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Abstract
Background: Renal cell carcinoma is a common malignancy that often presents as a metastatic-
disease for which there are no effective treatments. To gain insights into the mechanism of renal
cell carcinogenesis, a number of genome-wide expression profiling studies have been performed.
Surprisingly, there is very poor agreement among these studies as to which genes are differentially
regulated. To better understand this lack of agreement we profiled renal cell tumor gene
expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to
previous microarray studies.

Methods: We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to
Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed
probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected
differential gene expression in the resulting dataset with parametric methods and identified
keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test.

Results: We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test,
800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37
genes that have been identified as being differentially expressed in three or more of five previous
microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A
key to the sensitivity and power of our analysis is filtering out defective samples and genes that are
not reliably detected.

Conclusions: The widespread use of sample-wise voting schemes for detecting differential
expression that do not control for false positives likely account for the poor overlap among
previous studies. Among the many genes we identified using parametric methods that were not
previously reported as being differentially expressed in renal cell tumors are several oncogenes and
tumor suppressor genes that likely play important roles in renal cell carcinogenesis. This highlights
the need for rigorous statistical approaches in microarray studies.
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Background
Renal cancer will be diagnosed in 31,900 Americans in
2003 [1], making it the ninth most common malignancy.
Clear-cell renal cancer (RCC) is the most frequent type of
renal cancer, accounting for 80–85% of adult renal neo-
plasms. Moreover, many RCC patients (20–30%) present
with metastatic disease. Despite substantial progress in
the understanding of renal cancer biology, the most effec-
tive treatment for RCC remains surgical extirpation.
Improved medical therapies are greatly needed for
patients who present at an advanced stage, and develop-
ment of rational approaches will be driven by insights
into renal cancer biology.

The von Hippel-Lindau tumor suppressor VHL plays a key
role in RCC. Biallelic VHL gene defects are found in 75%
of sporadic renal cancers [2]. Moreover, loss of VHL or
chromosome 3p is likely an initiating event in renal can-
cer pathogenesis. Comparative genome hybridization and
mathematical modeling support this assertion [3]. In
addition, renal tumorigenesis in VHL disease appears to
be a multistep process, as development of VHL-deficient
renal cysts precedes onset of renal cancers [4]. VHL muta-
tions impair ubiquitination of the hypoxia-inducible HIF
alpha transcription factors and thereby promote overex-
pression of HIF target genes, such as angiogenic factors
[5]. Thus, early VHL loss initiates a molecular cascade that
facilitates renal oncogenesis. Gene regulatory and genetic
events subsequent to VHL loss must therefore be critical to
renal cancer pathogenesis.

Renal cancers are highly resistant to chemotherapy and to
radiotherapy. Although the multi-drug resistant protein
transporter has been implicated in chemo-resistance, no
mechanism has been proposed for irradiation resistance.
Gene expression may provide insight into the refractory
nature of these tumors. Other molecular pathways involv-
ing the initiation, progression, and metastasis of RCC
await identification.

Genome-wide expression analysis using high-density
nucleic acid microarrays is one approach to identifying
key molecular events and pathways involved in renal can-
cer. Several microarray studies of RCC gene expression
have already been published but our analysis indicated
that these studies either did not use enough samples, com-
plete enough arrays and/or appropriate analytic methods
to identify the bulk of genes that are affected by renal can-
cer. We have analyzed gene expression in RCC tumors and
adjacent normal tissue using Affymetrix U133 microarrays
and have identified 1,234 that are significantly differen-
tially expressed in RCC by three-fold or more and estimate
that this list includes > 95% of all such genes. Among
these differentially expressed genes are a number of genes
involved in hypoxia, angiogenesis, apoptosis, and metas-

tasis as well as a number of oncogenes and tumor suppres-
sor genes that have not been reported previously as being
differentially expressed in other microarray-based RCC
expression profiling studies. We discuss possible explana-
tions for the sensitivity of our parametric analysis.

Methods
Sample preparation and RNA isolation
IRB approval and informed consent were obtained for the
procurement of tissue at the Cleveland Clinic Foundation.
Patient samples were chosen to represent the grading
spectrum (Fuhrman 1–3) of kidney clear cell carcinoma.
Eighteen frozen tissue samples of RCC tissues and patient-
matched normal kidney tissues from 9 patients were
mechanically disrupted in TriZol reagent (Life technolo-
gies) using a PowerGen 35 tissue homogenizer (Fisher Sci-
entific). Total RNA was isolated from each sample after
chloroform extraction and isopropanal precipitation fol-
lowing the manufacturer's procedures (Life technologies).

RNA labeling and hybridization
Using a poly-dT primer incorporating a T7 promoter, dou-
ble-stranded cDNA was synthesized from 10 µg total RNA
using a Superscript cDNA Synthesis Kit (Invitrogen,
Carlsbad, CA). Double-stranded cDNA was purified by
phenol/chloroform extraction. The aqueous phase was
isolated using Phase-Lock Gel Heavy (Brinkmann Instru-
ments, Westbury, NY) and the cDNA ethanol precipitated.
Subsequently, biotin-labeled cRNA was generated from
the double-stranded cDNA template though in-vitro tran-
scription with T7 polymerase using a BioArray High Yield
RNA Transcript Labeling Kit (Enzo Diagnostics,
Farmingdale, NY). The biotinylated cRNA was purified
using RNeasy affinity columns (Qiagen, Valencia, CA).
Biotinylated cRNA (20 µg)was fragmented in 40 mM Tris-
acetate, pH 8.1, 100 mM KOAc, 30 mM MgOAc, for 35
min. at 94°C, to an average size of 35 to 200 bases. Frag-
mented, biotinylated cRNA (10 µg), along with hybridiza-
tion controls (Affymetrix, Santa Clara, CA), were
hybridized to Affymetrix Human Genome U133A and
U133B GeneChip arrays. The arrays were hybridized for
16 hrs. at 45°C and 60 rpm. Following hybridization,
arrays were washed and stained according to the standard
Antibody Amplification for Eukaryotic Targets protocol
(Affymetrix, Santa Clara, CA). The stained GeneChip
arrays were scanned at 488 nm using a G2500AGeneArray
Scanner (Agilent, Palo Alto, CA) and Microarray Suite 5.0
software (Affymetrix, Santa Clara, CA).

Data Quantification and Normalization
Following data acquisition, the scanned images were
quantified using Microarray Suite 5.0 (MAS 5.0) software
(Affymetrix, Santa Clara, CA) yielding a signal intensity
for each probe on the GeneChip. The signal intensities
from the twenty-two probes for each gene were then used
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to determine an overall expression level and measure of
sequence-specific hybridization according to algorithms
implemented in MAS 5.0. The arrays were then linearly
scaled to an average expression level of 500 units on each
chip.

