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Immunophenotyping on the molecular and cellular level is a central aspect for
characterization of patients with inflammatory diseases, both to better understand
disease etiopathogenesis and based on this to develop diagnostic and prognostic
biomarkers which allow patient stratification and tailor-made treatment strategies.
Technology-driven developments have considerably expanded the range of analysis
tools. Especially the analysis of adaptive immune responses, often regarded as central
though mostly poorly characterized disease drivers, is a major focus of personalized
medicine. The identification of the disease-relevant antigens and characterization of
corresponding antigen-specific lymphocytes in individual patients benefits significantly
from recent developments in cytometry by sequencing and proteomics. The aim of this
workshop was to identify the important developments for state-of-the-art
immunophenotyping for clinical application and precision medicine. We focused here
on recent key developments in analysis of antigen-specific lymphocytes, sequencing, and
proteomics approaches, their relevance in precision medicine and the discussion of the
major challenges and opportunities for the future.

Keywords: immunophenotyping, sequencing, proteomics, inflammation, precisionmedicine, TCR repertoire, antigens
INTRODUCTION

Immunophenotyping is a key method for monitoring and diagnosing of immunological diseases,
such as infectious diseases, chronic inflammatory and autoimmune diseases and allergy. For many
of these the actual disease cause is still elusive or as in the case of COVID-19 the origin and
contribution of potentially pathogenic immune reactions to severe disease. Classically immune
monitoring is accomplished viameasurement of serum biomarkers, including acute phase proteins,
serum cytokines, or antigen-specific serum antibodies. However, a deeper understanding of the
underlying disease cause and the pathogenic mechanisms, requires the identification and
characterization of the responsible immune cells and their interaction partners. Most of these
org November 2020 | Volume 11 | Article 6044641
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diseases are restricted to specific organs or antigens and there is
plenty of, though mostly indirect, evidence that antigen-specific
lymphocytes are the pathogenic drivers of disease. However, due
to technological restrictions these cells are barely characterized
and in many inflammatory and autoimmune diseases the target
antigens of the pathogenic immune reaction are still unknown.
This is a major roadblock for development of personalized
medicine, that is disease- and patient-specific diagnostics and
therapies targeting the disease cause rather than the symptoms.

Thus a major aim of immunophenotyping in the age of
personalized medicine, diagnostics and therapy is the
development of tools allowing to dissect the immune response
on the level of antigen-specific T and B cells, their relevant
interaction partners and effector molecules. During a workshop
on immunophenotyping in inflammatory diseases, which took
place at the international symposium of the Cluster of Excellence
“Precision Medicine in Chronic Inflammation (PMI)” of the
universities of Kiel and Lübeck on February 18th 2020 in
Hamburg, Germany, recent developments facilitating such
antigen-specific approaches and beyond were discussed.
STATE-OF-THE-ART AND KEY
DEVELOPMENTS

Flow-Cytometry and Analysis of Antigen-
Specific Lymphocytes
The method of choice for detailed characterization of immune cell
composition and phenotype is flow-cytometry, which does not only
allow rapid quantitation of the main leukocyte subsets but also their
detailed phenotypic characterization, including the differentiation of
the complex cosmos of lymphocyte subpopulations at a single cell
level. A state-of-art overview of currently available cytometric
technologies can be found under (1). Instrumental to this has been
the steadily increasing numbers of parameters, which can be
measured from individual cells. Theoretically > 40 parameters per
cell are currently possible, although this is still not part of the clinical
routine. However, recent developments especially of multi-laser
instruments or spectral cytometers have significantly improved the
ease of use, especially for the combination of variousfluorescent dyes
withinmultiplexpanels (1–4).Thismaybringmulti-parameterflow-
cytometry closer to the clinical diagnostic lab reality.

