitative
parameters underestimate MBF at flow rates above 1.5
ml/g/min. This can cause underestimation of PIs and MPRI
in healthy myocardium where typical stress MBF rates
exceed 2 ml/g/min (55).

(3) MPRI from different semi-quantitative perfusion parameters
tend to have different thresholds to identify myocardial
ischemia and their magnitude cannot be directly compared
to that of an invasively measured coronary flow reserve (54).

(4) MPRI requires the acquisition of DCE perfusion imaging
during stress and rest, partially conflicting with current
international imaging guidelines, which are moving away
from the routine acquisition of rest imaging in a quest to
reduce CMR scan duration (3).

(5) MPRI is unable to distinguish between a state of globally
reduced stress MBF with normal resting MBF (for example
multivessel epicardial coronary disease), and a state of
globally preserved stress MBF but increased resting MBF
(for example hypertension or aortic stenosis). Both clinical
scenarios result in a diminished global MPRI. Only
by quantifying absolute MBF in millilitres per gramme
of myocardium per minute (ml/g/min) during rest and
maximal hyperaemia can we differentiate these two very
different clinical scenarios (54).

Quantitative Myocardial Perfusion CMR
Measurement of absolute MBF in ml/g/min is possible through
the application of tracer-kinetic models to the perfusion data.
Myocardial perfusion reserve (MPR), a useful indicator of the
significance of coronary artery stenoses, is defined as the ratio of
MBF at stress and rest (57).

Several different methodologies for perfusion quantification
have been developed. The technical aspects of the various
approaches are beyond the scope of our review, however,
in brief the methods can be broadly divided into two
distinct groups; “tracer-kinetic model dependent” and “tracer-
kinetic model independent” (54). Model-dependent methods,
of which there are numerous, make the assumption that the
tissue structures can be divided into distinct compartments,
typically an intravascular and interstitial compartment, and
use complex mathematical equations to describe the contrast
exchange occurring between these compartments. Tracer-kinetic
models are applied to perfusion data beyond the first pass
of contrast and can infer knowledge on the permeability
surface area product and intravascular volumes in addition to
MBF (54). The accuracy of the measurements is dependent
on assumptions made with respect to parameters such as
signal saturation, relaxivity of contrast agent, baseline T1 and
T2 values in the myocardium and blood, homogeneity of
the magnetic and RF excitation fields, blood heamatocrit and
others (65).

Tracer-kinetic model-independent approaches are centred
around the central volume principle, which dictates that MBF
can be measured from knowledge of the contrast transit
times through the vascular system (66). This value can be
estimated from the transfer function, obtained by normalising
the myocardial SI curves by the AIF curve using a deconvolution

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 October 2021 | Volume 8 | Article 768563

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Franks et al. Dynamic Contrast Enhanced Perfusion CMR

operation. The initial amplitude of the transfer function is
proportional to MBF (67). The transfer function is, in practise,
obtained using a forward modelling approach that involves the
use of different mathematical models and data fitting procedures
(67). One of the most widely used and validated deconvolution
technique employs the use of a Fermi function to constrain the
transfer function to fit the likely behaviour of an intravascular
tracer (54, 67).

Quantitative perfusion (QP) measurements require the
existence of a linear relationship between CA concentration
and measured SI. However, the relationship between these
parameters becomes non-linear at higher contrast concentrations
due to saturation of the T1-weighted contrast enhancement
and T2∗ effects (68, 69). This phenomenon is more frequently
observed in the AIF where CA concentration is highest. Any
underestimation of the AIF will result in an overestimation
of MBF with a magnitude relative to the magnitude of the
saturation effect (54). Signal saturationmust therefore be avoided
or corrected for accurate MBF measurements. Use of a lower CA
dose can avoid signal saturation in the blood pool but would
provide inadequate contrast-to-noise for myocardial assessment.
Proposed solutions include; (1) a dual-bolus acquisition; (2)
a dual-sequence acquisition; and (3) retrospective correction
using calibration curves (54). Whilst calibration curves can be
generated from knowledge of the sequence parameters and the
pre-contrast T1 measurements, this is a somewhat cumbersome
approach to correct blood-pool signal saturation, and minor
changes in the perfusion sequence parameters can necessitate
the need for re-calibration (70). The dual bolus approach
measures the AIF from a dilute CA pre-bolus, which maintains
the linearity of SI to CA concentration in the blood pool.
The pre-bolus is followed by a neat CA bolus for myocardial
assessment (71, 72). As the dilution ratio is known, the AIF
SI-time curve can be rescaled (and time shifted) prior to
perfusion quantification (54). This technique has been validated
against microspheres for measurement of MBF (55, 73) and
has clinical validation against PET and invasive FFR for the
detection of flow limiting CAD (23, 74, 75). However, clinical
implementation of the dual bolus technique is onerous owing to
the need for multiple injections and longer sequence acquisition
times (72).