Data Analysis
Most analytic steps were performed using Excel (Micro-
soft, Redmond, WA) with a combination of built in func-
tions and custom formulae except as follows. Principal
Components Analysis was performed with DecisionSite
(Spotfire, Sommerville, MA). Spearman Correlation Anal-
ysis was performed with an on-line calculator at the Insti-
tute for Phonetic Science at the University of Amsterdam
[6]. Hierarchical clustering was performed with Cluster
and visualized with Treeview [7]. The distribution of
matched and unmatched tumor / adjacent-normal-tissue
hybridization-intensity ratios was calculated with a PERL
script we wrote for this purpose. The Fisher Exact Test was
performed with an online calculator that is part of Daan
Uitenbroek's Simple Interactive Statistical Analysis (SISA)
package [8]. Power calculations were performed using a
javascript we customized for this purpose based on the
SISA javascript power calculator.

Results
To determine the genome-wide changes in gene expres-
sion that accompany clear-cell carcinogenesis, we per-
formed expression analysis using the Affymetrix U133A
and U133B GeneChips. Together, these arrays contain
approximately 45,000 probesets designed to detect the
expression of approximately 39,000 different transcripts
derived from 33,000 well-substantiated genes. Total RNA
was isolated from clear-cell carcinoma tissue removed
from nine patients during radial nephrectomy as well as
adjacent normal renal tissue present in the same surgical
samples. We refer to the patients by an anonymous ID,
and to the carcinoma tissue obtained from each patient by

prefixing the patient ID with a "C" and prefixing the
patient ID with a "N" when referring to their normal tis-
sue. For three patients, the RNA from either the RCC or
adjacent-normal tissue was not of sufficient quality for
hybridization (Table 1).

Sample filtering
To increase the power of our analysis of differential gene
expression, we first performed several tests to identify any
defective samples in our dataset while retaining those
with interesting biological variability. We used the ratio of
sequence-specific to non-specific hybridization summa-
rized in the "absent/present calls" generated by Microar-
raySuite 5.0 for each probeset to determine the fraction of
probesets in each sample with insignificant sequence-spe-
cific hybridization in that sample but significant
sequence-specific hybridization for the same probeset in
each of the remaining samples (fraction of uniquely
absent probesets). For comparison, we also determined
the fraction of uniquely present probesets for each sample
– the fraction of probesets where significant sequence-spe-
cific hybridization is only detected in that one sample.
There were 2,939 probesets where sequence-specific
hybridization is detected in all but one of the samples and
2,980 where sequence-specific hybridization is detected
in only one sample. Figure 1 shows how many of these
uniquely absent and uniquely present probesets are con-
tributed by each sample. While the distribution of
uniquely present probesets per sample has a roughly nor-
mal distribution, the distribution of uniquely absent
probesets per sample does not. N032 contributes 2,104 or
71.6% of the uniquely absent calls and is an outlier by the
Grubb's Test (mean = 163.28, SD = 491.11, Z = 3.95, p <
0.01). We also found that the scaling factor required to
bring the mean intensity of sample N032 hybridized to
the U133A array to 500 (the arbitrary mean target value to
which we normalized all the arrays) was an extremely
high outlier (N032 U133A scaling factor = 21.15, mean =

Table 1: Clinical data on samples for gene-expression analysis

Sample Code age gender kidney grade capsule penetration sinus invasion tumor RNA normal RNA

1 51 M left III - + - +
2 67 M right II - + + +
3 50 M left II - - + +
4 65 M left I + - + +

001 58 M left I + - + +
005 64 M right I - - + +
011 55 M left III + - + -
023 72 F right I + - + +
032 65 F right III + + + -*
035 70 F right III + - + +

* The RNA from patient 032's normal kidney tissue is described in detail in the text.
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7.06, SD = 4.05, Z = 3.47, p < 0.01) while the scaling factor
of sample N032 hybridized to the U133B, while the high-
est U133B scaling factor, was not an outlier (N032 U133B
scaling factor = 41.47, mean = 20.98, SD = 8.10, Z = 2.53,
p > 0.01). Since these data argue that differences in sample
N032 are unlikely to result from a biological difference
between N032 and the other samples, we have concluded
that N032 has a technical defect and have excluded the
data obtained from this sample from further analysis. The
gene expression data generated by this study is freely avail-
able from the NCBI Gene Expression Omnibus and has
been submitted under accession GSE781 [9].

Gene filtering
Since not every gene that is interrogated by probesets on
the U133A and U133B arrays is likely to be expressed in
normal or diseased kidney tissue, we sought to eliminate
the hybridization intensity data from probesets that detect
genes that are not expressed in our samples. We retained

all probeset hybridization intensities where significant
sequence-specific hybridization is detected in at least one
of the samples (as measured by being called present). This
cutoff likely retains a large number probesets that are in
fact not reliably detected but also allows our dataset to
capture the greatest amount of variability in gene expres-
sion between samples. Removing probesets where there is
no significant sequence-specific hybridization in any of
the samples reduces the number of probesets in our data-
set from 44,792 to 27,609. We next annotated the
probesets with information about the transcripts that they
detect using information obtained from the Affymetrix
NETAFFX database (version March 1, 2003) [10]. We were
able to map all but 492 of these probesets to a unigene
cluster using this database. The remaining 492 probesets
are designed to detect the expression of EST's that are not
assigned to unigene clusters.