Identification of antigen-specific lymphocytes is a challenge due
to their low frequency and the availability of antigen-reagents
allowing direct labeling of their antigen-receptor (5, 6). Although
fluorescently tagged antigens can in principle be used to directly
label B cells these are still no routine reagents and staining
procedures (1). Even more challenging the exact peptide/MHC
combinations need to be defined to generate the recombinant
peptide/MHC-multimers for antigen-specific T cell staining. This
is a significant difficulty especially for the analysis of human T cells
due to the highHLA-diversity in general and inparticular forCD4+
T cells due to low quality MHC class II reagents, complex antigens
or pathogens and/or unknown peptide targets. Therefore especially
human CD4+ T cell analysis is mainly based on functional read-
outs, following in vitro stimulationwith antigenic peptides, proteins
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orprotein extracts. Several technologies to detect antigen-reactiveT
cells have been developed (1, 5, 6). A common problem for all
antigen-specific assays is the low frequency of target cells. A
frequent solution to this is the in vitro expansion of rare T and B
cells prior to analysis. However, this introduces an unpredictable
bias with regard to phenotype, function and selection of certain cell
subsets.Direct approachesutilizingminimal stimulation times (5–7
h) combinedwith powerful rare cells enrichment strategies, e.g., via
magnetic cell separation, provide a more direct view (7–9). Rapid
induction of CD154 expression in all conventional T helper cells
(Tcon) (10, 11) and of CD137 in Tregs (12) within a short time
window of 5–7 h after in vitro antigen stimulation has proven to be
highly sensitive and specific to identify essentially all reactive CD4+
T cells. This can be combinedwithmagnetic enrichment strategies,
termed antigen-specific T cell enrichment (ARTE) (7). This
technology has been used to characterize human CD4+ T cell
responses in a number of clinical settings, including allergy (13),
IBD (13, 14) and infectious diseases (15). The unique strength of
direct enrichment-based approaches is the access to highly purified
antigen-specific T cells, e.g., via fluorescence-based flow-sorting
technologies, which is ideal for combination with downstream
“-omics” technologies, allowing their deep molecular profiling
as well as functional analyses in unparalleled resolution (13, 14,
16) (Figures 1B, C). This includes TCR sequencing to determine
T cell clonality and/or TCR affinity measurements (13, 14, 16)
(Figures 1A,C). Theparticular relevanceofactivation-basedassays
has beenhighlighted by recent data onSARS-CoV-2-specific T cells
which allowed rapid identification of target proteins and overall T
cell reactivity in patients (17–19) as well as clonality and affinity
differences between mild and severe COVID-19 (20). In general B/
TCR sequencing provides unique insight in B and T cell
composition as outlined below. However, it has to be emphasized
here, that the combination of antigen-specific B/T cell sorting with
antigen-receptor sequencing is particularly powerful. Antigen-
receptor sequences from cells with known specificity can be used
as molecular identifiers to track antigen-specific clones in samples
from the same patient. This has been used, for example, to track the
modulation of antigen-specific T cells in bulk TCR sequencing data
from patients with multiple sclerosis during pregnancy (21).
Similarly, known TCR sequences from paired blood and tissue
samples will allow identification of antigen-specific T cells from
bulk or single cell RNA sequencing data. The latter approach may
allow to follow and deeply characterize antigen-specific T cells even
in small tissue samples.

TCR Repertoire Analysis
Clonal expansion is one of the hallmarks of adaptive immune
responses. Therefore T cell receptor (TCR) analyses carry great
potential for investigating the specificity of the T cell immune
response under physiological and pathophysiological conditions.
There are however multiple issues to consider in advance. (i) The
first is about numbers. As outlined above antigen-specific
lymphocytes are rare. From the possible 1019 theoretically
possible combinations (22), TCR selection during thymopoiesis
selects for each individual a repertoire of approximately 107 to 108