A dual sequence acquisition uses a single bolus of neat contrast
but acquires an addition imaging slice with a short saturation
delay, low resolution and reduced T1-weighting (69). This low
resolution slice enables measurement of the AIF without blood
pool signal saturation. Higher resolution perfusion slices are
acquired following the low-resolution image and during the
same R-R interval, permitting myocardial and AIF assessment
within the same cardiac cycle (69, 76, 77). When a dual
sequence approach is employed, and prior to quantification of
MBF, SI-time curves must be converted to correspond to CA
concentrations (69). A comparison of MBF estimates in pigs
found a good correlation between dual-bolus and dual-sequence
methods (77). The dual sequence method has been validated
against invasive coronary physiology and PET, and is becoming
the method of choice for quantitative CMR perfusion owing to
its easier integration within the clinical workflow (78, 79).

Another important consideration prior to perfusion
quantification is the intrinsic spatial variations in receive-
coil sensitivity, which can produce SI variation across the
myocardium and lead to inaccuracies when quantifying MBF.
This can be corrected for by acquisition of proton-density
weighted maps. Alternatively, coil sensitivity can be estimated
from pre-contrast images and corrected for by dividing the
myocardial signal by its pre-contrast value (54).

Automation of Perfusion Quantification by
CMR
The quantification process is complex and requires multiple
data processing steps (Figure 4). Perfusion images must first
be reconstructed from the raw data. The dynamic image
series require correction for respiratory motion in addition
to correction for coil sensitivity bias (80, 81). Segmentation
of the left ventricle and myocardium is required to enable
extraction of the AIF and myocardial tissue curves. A point
of reference, typically the superior RV insertion point, must
be identified to enable standardised AHA cardiac segmentation
(9). If a dual sequence approach has been employed, SI data
requires conversion to CA concentration. Only at this stage are
quantification models applied to the perfusion data to calculate
MBF (81). Until recently, these multiple processing steps
required time-consuming and laborious manual input, which
restricted the application of quantitative perfusion CMR from
mainstream clinical practise. However, recent developments in
quantification pipelines now enables full automation of the
quantification process and generation of pixel-wise perfusion
maps either offline, or in-line and within minutes of data
acquisition (79).

In 2017, Kellman et al. presented a fully automated
quantification pipeline, utilising a dual-sequence approach for
derivation of the AIF and a blood tissue exchange model for
quantification of MBF. All reconstruction and processing steps
were implemented in-line within the opensource Gadgetron
software framework and pixel-wise perfusion maps were output
within minutes of data acquisition (69, 82). In the same year
this approach was validated against PET with good agreement
between perfusion values (78), and later demonstrated good
repeatability in a study of healthy volunteers, with within
subject coefficient of variations between 8 and 12% for both
rest and stress MBF measurements (20). In 2019, Kotecha et al.
validated the same automated perfusion quantification pipeline
against invasive coronary physiology and found high diagnostic
accuracy with an AUC of 0.90 for detecting of functionally
significant epicardial coronary disease (79). Knott et al. recently
demonstrated a strong prognostic value of the same automated
pipeline (83). Other fully automated perfusion quantification
pipelines have since been developed. Using a two-compartment
exchange model for perfusion quantification, Scannell et al.
demonstrated highly accurate MBF values from an automated
deep-learning based pre-processing pipeline when compared
with manual pre-processing (84). Using model-constrained
deconvolution, Hsu et al. demonstrated excellent correlation
between perfusion values from fully automated and manual
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FIGURE 4 | Overview schematic outlining the processing steps involved in a typical perfusion quantification pipeline. LV, left ventricle; RV, right ventricle; SI, signal

intensity; CA, contrast agent; MBF, myocardial blood flow.

processing pipelines, as well as high diagnostic accuracy for
the detection of CAD with AUCs between 0.86 and 0.93 for
automated quantitative perfusion metrics (85).

Clinical Value of Quantitative Perfusion
CMR
Several clinical advantages of QP CMR have been demonstrated
over qualitative assessment:

(1) The diagnostic accuracy of QP CMR for the detection
of CAD is at least equivalent to a level 3 experienced
reader, thus offering an observer independent solution to
smaller centres that may lack the experience and volume

of the larger academic CMR laboratories. A study from
Villa et al. found the diagnostic accuracy of QP CMR
at the patient level was similar to the qualitative report
of a level 3 trained reader and superior to a level 2
trained reader (QP: 86.3%, qualitative level 3: 83.6%,
qualitative level 2: 65.7%) (39). This is consistent with
a sub-study of the CE-MARC trial that compared stress
MBF, MPR, and qualitative assessment (by expert readers
in academic centres) and found no difference in diagnostic
accuracies (86).