Identification of failed samplesFigure 1
Identification of failed samples. Histogram of uniquely absent (uniquely poor sequence-specific hybridization, open bars) and 
uniquely present (uniquely significant sequence-specific hybridization, closed bars) contributed by each sample
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Sample relatedness
With this filtered dataset we sought to test the hypothesis
that clear-cell carcinoma tumors would have significant
differences in gene expression when compared with
neighboring normal renal tissue. To test this hypothesis
we performed a principal-components analysis to identify
the primary axes upon which the samples vary and how
the samples are distributed along these axes. As expected,
the most significant axis of variation in gene expression
among the samples accounts for 91.5% of the variation
and predominantly distinguishes gene expression in
tumors from gene expression in adjacent normal tissue
(Figure 2A). While all of the cancer samples cluster at one
end of the major axis of variation (PC-1) and most of the
normal tissues cluster at the other end, one normal tissue
sample (N035) has a pattern of gene expression that is
intermediate between tumor and normal. We could not
identify any unique clinical parameter in patient 035
which would account for the abnormal pattern of gene
expression in the tissue adjacent to her tumor. One possi-
bility that we cannot exclude is that this normal tissue
sample contains a mixture of normal and cancerous
tissue. The second major axis of variation accounts for
4.1% of the total variation in gene expression and also
highlights a heterogeneity in gene expression for which
we cannot provide a satisfactory biological explanation:
the bulk of the cancer samples cluster at one end of the
PC-2 axis while the tumor from patient 005 is alone at the
other end of this axis. The third major axis of variation
(PC-3, Figure 2B) accounts for 1.5% of the total variation
in gene expression and separates the tumor samples
roughly according to the Fuhrman grade of the tumor:
Fuhrman grade I tumors are at one end of the axis, grade
III tumors are at the other, and grade II tumors are largely
in between grade I and grade III. The ordered relationship
between tumor grade and position along the PC-3 axis is
highly significant (Spearman rank-order correlation coef-
ficient rs = 0.88, p = 0.003). Interestingly the three grades
of tumors do not fall into obvious tight clusters, but rather
spread out in a continuum on the PC-3 axis. This suggests
that the patterns of gene expression that underlie the mor-
phologic differences between the different tumor grades
may be more continuous than discrete. We compared the
ability of principal-components analysis to identify simi-
larities in the patterns of gene expression between samples
with hierarchical clustering (Figure 2C) and found that
the principal-components analysis was more informative.
The strengths of PCA for this analysis are that it does not
require the samples to be organized into a binary tree
structure and allows for minor sources of variation in gene
expression to be visualized independently of major
sources.

Analysis of differential gene expression
We next sought to determine if variation in gene expres-
sion between patients that is independent of disease state
would affect the dispersal of gene-expression ratios. If
renal gene expression varies strongly among individuals
we would need to perform a paired t-test and discard any
samples for which we did not have matched tumor and
normal samples from the same patient. However if renal
gene expression is relatively constant among individuals,
we could perform an unpaired test and include all of the
samples for which we had either normal or tumor hybrid-
ization intensities. To determine if renal gene expression
is relatively constant between individuals we first deter-
mined the distribution of the hybridization intensity
ratios for every probeset, comparing each patient's tumor
with their adjacent normal tissue. We next determined the
distribution of ratios when we compared each patient's
tumor with the normal tissue sample from each of the
other patients. The distribution of these ratios is presented
in Figure 3 which indicates that a patient's tumor has a
pattern of gene expression slightly more similar to their
own adjacent normal tissue than to the normal tissue of
other individuals. These patient-specific differences in
renal gene expression could be the result of environmen-
tal or genetic factors.

We next determined if these inter-patient differences in
gene expression were strong enough to make a paired-
sample t-test more powerful than an unpaired t-test for
detecting gene expression differences between tumor and
normal renal tissue. The paired-sample design would only
use samples from seven patients and would result in an
error measurement with six-degrees of freedom. An
unpaired design would use nine tumor samples and eight
normal tissue samples and would result in an error meas-
urement with sixteen-degrees of freedom. As a result of
the reduced degrees of freedom in the paired-sample
design, we would therefore only expect the paired-sample
design to be more powerful at detecting differential
expression if the inter-patient variability in gene expres-
sion were stronger than the variability between tumor and
normal renal tissue. To determine if this is the case, we
compared the results of both types of analysis.

We first identified probesets that exhibit differential
hybridization intensity in clear-cell carcinoma using a
two-tailed Student's t-test in which we assigned the tumor
samples to one group and the normal kidney tissue to a
second group. We performed t-tests sequentially on each
probeset in our data set and established a dual threshold
of maximum p-value and minimum fold-change to iden-
tify the subset of probesets that we consider to have
significantly and meaningfully changed expression levels
between the clear-cell carcinoma tissue and normal renal
tissue. We chose to focus on those probesets with a t-test
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Variation in gene expression as a function of sample-typeFigure 2
Variation in gene expression as a function of sample-type. A & B. Samples plotted as a function of their loading for the primary 
axes of variation in gene expression as identified by principal components analysis. A. Samples plotted on the primary (PC-1) 
and secondary (PC-2) axes of variation. PC-1 accounts for 91.5% of the variation in gene expression and PC-2 accounts for 
4.1% of the variation. The primary axis of variation in gene expression organizes the samples according to whether they are 
from tumor or adjacent normal tissue. B. Samples plotted on the primary and tertiary (PC-3) aces of variation. PC-3 accounts 
for 1.5% of the variation in gene expression. The tertiary axis of variation in gene expression organizes the tumor samples 
according to their Fuhrman grade. C. Hierarchical clustering of the samples in which the height of the vertical lines are propor-
tional to the degree of dissimilarity between nodes. In all three panels the samples are labeled with the sample ID and the sym-
bols are coded to represent sample type (large symbols represent tumor samples, small symbols represent normal tissue 
adjacent to the tumor), the Fuhrman grade of the tumor (filled symbols represent grade I, shaded symbols represent grade II, 
open symbols represent grade III), and whether the tumor had penetrated the renal capsule (round symbols represent pene-
trant tumors).
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p-value < 0.03. We chose this threshold because if there is
no difference between the two types of tissue, a false-pos-
itive threshold of p < 0.03 would on average identify 828
changed genes in our dataset of 27,609 probesets while
we observed 7,685 probesets that showed differential
expression at this false-positive threshold: giving us an
estimated false-discovery rate of 11% [11]. We chose to
focus on those probesets amongst these 7,685 that are
also either induced or repressed greater than 3-fold as
determined by dividing the geometric mean of the hybrid-
ization intensities obtained from the tumor samples by
the geometric mean of the adjacent normal tissue intensi-
ties. We chose a three-fold-changed threshold because we
felt that the differential expression of less-changed genes
would be more difficult to interpret. We estimate our
false-negative rate at the chip-wide mean hybridization
intensity to be less than five percent with these false-posi-
tive and fold-change thresholds. Combining the 3-fold
change threshold with the p < 0.03 threshold leaves 1,706
probesets (approximately 6.2% of the probesets in our fil-
tered dataset) that are differentially expressed in clear-cell
renal-cell carcinoma.

We next compared the results of this unpaired analysis to
an analysis of the seven patient-matched tumor/normal
pairs using a paired-sample t-test. With this analysis there
are 12 probesets that meet the dual 3-fold-change and p <
0.03 threshold that are not identified as being differen-
tially expressed in the unpaired analysis. In contrast, there

are 622 probesets that we identify as being differentially
expressed in the unpaired analysis that are not identified
in the paired-sample analysis. These results suggest that
while there may be some genes that vary strongly both
between patients and between tumor and normal renal
tissue, the majority of genes that vary strongly between
tumor and normal renal tissue show relatively little inter-
patient variability and that as a result the unpaired t-test is
more powerful for detecting these differences. The 12
probesets identified as being > 3-fold differentially
expressed only by the paired-sample t-test are listed in
Additional file 1.