unique TCRs (23). Thus looking for specific TCRs, even expanded
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ones, resembles searching for a needle in a haystack. (ii) The second
is about sampling: where, and howmuch? Indeed, howmuch of the
immune response targeting a pulmonary infection is represented in
105 cells from blood? (iii) The third is about T cell functional
diversity. As an example, since Treg and effector T cells have
opposite effects, what would mean the identification of a given
TCR if you cannot assign it to one or the other cell population? (iv)
The fourth is about technology: TCRs are made of alpha and beta
chains that cannot (accurately) be paired by knowledge. Only
single-cell sequencing can provide paired chains. Also, the
accuracy of the technology that heavily relies on PCR
amplification and its capacity to detect rare clonotypes might
affect results (24). Despite all these limitations, TCR sequencing
carries enormous potential in particular in combination with
cytometric techniques discussed above. There are currently two
major approaches to TCR studies: (i) global TCR repertoire
assessment from a large number of cells, classically applied to
study peripheral blood T cells, and which can generate millions of
alpha and beta unpaired TCRs per sample, and (ii) single-cell
sequencing of smaller samples, such as tissue infiltrating cells,
which generates in the order of 103-104 clonotypes. Global TCR
studies are providing much larger repertoires, from which the
challenge is to identify the relevant TCRs. Numerous algorithms
have been and are still developed to extract relevant information,
such as repertoire diversity, expansions of rare cells and cross-
reactivity (25–30). They, for example, allowed to identify the TCRs
responding to vaccination (31) and in our experiments identified
TCRsare specific and evenpredictiveof given autoimmunediseases
(David Klatzmann, unpublished observations). In contrast, single-
cell studies have the advantages to relate TCRs directly to a setting/
tissue or an ongoing immune response and to provide their paired
alpha and beta chains (32). Noteworthy, it also allows to
concomitantly investigate, (i) the binding of dextramers or MHC-
multimers to give clues on the cell specificity, and (ii) the single-cell
Frontiers in Immunology | www.frontiersin.org 3
transcriptome to provide, for example, the activation status of cells
with specific TCRs (32, 33).

Bulk and single cell TCR sequencing are truly complementary
and even synergistic. Bulk TCR sequencing allows to provide
general information on the repertoire, with indices reflecting its
diversity and “normality” (25–30). Also, appropriate algorithms
can identify thousands of TCRs of potential interest, based for
example on their frequency in the sample compared to their
theoretical probability of generation (34). The relevance of these
sequences can further be explored by blasting them with
databases of TCRs with known specificities (35, 36). On the
other hand, single-cell sequencing, despite its limitation in terms
of the number of sequences, has the advantage of providing the
paired sequences in link to a specific setting. For example, the T
cells present in bronchoalveolar lavages of patients with lung
infection (33) or the cerebro-spinal fluid of patients with
neurogenerative diseases can reasonably be assumed to be part
of the ongoing immune reaction associated with the condition.
Thus, as a recommendation, we would suggest the following:

• To sequence the bulk repertoire of at least 105 purified/
enriched T cell populations, at least always separating Treg
from Teffs, and using a robust method (24).

• To refrain from performing single-cell TCR sequencing from
peripheral blood except if relevant subsets can be enriched,
i.e., by antigen-specific cytometry assays as described above.

• To perform single-cell TCR sequencing on samples
originating from a small cell population, whether this comes
from their location or their expression of relevant markers.

Besides, one should make sure to analyze the obtained
datasets with experts of the field and not forget to make their
datasets public such as not to waste precious and costly results
(37). Indeed, even if we could analyze the entire TCR repertoire
A

B

C

FIGURE 1 | Integrated scRNA & TCR seq and antigen-specificity from blood and tissue. (Single cell) RNAseq provides unique multi-parameter information of single
cells (A) or sorted cellular subsets (B). Further the combination of antigen-receptor sequencing with scRNASeq allows correlation of RNA expression with clonal
lymphocyte populations (A). In addition, antigen-receptor sequences derived from antigen-specific lymphocytes of the same donor, obtained via combined magnetic
pre-enrichment and fluorescence based flow-sorting, allows to integrate antigen-specificity and certain functional aspects (C). TCR/BCR information from antigen-
specific lymphocytes may also be used to track antigen-specific cells within small tissue samples.
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of billions of humans bearing each 1012 T cells, we would still be
far from approaching the 1061 different sequences that
theoretically could be produced by the T cell machinery (38).
Thus, any TCR sequence that was actually produced (i.e.,
detected in a sample) had dramatically much smaller chances
to appear that the reader has to win the lottery, and thus
represents extremely valuable knowledge (from theory to
reality) that must be memorized.

RNA Sequencing
High-throughput sequencing methods have been the key to
disentangle immune phenotypes of inflammatory diseases for
decades. Advances in mapping disease activity, identification of
early disease, and therapy-related molecular markers have been
made possible by the widespread methodology of bulk RNA-seq,
a robust and nowadays inexpensive method of sequencing the
transcriptome. Despite the effort, the current number of direct
applications of molecular-based disease diagnostic and treatment
remains limited (39). One explanation for the poor output of
bulk RNA-seq-driven methods is that it solely depicts the
transcriptome of a homogeneous and unidentifiable agglomerate
of different cell types. Thus, masking cell-specific transcription
changes and neglecting the impact of cell type proportions in
diseased tissues. Moreover, skewed levels of expression of
molecular markers are expected when researchers focus on the
immune compartment and particular aberrant proportions in
inflamed tissues (40–42).