(2) In multivessel coronary disease QP CMR has superior
diagnostic accuracy for the detection of CAD at the
vessel level (Figure 5). A study by Kotecha et al. with a
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FIGURE 5 | First-pass perfusion images during adenosine induced stress (top) and at rest (middle) with corresponding pixel-wise myocardial blood flow (MBF) maps

(bottom) from a 79-year old man with significant 3 vessel disease on invasive coronary angiography. Qualitative assessment identifies inducible perfusion defects in

the left circumflex and right coronary artery territories but only perfusion mapping identifies 3 vessel disease.

cohort of 151 patients (95 patients with multivessel disease
defined by invasive angiography with FFR), found stress
MBF to have superior diagnostic accuracy than qualitative
perfusion CMR to identify 3-vessel (87 vs. 40%) and 2-
vessel disease (71 vs. 48%) but similar accuracy for the
detection of single vessel disease (71 vs. 71%) (48). In line
with these findings, QP CMR also enables a more accurate
estimation of the myocardial ischemic burden in cases of
multivessel disease. In a study of 41 patients, Patel et al.
found qualitative assessment was unable to differentiate the
ischemic burdens of single-vessel and three-vessel CAD (21
vs. 31%, p = 0.26) unlike myocardial perfusion reserve
(MPR), which found a significant difference (25 vs. 60%,
p = 0.02) (45). A similar advantage of QP CMR is also
seen in patients with MVD, in whom global ischemia is
often present without a region of reference myocardium.
A recent study by Rahman et al. of 75 patients with non-
obstructed coronary disease, found MPR had a diagnostic
accuracy of 79% for the detection of MVD (defined by
invasive physiology), significantly superior to qualitative

assessment, which had a diagnostic accuracy of 58% (44).
Similar findings were reported by Kotecha et al. who found
stress MBF had 71% sensitivity, 70% specificity and an
AUC of 0.73 for detecting MVD. This study went on to
demonstrate that global stress MBF thresholds could be
used to non-invasively differentiate 3-vessel coronary disease
form MVD (79).

(3) Another potential advantage of QP CMR is its ability to
correct for scarred myocardium. The pixel-wise nature
of perfusion quantification enables pixel-wise exclusion
of LGE from the analysis. This was demonstrated in
a study by Villa et al. who fused myocardial perfusion
reserve maps with LGE maps to quantify microvascular
ischemia in patients with hypertrophic cardiomyopathy.
They demonstrated that not accounting for LGE leads
to a significant overestimation of the ischemic burden
(87). This combined QP and LGE analysis has also
been demonstrated feasible in patients with ischemic
cardiomyopathy in whom high scar burdens are
often present and revascularisation decision making is
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complex (88). The prognostic value of such an approach
to predict myocardial recovery post revascularisation
remains unclear.

(4) There is emerging data that QP CMR enables improved
patient risk stratification. In 395 patients with suspected
CAD and a median follow up of 460 days, Sammut
et al. found that the ischemic burden as measured
by MPR provided incremental prognostic value to
qualitative assessment (89). In another study of
1,049 patients with suspected or known CAD and
a median follow up of 605 days, Knott et al. found
stress MBF and MPR were both independently
associated with death and major adverse cardiovascular
events (83).

(5) Unlike semi-quantitative analysis, fully quantitative
analysis has the potential to improve clinical workflow
by automated post processing, and potential to reduce
scan time by acquiring only stress data. There is some
evidence that the accuracy of stress MBF is not enhanced
by measurements of MBF at rest (79, 90), however,
this remains a contentious issue as evidence to the
contrary also exists, particularly in patients with MVD
(44, 74, 91).

Quantitative Perfusion CMR and PET
Cardiac PET enables highly accurate measurements of
myocardial perfusion, particularly when tracers with linear
or near linear extraction are used, and is currently the clinical
standard for the non-invasive quantification of myocardial
perfusion (78, 92). Recently, perfusion quantification by
CMR has been validated against PET with good agreement
between perfusion measures (78). As compared to cardiac PET,
CMR offers the advantage of higher spatial resolution, wider
availability, lower costs, and freedom from ionising radiation.
However, where-as the volumetric acquisition of cardiac PET
allows for full heart coverage, 3D whole-heart perfusion imaging
by CMR remains confined to a research tool and clinical CMR
perfusion imaging is typically planned to sample the 16 standard
AHA myocardial segments using 3 short-axis slices (3, 13).

FUTURE DIRECTIONS

DCE stress perfusion CMR has made significant strides over
the past 2 decades to become an accurate, well-validated,
and safe non-invasive method for assessing the functional
significance of CAD (26). Advances in data acquisition methods
appear promising and high-resolution full LV coverage is likely

to be achieved in the coming years (14). The development

and validation of QP CMR offers incremental diagnostic and
prognostic value, particularly in patients with advanced CAD
(48, 89). Advances in artificial intelligence technology are likely to
play an increasingly important role in the clinical interpretation
of perfusion maps (83). However, for the widespread use of
QP CMR outside of the academic institutions, cross vendor
standardisation and regulatory approval for the use of in-line
myocardial perfusion quantification is required.

CONCLUSION

Stress perfusion CMR is a well-validated and guideline-
backed non-invasive tool for the assessment and risk
stratification of patients with CAD. Qualitative analysis has
high diagnostic accuracy and prognostic value when performed
by experienced readers. Contemporary, fully automated
perfusion quantification pipelines can provide an accessible,
reliable, observer independent analysis with superior diagnostic
and prognostic performance, particularly in patients with
complex multivessel CAD and MVD.
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