As there are multiple probesets for some of the genes
interrogated by the Affymetrix U133 arrays, we next
sought to reduce our dataset from the probeset level to the
gene level. We found that the 27,609 probesets for which
we had detected sequence-specific hybridization
correspond to 19,700 unique unigene clusters and 492
probesets for which no unigene information is currently
available. The 1,706 probesets that we identified as being
differentially expressed in the tumor tissue samples corre-
spond to 1,448 unigene clusters and 23 probesets for
which no unigene information is available. 353 of the
1,448 unigene clusters for which we had identified a dif-
ferentially expressed probeset have at least one additional
probeset that did not meet our criteria for differential
expression.

There are several possible explanations for heterogeneous
differential expression among multiple probesets that
map to a single unigene cluster including alternative splic-
ing, false positives, incorrect unigene cluster assignment
and probeset-specific differences in hybridization varia-
bility. Upon finding little evidence for alternative splicing
among several unigene clusters with multiple probesets
that we picked at random, and with our primary goal
being the identification of differentially expressed genes,
we decided to focus on the other possible causes of
probeset heterogeneity. While the most conservative
approach for minimizing false positives would be to
exclude any unigene cluster for which at least one
probeset failed to provide evidence of differential expres-
sion, we felt that this approach is overly conservative. As
an alternative, for all the unigene clusters that are interro-
gated by multiple probesets we calculated the geometric
means of the p-value and the fold-change of the individ-
ual probesets to arrive at a summary value. The average
values of 237 of the 353 heterogeneous probeset clusters
were now below the critical thresholds we had established
for differential expression and were eliminated. This
results in 1,211 unigene clusters and 23 unannotated
probesets that show differential expression in the renal-
cell carcinoma samples. A complete list of the 1,706 dif-
ferentially expressed probesets can be found in Additional

Patient-specific variation in renal gene expressionFigure 3
Patient-specific variation in renal gene expression. Hybridiza-
tion intensities are slightly more similar between a tumor and 
the tissue adjacent to that tumor than they are to tissue adja-
cent to the tumors of other patients. The frequency (y-axis) 
of varying degrees of differential expression (x-axis) when 
comparing the hybridization intensity for every tumor-sam-
ple probeset with the corresponding measurement in adja-
cent tissue is shown with the thin line. The frequency of 
varying degrees of differential expression observed when 
comparing the same tumor hybridization intensities with the 
corresponding measurements from tissues adjacent to the 
tumors of other patients is shown with the thick line.
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file 2. This table includes columns which indicate if mul-
tiple probesets map to the same unigene cluster, whether
one or more of these additional probesets failed to meet
our criteria for differential expression, and whether the
corresponding unigene cluster was retained on our list of
differentially expressed unigene clusters. A complete list
of the 929 probesets that map to a unigene cluster where
at least one probeset provides evidence for differential
gene expression and at least one probeset does not show
evidence of differential expression can be found in Addi-
tional file 3.

Comparison with other studies of RCC gene expression
We are aware of seven previous studies that use large-scale
expression analysis to identify differences in gene expres-
sion between renal tumors and normal kidney tissue.
Young et al. hybridized RNA from seven tumors and seven
patient-matched normal kidney tissue samples to a 7,075
element cDNA microarray [12]. Their panel of tumors
contained four clear-cell carcinomas (two Fuhrman grade
II, one grade III and one grade IV), two onocytomas, and
one chromophobe carcinoma. They identified 189 genes
that showed noteworthy differential expression using a
criterion of being either induced or repressed more than
two-fold in two or more of the tumor samples. We were
able to map 137 of these 189 genes to unigene clusters
represented on the U133A and B arrays that had signifi-
cant gene-specific hybridization in at least one of our sam-
ples. We did this by translating the GenBank accession
number reported by Young et al into the corresponding
unigene ID and then searching our dataset annotation for
this ID. We observed differential expression for 50 of
these 137 genes (Figure 4A) or 36.5%.

Higgins et al hybridized RNA from 41 tumor and 3 nor-
mal tissue samples to a 22,648 element cDNA microarray
using a common reference RNA for normalization [13].
23 of the tumor samples were from clear cell renal carci-
nomas. We downloaded the Higgins et al dataset and
removed data points where the pixel to pixel correlation
coefficient between the experimental RNA and the refer-
ence RNA channel is less than 0.6. We next excluded those
genes that had fewer than two data points in either the
clear cell carcinoma group or the normal kidney group.
Due to the small number of adjacent normal tissue sam-
ples in the Higgins et al dataset, this resulted in a dataset
with measurements for only 7,943 genes – of which we
were able to map 6,285 to one or more genes in our data-
set using the unigene cluster annotation. We performed t-
tests on the filtered Higgins et al. dataset to compare the
expression of these genes in clear-cell carcinoma and nor-
mal tissue and found 1,177 cDNA's that showed evidence
of differential expression (p < 0.03). We used the same p-
value threshold as the one we used in analyzing our data-
set despite the fact that this gives a false-discovery rate of

approximately 20% (as compared with the 11% false-dis-
covery rate in our dataset). Of these 1,177 cDNA's, 217
were also induced or repressed by more than 3-fold. 182
of these changed cDNA's were among those that we were
able to map to our dataset. We observed differential
expression for 86 of these 182 genes (Figure 4B) or 47.3%.

Takahashi et al hybridized RNA from 29 clear-cell carcino-
mas to a 21,632 element cDNA microarray [14]. They
identified 77 genes that are down-regulated by three-fold
or more in 75% or more of the tumor samples compared
to adjacent normal tissue and 32 genes that were up-regu-
lated by three-fold or more by similar criteria. We were
able to map 82 of these 109 genes to our dataset by map-
ping the Genbank accession numbers they reported to
Unigene identifiers and/or gene symbols. We observe dif-
ferential expression for 68 of these 82 genes (Figure 4C) or
82.9%.