A possible approach to overcome the lack of cell-specificity is
the implementation of single-cell sequencing (scRNA-seq),
which generates a transcriptional landscape by cell type. This
methodology is capable of acquiring up to 80,000 cells per run,
enabling unprecedented power to study patterns of expression of
even rare cell types linked to inflammatory diseases (43).
Moreover, researchers can customize cell type identification
based on their need, by using cell-specific signature genes (e.g.,
MKI67 high expression for proliferative lymphocytes) coupled
with numerous reference transcriptomic datasets (44). Recent
technological advances have also provided access to new layers of
information by merging cell-specific expression with TCR or
BCR information (45, 46) and one can even produce large-scale
immunophenotyping panels of tens to hundreds of antibodies
(47). This type of analysis leads to the unbiased classification of T
or B cell populations of interest and the relationship TCR or BCR
with the respectively cell-specific transcription. However, this
methodology not only comes with a very high price tag but
also with its own set of challenges [for review please see (48)]:
(i) scRNA-seq only represents a subset of tissue, thus rare cell-
types, such as antigen-specific lymphocytes might be missed by
chance if the number of cells acquired is not suitable (49). (ii)
Experimentally, the methods are prone to batch effects, e.g., time
from acquiring sample to sample preparation is inversely
correlated with sample quality and stability of expression data
(50), different technologies and protocols may also acquire
different cell proportions and gene counts (51). (iii) Despite
the robust methods available for PBMCs, dissociation of fragile
tissues such as the brain or intestinal epithelium, might be
problematic and carry on skewed assessments of the tissue
Frontiers in Immunology | www.frontiersin.org 4
(52). (iv) Specific to TCR applications, the reads might be
aligned to an incomplete “reference” genome that might also
be biased by somatic rearrangements and mutations (45).

Regardless of the methodological pitfalls, crucial advances in
immune profiling and particularly in mapping inflammatory
diseases have been pinned to scRNA-seq technology: by integrating
scRNA-seq and antigen-receptor sequencing (Figure 1A), Boland
et al. have contributed to resolving clonal relationships of the PBMCs
and the intestinal mucosa in ulcerative colitis by coupling an
enrichment for IgG1+ in plasma cells in the inflamed tissue with a
specific gd T cell subset in the peripheral blood of patients (53). This
publication elegantly highlights howcombining gene expressiondata
paired with receptor sequence enables re-expression and testing for
antigen binding and function of potentially relevant molecular
markers. Taken all together, scRNA-seq has quickly become the
go-to technology for immune profiling of individual cells on a
large scale.

Proteomics Approaches
In addition to multicolor flow-cytometry and transcriptomics,
proteomics of sorted cell subsets and various tissues allow to
provide detailed insights into pathology-associated changes in
complex immune-mediated diseases (54). There are a multitude
of proteomic techniques that can be used to analyze changes of
protein expression; e.g., mass spectrometry-based proteomics
(55, 56). This, however, requires a high degree of specialization
and access to respective core facilities. Thus, we here focus on
proteomic techniques that can, in principle, be applied in most
laboratories: (i) Bead-based multiplex arrays for flow cytometry
to determine cytokine concentrations, (ii) protein arrays for
autoantibody profiling, (iii) proximity extension assay
proteomics, (iv) multi-parameter immunohistochemistry, and
(v) determination of kinase activity.

Bead-based multiplex arrays for flow cytometry have become
a standard technology for the fast and high-throughput analysis
of cytokine concentrations in biological samples, such as blood
or cell culture supernatants (57, 58).