Gieseg et al hybridized RNA from 13 renal cell carcinoma
samples (9 clear cell, 2 chromaphobe, 1 urothelial carci-
noma, and 1 adenoma) and 9 adjacent normal tissue sam-
ples [15] to the Affymetrix HuGeneFL array that contains
probes for approximately 5600 genes. They identified 456
genes that were changed greater than 2-fold and called as
significantly changed by the Affymetrix Data Mining Tool
software package. Of these genes, 235 were changed only
in the chromaphobe samples while 221 were changed in
the chromaphobe and clear-cell or the clear-cell samples
alone. The authors report the gene symbols for 85 of these
221 genes and we were able to map 79 of these 85 to genes
in our dataset. We observed differential expression for 25
of these 79 genes (Figure 4D) or 31.6%.

Boer et al. hybridized RNA from clear-cell renal-cell carci-
noma tissue samples and adjacent normal tissue from 37
patients to a 31,500 element cDNA microarray [16]. They
identified 1,581 cDNA's that are differentially expressed
in the tumor tissue and we were able to map the IMAGE
clone ID these cDNAs to 1,139 genes in our dataset via
either the Unigene cluster ID or gene symbol. We were
able to translate each IMAGE Clone ID to Unigene ID's
and/or gene symbols using the SOURCE program from
Stanford [17]. We observed differential expression for 282
of these 1,139 genes (Figure 4E) or 24.8%

We were unable to make a useful comparison between our
results and the remaining two RCC microarray studies.
The study by Moch et al. reports the observation of 89
genes that are differentially expressed in the tumor cell
line CRL-1933 compared with normal kidney tissue [18].
They identified these genes by hybridizing radioactively
labeled RNA to the 5,184 element Research Genetics
Human Gene Filters, Release 1 array. However they only
report the overexpression of vimentin specifically. We see
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Our observations of genes identified as being differentially expressed in other studies of RCC gene expressionFigure 4
Our observations of genes identified as being differentially expressed in other studies of RCC gene expression. The 20,000 
genes for which we measured significant sequence-specific hybridization are plotted in each scatter plot as a function of the 
fold change between the tumor and adjacent normal tissue (log2, on the x-axis) and the statistical significance of the change (-
log10, on the y-axis). In each panel, our observations of genes identified as being differentially expressed in the indicated study 
are highlighted in red.
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vimentin significantly upregulated in our dataset (2.3
fold, p < 10-4) but have not included it on our list of
changed genes because the gene is less than three-fold
induced. Skubitz and Skubitz hybridized RNA obtained
from 8 renal cell carcinoma, 11 normal kidney, and 8 dis-
eased non-malignant kidney tissue samples to the Affyme-
trix U95 array set [19]. They report the gene titles for 69
genes that are induced 4.9-fold or more and 29 genes that
are repressed 10-fold or more in the RCC samples com-
pared with normal kidney. However since gene title
descriptors are not standardized, we were unable to map
these gene descriptors to genes in our dataset. As a result,
we have not determined how many of the genes that they
report are also significantly changed in our dataset.

Having performed these basic comparisons between our
dataset and other RCC-expression profiling experiments,
we next sought to identify genes that have been identified
as differentially regulated in multiple studies. Given the
different microarray platforms, analytic techniques, and
reporting strategies employed in the different studies neg-
ative results from this comparison should be interpreted
cautiously (the failure of a gene to be reported as being
differentially expressed in multiple studies does not indi-
cate that the gene is not in fact differentially expressed in
RCC), but agreement across multiple papers may be sig-
nificant – especially given the differences between the
studies. We chose to focus on those genes that have been
identified as having noteworthy differential gene expres-
sion in three or more studies. We identified 113 genes for
which three or more studies (including this study) identi-
fied a noteworthy change in RCC gene expression (Figure
5). In Figure 5 we report the gene symbols used in the uni-
gene database as reported through NETAFFX.

Only four of the genes reported to be differentially
expressed in three or more microarray studies of renal car-
cinoma gene expression are not on our list of differentially
expressed genes. In all four cases we detected a significant
change in the expression of these genes but the magnitude
of the observed change was less than our three-fold
change threshold (Table 2). Takahashi et al. use a three-
fold change threshold similar to ours and also do not
report Vimentin, TGF-alpha and Annexin A1 among their
list of noteworthy changed genes. However, Takahashi et
al. do report the differential expression of FCGR3A sug-
gesting that the small fold-change we observe for this gene
could be erroneous despite observing similar differential
expression across two probesets for this gene.

Keyword analysis of differentially expressed genes
We looked for classes of genes that are over represented in
our list of differentially expressed genes relative to the
complete list of genes we assayed. To do this, we picked
keywords that are associated with processes known to be

important in renal cell carcinogenesis in particular as well
as additional keywords that describe processes involved
generally in carcinogenesis. We searched the BioKnowl-
edge Library (Incyte Genomics, Palo Alto, CA) [20] for
genes that had these keywords anywhere in their descrip-
tion to come up with a list of gene symbols associated
with each keyword. We next used these lists of keyword-
associated genes to query the entire list of genes for which
we had detected sequence-specific gene expression and
tabulated the number of genes we were able to match as
well as those matching genes that we had identified as
being either differentially induced or repressed. To deter-
mine if the genes associated with each of the thirteen key-
words are over or under represented among the
differentially expressed genes, we used a two-tailed Fisher
exact test to determine whether the fraction of induced or
repressed keyword-associated genes is significantly differ-
ent from the overall fraction of genes that are either
induced or repressed. Since this process involves testing
twenty-six hypotheses, we adjusted the threshold p-value
for evidence of significant over- or under-representation
to 1.92 × 10-3 to maintain an approximate overall 5%
probability of incorrectly identifying any of the keywords
as being over- or under-represented.

We did not find evidence of significant under-representa-
tion of genes associated with any of the thirteen keywords
in our lists of differentially expressed genes. There is how-
ever strong evidence for over-representation of genes asso-
ciated with the keywords hypoxia, angiogenesis, tumor-
necrosis factor, apoptosis, interferon, drug resistance and
metastasis among the genes that are up regulated in renal
cell tumors as well as strong evidence for over-representa-
tion of genes associated with the keyword kidney among
the genes that are down regulated in the tumors (Table 3).
190 genes, (about 15%) of the significantly differentially
regulated genes, are associated with one or more of these
statistically significant keywords (Additional file 4.)

Discussion
We have identified 1,233 genes that are significantly dif-
ferentially expressed by 3-fold or more in clear cell tumors
relative to adjacent normal tissue isolated from the same
surgical samples. Our ability to identify so many differen-
tially expressed genes by measuring mRNA hybridization
intensities from just ten surgical samples was strongly
effected by our data analysis strategy.

Perhaps most importantly, we found that an unpaired t-
test strategy was more powerful than a paired-sample t-
test for identifying differentially expressed genes. This sug-
gests that the variability between patients might be less
than our hybridization-intensity measurement error. We
propose that in two-channel hybridization experiments
(like many of the previous renal cell tumor expression
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Genes identified as being differentially expressed in three or more studies of RCC gene expressionFigure 5
Genes identified as being differentially expressed in three or more studies of RCC gene expression. Each column represents a 
different microarray study of RCC gene expression. In each column, filled boxes indicate that the gene was reported as being 
differentially expressed in RCC except in the case of the Higgins et al. column where filled boxes indicate that the gene is dif-
ferentially expressed based on our re-analysis of their data. Dark grey boxes indicate that a gene was reported as induced in 
RCC compared to normal kidney tissue while light grey boxes indicate that a gene is repressed. The gene identifier reported is 
either the gene symbols associated with a sequence in the unigene database as reported by NETAFFX or the unigene cluster 
ID. The gene identifiers in bold type refer to currently unannotated sequences.
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profiling experiments) it may also be beneficial to average
hybridization intensities across many samples rather than
average the ratio of hybridization intensities – despite the
added inter-array normalization requirements – to arrive
at more accurate estimates of the difference in expression
between groups.

Another key to the sensitivity of our analysis was remov-
ing samples that showed subtle technical defects. We did
this by looking for samples with an unusually large
number of intensity measurements in which the ratio of
sequence-specific to non-specific hybridization is low,
and identified one sample, N032, that was a clear outlier
in this regard. Had we included this sample in our analysis
we would have only identified about 6,800 probesets that
display evidence of significant differential expression (p <
0.03) compared with the nearly 7,700 probesets we iden-
tified when not including this sample. In light of the dra-
matic effect of excluding this sample, we also examined
the consequences of having included other samples that
might be atypical for technical or non-technical reasons.

One such sample is the adjacent normal tissue from
patient 035. This sample shows a pattern of gene

expression that by principal-components analysis appears
to be a mixture of the patterns seen in the normal tissue
and clear cell tumor samples. Since we have no compel-
ling reason to think that the pattern of gene expression we
observe in sample N035 results from something other
than normal biological variability, we have retained this
sample in our analysis. Had we excluded N035, the
number of probesets with evidence of significant differen-
tial expression would have increased to almost 8,100.

The other atypical sample that we have retained in our
analysis is the tumor sample from patient 005. This sam-
ple has a pattern of gene expression that is the largest
source of variation among the patterns of gene expression
seen in the tumor samples as measured by principal com-
ponents analysis. Excluding this sample would have
increased the number of differentially expressed probesets
by 89. Taken together, the effect of removing N035 and
C005 suggests that our estimate of being able to identify
greater than 95% of the genes with average signal intensity
that are changed three-fold or more needs to interpreted
somewhat cautiously as our data is unlikely to be uni-
formly normal and our power to detect differential expres-
sion might therefore be lower.

Table 2: Genes previously identified as differentially expressed in RCC not identified in our study.

Gene -log10 p-value log2 fold-change

VIM 5.66 1.22
FCGR3A 3.04 0.94
TGFA 2.78 1.23
ANXA1 2.30 1.17

Table 3: Keywords associated with RCC-differentially-expressed genes

keyword # of genes % up % down p up p down

all genes 20,199 1.8 4.3
hypoxia 42 28.6 2.4 < 10-4 1.0000

angiogenesis 115 10.4 7.8 < 10-4 0.1044
tnf 140 8.6 1.4 < 10-4 0.1329

apoptosis 562 5.2 3.4 < 10-4 0.3936
interferon 90 10.0 0.0 0.0001 0.0539
resistance 40 12.5 2.5 0.0013 1.0000
metastasis 142 6.3 1.4 0.0019 0.1340

kidney 403 4.0 15.1 0.0055 < 10-4

nfκb 34 11.8 0.0 0.0049 0.4024
tumor suppressor 138 3.6 5.8 0.1916 0.3971

chromatin 93 1.1 1.1 1.0000 0.1886
oncogene 110 0.9 2.7 0.7261 0.6324

telomerase 27 0.0 0.0 1.0000 0.6269

Significant associations are bolded.
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We validated our approach of using the number of
uniquely poor sequence-specific probeset hybridizations
to eliminate sample N032 with a more generalizable
three-step approach of first identifying probesets that con-
tain an intensity measurement that significantly deviates
from the mean; next counting how many of these outlier
values are contributed by each sample; and then deter-
mining if the fraction contributed by any one of the sam-
ples is significantly different from the other samples. This
analysis also identifies sample N032 as a significant out-
lier (data not shown). But the probability of N032 being
an outlier is lower with this analysis than with our
analysis of hybridization sequence-specificity and is more
complex. The scaling factor N032 hybridized to the
U133A array is also exceptionally large suggesting that the
defect we detected in our "uniquely absent" analysis
might also be reflected in the scaling factor.

Another aspect of our data analysis strategy involved min-
imizing the number of false positives – genes that appear
to be differentially expressed in our particular samples but
are in fact expressed similarly in tumor and normal tissue.
One approach we have taken to reduce the absolute
number of false positives has been to reduce the number
of hypotheses of differential expression we have tested. To
do this, we chose not to test the hypothesis that any indi-
vidual probeset is differentially expressed in the absence
of strong evidence of sequence-specific hybridization to
this probset in at least one of the tumor or normal sam-
ples. By including only those probesets where there is sig-
nificant sequence-specific hybridization in one or more
sample, we reduced the number of probesets we tested for
differential expression from about 45,000 to just over
27,600. Our rationale for requiring significant sequence-
specific hybridization is that it would be otherwise impos-
sible to interpret the meaning of a differentially expressed
probeset if that differential expression couldn't then be
associated with a particular sequence and thereby a partic-
ular transcript. We set our threshold for evidence of signif-
icant differential expression such that the number of
probesets that we would expect to exceed this threshold
by chance alone is about 11% of the total number of
probesets that we observed to exceed this threshold. It is
quite likely that after applying our secondary threshold –
of only considering those probesets that are differentially
expressed by three-fold or more – that the fraction of false-
positives is less than 11% but this cannot be determined
directly.