Several companies offer auto-antigen protein arrays that allow
the simultaneous detection of multiple autoantibodies from
human serum samples, including the immunoglobulin subtype
differentiation (59). These led to the identification of
autoantibodies in diseases that are currently not considered as
autoimmune diseases, e.g., chronic obstructive pulmonary
disease (60) or neuropsychiatric diseases (61). Furthermore,
autoantibody arrays can be used to identify additional
autoantibody reactivity beyond known autoantibodies, for
example in pemphigus (62, 63). However, the mere detection
of autoantibodies in any given population is usually not
informative because autoantibodies can be detected at high
frequency also in healthy blood donors (64, 65) and, are even
present in IVIG preparations (66) used to treat autoimmune
diseases (67). Thus, in depth characterization of their functions
and of the corresponding B and T cells is mandatory.

Proximity extension assay (PEA) proteomics allow to
identify up to 1500 human proteins in any solution. The
assay is optimized for serum, but use of lysed tissue extracts
has also been described (68, 69). For PEA, samples are
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incubated with a pair of oligonucleotide-labeled antibodies
binding to different epitopes of a specific protein. When these
antibodies are in close proximity, they hybridize, and are
extended by a DNA polymerase. This unique DNA barcode is
then amplified by PCR, whereby the amount of each specific
DNA barcode in quantified by PCR (70). Regarding mouse
samples, a limited number of proteins (90–100) can be analyzed
using this technique. However, up to now, the majority of
published reports on PEA have investigated patients with chronic
inflammatory skin conditions, but not with systemic inflammatory
or autoimmune diseases (69, 71–74). Based on our own experience,
we believe that the PEA technology will increasingly be used to
study alterations of proteomic signatures in chronic inflammatory
diseases, and thus will significantly contribute to the understanding
of disease pathogenesis. PEA also offers the possibility to stratify
certain patients according to their proteomic signature, and/or
allow to predict treatment responses.

While all of the above technologies are primarily used to
identify proteomic signatures in blood, multi-parameter
immunohistochemistry enables to determine protein expression
in tissues. One platform is the multi-epitope ligand cartography
(MELC) robot technology that has been described in 2006 (75).
The principle behind MELC is repeated staining and subsequent
bleaching of histology specimens with automated image
recording. Interestingly, only few papers have been published
using this technique. Overall, we believe that multi-parameter
immunohistochemistry is a potentially powerful tool to
understand both protein expression and location, however, may
not be suitable for routine diagnostics due to high costs and low
sample throughput.

Aberrant kinase activation, in particular of the Janus
Kinase (JAK) family, has been identified as a therapeutic
target for an increasing number of autoimmune diseases
(76–78). A relatively novel method to determine kinase
activity in cell culture, as well as tissue or blood samples, is a
peptide microarray, commercialized under the name of PamGene
(79). In this assay, either serine or threonine-containing peptides are
spotted on a microarray. After application of the cell or tissue
homogenates, kinases within these phosphorylate their respective
substrates. Substrate phosphorylation is detected over time using
specific antibodies. Based on the phosphorylation pattern of
substrates, the activity of kinases can be determined. This peptide
microarray for detection of kinase activity can, among others, be
used for the identification of novel therapeutic targets (80, 81),
discovery of biomarkers (82, 83), and understanding of
physiological immune functions (84). The main focus of the
PamGene has so far, however, been in the field of cancer
research. Based on our own experience with this technique, we
expect that this microarray technique will significantly contribute to
Frontiers in Immunology | www.frontiersin.org 5
our understanding of the pathogenesis of chronic inflammatory and
autoimmune diseases in the near future.
PERSPECTIVE

Despite significant progress in translational and personalized
medicine in the last decade, there is still an urgent need to
identify disease-specific signatures and individual biomarkers
allowing patient stratification, prediction of responses to therapy
including the assessment of dynamic changes and the
identification of novel therapeutic targets. In addition, it
should be mentioned that data validation and knowledge
transfer into clinical routine is often missing in the majority of
applied approaches. Modern high-throughput technologies can
be extremely useful and time saving in immunological research
and become increasingly relevant especially for precision
medicine, but are also highly cost intensive. Thus, the right
method or combination of methods suitable to adequately
address the questions of your study needs to be carefully
selected to get a reasonable balance between costs and benefits.
On the other hand one has to consider in advance which relevant
information and conclusions can be extracted from multi-
parameter data sets and how these data can be combined and
integrated in a biological and clinical context. The involvement
of experienced system biologist and biostatisticians in the
planning of a study is therefore highly recommended in order
to get most information from the applied methods.
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