By further characterization of the multiple probesets that
interrogate some of the genes represented on the Affyme-
trix arrays, it may be possible to further reduce the number
of hypotheses tested by testing for evidence of differential
gene-level rather than probset-level hybridization. We
found that the 27,600 probesets we analyzed for differen-

tial expression only interrogate 20,000 distinct unigene
clusters. Of the 12,500 probesets that map to unigene
clusters that are interrogated by multiple probesets, 5.8%
are significantly differentially expressed by more than 3-
fold, compared to 6.6% of the 14,600 probesets that map
to a unique unigene cluster (chi-square test, p = 5 × 10-4).
This suggests either that a subset of the multiple probesets
that interrogate a particular gene have a reduced ability to
detect differential expression or that it is more difficult to
reliably detect the expression of those genes that are inter-
rogated by multiple probesets. With a large enough collec-
tion of array experiments it might be possible to extend
the probeset filtering protocol to determine if any of the
multiple probesets that detect a single gene have a reduced
ability to detect differential expression using one portion
of the dataset, and eliminate these probeset measure-
ments from the remaining data which would be used for
the analysis of differential expression. Another strategy
would be to filter out the probesets using the same data
for filtering and analysis in a post-hoc scheme, but this
type of approach could easily result in over-filtering. We
took a conservative approach to the issue of multiple
probesets by averaging both the significance and the fold-
change across the probesets and this led us to discard
about 16% of the three-fold changed genes that we would
have retained using the post-hoc filtering strategy. An
important issue associated with all three of these
approaches for handling multiple probesets for any indi-
vidual gene is that if heterogeneous evidence for differen-
tial expression across multiple probesets is the result of
alternative splicing or incorrect unigene cluster assign-
ment, any conclusion about the expression of that gene as
a single entity will be invalid. Thus, while the most con-
servative approach would be to eliminate genes for which
there is heterogeneous evidence of differential expression
across multiple probesets, we chose the slightly less con-
servative approach of averaging the probesets since many
of the probsets for a single unigene cluster had similar
values.

Given the differences in gene-expression measurement
platforms, data-analysis strategies, and reporting tech-
niques, we were pleased to find that over a hundred of the
twelve-hundred genes that we identified as being differen-
tially expressed by three-fold or more in renal cell carci-
noma had also been identified in two or more of the five
previous studies of RCC gene expression with which we
compared our results. We failed to identify only four
genes that had been identified in three or more previous
studies. For all four genes, we found that each had statis-
tically significant evidence of a change in expression but
that our requirement for a three-fold or larger change pre-
vented us from scoring these genes as being differentially
expressed. The fact that we identified so many of the genes
that had been identified in multiple other studies suggests
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that our list contains an extensive catalog of three-fold dif-
ferentially expressed genes. Of the twelve-hundred genes
that we identify as being differentially expressed in RCC,
870 have not been previously reported.

Several factors related to the reporting of the data may
have reduced our ability to identify additional shared con-
clusions about genes that are differentially expressed
between the studies. First, Gieseg et al. only report 38% of
the genes they identified as being differentially expressed.
Second, for four of the datasets, we were only able to
match 72 – 79% of the reported gene identifiers with
genes in our dataset, and there might be additional agree-
ments among those genes that we were unable to compare
directly. Third, most previous studies of RCC gene expres-
sion have identified many fewer differentially expressed
genes than we report here and this decreases the
probability of finding agreements between our study and
at least two additional studies.

We saw the highest level of agreement (83%) between our
data set and the differentially expressed genes reported by
Takahashi et al. Several factors likely contribute to our
having identified differential expression for such a large
fraction of the genes identified in this study. First, Taka-
hashi et al. use a three-fold-change threshold similar to
our analysis. Second, Takahashi et al. use a large number
of patient samples in their analysis and this increases their
power to detect differentially expressed genes. Third,
while Takahashi et al. do not use an analysis strategy that
calculates a probability of differential expression, they do
use a very stringent sample-wise voting strategy (requiring
greater than three-fold differential expression in more
than 75% of the patient to normal comparisons) that may
in fact be more stringent than the parametric statistical
methods we used. It appears from highlighting the Taka-
hashi et al. genes on the "volcano plot" of our dataset
(genes plotted as a function of fold-change and statistical
significance) that of the fourteen genes that are differen-
tially expressed in the Takashi et al. dataset that are not
differentially expressed in our dataset, there appear to be
two classes of genes: six that we observe to be unchanged
and eight that are changed but where the differences do
not meet our criteria for differential expression. We sug-
gest that the six Takahashi et al. genes that are unchanged
in our dataset may reflect differences between the probes
used for detecting the expression of these genes in the two
distinct microarray systems.

When highlighting the differentially expressed genes from
our re-analysis of the Higgins et al. dataset on the volcano
plot of our dataset, we observe a similar apparent bifurca-
tion of our observations into a group of genes that show
very little change and another group of genes that is more
highly changed. Despite using a similar analysis strategy

for analyzing our dataset and our reanalysis of the Higgins
et al. dataset we only find evidence of differential expres-
sion for 47% of the genes identified in the re-analysis of
the Higgins et al. dataset. If we are correct that the genes
that show very little change result from probe differences,
it is possible that the rate of shared conclusions is influ-
enced by a large number of probe-specific platform differ-
ences as well as the false-discovery rates of each analysis
and/or an overestimation of our power to detect three-
fold changed genes (especially for genes with low hybrid-
ization intensity which tend to have higher measurement
error).

It is interesting that our observations of the differentially
expressed genes identified in the remaining three studies
do not show the same degree of apparent bifurcation
between genes that are unchanged and genes that are
changed but which did not meet our criteria for differen-
tial expression. These studies all use some sort of sample-
voting analysis strategy though it appears that the fold-
change and/or percent-vote thresholds are less stringent
than those used by Takahashi et al.

Despite the differences in analysis strategies, the degree of
shared conclusions about specific genes that are differen-
tially expressed in RCC tumors is much higher than would
be expected by chance alone. We were particularly inter-
ested to find that among the genes identified as differen-
tially expressed in three or more studies, sixteen have no
known function or informative homology to other genes
with known function. This argues strongly for the ability
of microarray-based expression profiling to identify genes
that are differentially expressed in a manner that is not
informed by our current understanding of underlying bio-
logical processes.

To begin the process of understanding what differential
gene expression can tell us about the biological processes
underlying renal cell carcinogenesis, we have taken a
directed approach of asking whether specific keywords
related to biological processes known to be important in
RCC and cancer are associated with a larger number of the
genes we have identified as being either induced or
repressed in RCC than would be expected by chance
alone. We found that genes associated with the keywords
hypoxia, angiogenesis, tumor-necrosis factor, apoptosis,
interferon, drug- and radiation-resistance, and metastasis
are enriched among our list of induced genes. Genes
associated with either the keyword kidney or renal are
enriched among our list of repressed genes.

Among the eleven differentially expressed genes related to
the keyword metastasis we were intrigued to find that
some are connected directly or indirectly to MAP kinase
and TNF-alpha. Expression of TIMP1 (induced 3.2-fold in
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RCC) and TNFAIP6 (induced 15.7 fold) are both induced
by treatment with TNF-alpha [21,22]. GPR54 (induced
8.2-fold) is the receptor for metastin and is upstream of
MAPK [23] as is endothelin1 (EDN1, induced 3.2 fold)
[24]. Endothelin1 and VEGF (both induced 3.2 fold) pro-
mote the migration of endothelial cells [25] and angio-
genesis [26].

ITGA5, MCAM, FXYD5, FUT3 and CHI3L1 – all associated
with metastasis – are involved in cell adhesion like
TIMP1. A number of other genes involved in cell adhe-
sion, cell migration, and/or cytoskeletal organization –
but not specifically known to be involved in metastasis –
are also changed in RCC.

A number of the genes associated with metastasis that are
induced in RCC also regulate or are regulated through
HIF1 in response to hypoxia. Transcription of VEGF and
endothelin1 are both stimulated by HIF1 [27] and
endothelin1 promotes the stabilization and accumulation
of HIF1-alpha [28]. EGLN3 a homolog of C. elegans EGL9
which is a prolyl hydroxylase that targets HIF1-alpha for
destruction [29] is induced 12.5-fold in RCC. HIF1-alpha
induces expression of carbonic anhydrase IX (induced 17
fold) [30] which is the renal cell carcinoma-associated
antigen G250 [31] and is induced in many cancer types.
HIF1-alpha is also responsible for the hypoxia-induced
expression of angiopoietin-like 4 (induced 24.2-fold),
insulin-like growth factor binding protein 3 (induced
10.0-fold), RTP801 (induced 4.2-fold) and PLOD2
(induced 3.5-fold) [30]. These changes in gene expression
are consistent with the model that HIF1-alpha accumula-
tion is a hallmark of renal cell carcinogenesis. The increase
in HIF1-alpha-dependent gene expression despite the
strong induction of EGLN3 suggests that HIF1-alpha is
resistant to degradation perhaps as a result of defects in
VHL-mediated proteolysis.

We were also intrigued to see the induction of the apopto-
sis-inhibitor BIRC3 (3.3-fold) which is induced by
hypoxia through a HIF1-independent mechanism [32] as
well as the induction of the chemokine receptor CCL5
(3.5-fold) which is repressed under hypoxic conditions
[33]. HIG2 (induced 7.4-fold) and ADORA3 (induced
3.4-fold) are also known to be induced in response to
hypoxia [34,35] though it is unclear if this is a HIF1-
dependent process.

We found a number of genes with oncogenic potential
that are induced in RCC that have not been noted in other
microarray studies of RCC gene expression. One such
gene is Axl (induced 3.5-fold), a receptor tyrosine kinase
that causes transformation when overexpressed in NIH
3T3 cells [36]. APOBEC3G (induced 4.0-fold) is highly
similar to the catalytic subunit of the RNA editing enzyme

APOBEC1 – overexpression of which causes elevated rates
of carcinoma in transgenic mice [37]. Both APOBEC3G
and APOBEC1 have a potent DNA-mutator phenotype
when expressed in E. coli [38]. We observed that IMUP, a
possible transcription factor that is up-regulated in SV40-
transformed cells [39], is induced 5.1-fold.

Additional genes identified as upregulated in renal cancer
are interesting from a tissue perspective. Several groups of
genes suggest increases in tumor vasculature and inflam-
mation. Endothelial cell specific genes found at increased
abundance include von Willebrand factor (8.2-fold
increased) and endothelial cell specific molecule-1
(ESM1) (3.0-fold increased) [40]. Platelet/endothelial cell
adhesion molecule-1 (PECAM1 or CD31) (4.1-fold
increased) is expressed highly on endothelium and in leu-
kocytes. Consistent with an overall inflammatory
response, several T cell expressed genes are increased,
which likely reflect T cell invasion. Moreover, classic
major histocompatibility complex, class II DQ beta 1
(4.2-fold increased) and DP beta 1 (3.0 fold increased) are
also increased. Perhaps consistent with tumor necrosis,
several toll-like receptors are upregulated as well, includ-
ing TLR7 (4.7-fold increased), TLR3 (4.5-fold increased)
and TLR2 (3.4-fold increased).

A suprising number of G protein coupled receptors (GPR)
and G protein signaling molecules are upregulated. These
include GPR4 (3.4-fold increased), GPR54 (8.2-fold
increased), GPR92 (3.4-fold increased), Rho GTPase acti-
vating protein 9 (3.3-fold increased), and particularly reg-
ulators of G protein signaling RGS1 (12.8-fold increased)
and RGS5 (7.8-fold increased). Although activity of these
pathways might be expected to increase with cellular
transformation, their increased expression suggests an
additional higher level of control of these pathways.

The majority of differentially expressed genes were down-
regulated. Moreover, many of the genes expressed at lower
levels in the renal cancers are ones normally expressed at
high levels in differentiated kidney tissue, such as renal
epithelial transporters. In addition, some lower expressed
genes are cell type-restricted and are therefore excluded
from the cancer, such as glomerular podocyte-specific
genes encoding the Wilms' tumor suppressor WT1,
nephrin and podocin. The notion that primarily "kidney"
genes are expressed at lower levels is also supported by the
keyword results.

Nevertheless, a small number of the downregulated genes
may be important in renal cancer biology due to their
tumor suppressor phenotypes. For example, the FHIT
tumor suppressor gene is frequently lost in renal cancer.
Reduced FHIT expression noted here might also reflect
this phenomenon. Surprisingly, the sequence-specific
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hybridization to the VHL tumor suppressor gene probeset
was not detected in normal kidney tissue on the Affyme-
trix U133B array, which may indicate a problem with the
VHL probeset. Thus, the group of downregulated genes
might still include some additional important growth
suppressors. For example, DLEC1, a gene deleted or
mutated in a variety of cancers which inhibits cell growth
when reintroduced into DLEC1-defective tumor cell lines
[41], is repressed 6.9-fold. GAS1, overexpression of which
causes growth arrest in p53-positive cell lines [42,43], is
repressed 5.4-fold. SSAT2, repressed 4.8-fold, is highly
similar to murine SAT which catalyzes the rate-limiting
step in polyamine biosynthesis. Overexpression of SAT
causes growth arrest in human breast carcinoma cells [44].
CALML3 which is induced in terminally differentiated
epithelial cells [45] and which may have reduced expres-
sion in lung carcinoma [46] is repressed 4.0-fold.
GADD45A, a p53-dependent DNA-damage inducible
gene that inhibits mitotic CDK activity [47] and is
required for DNA-damage induced growth arrest, is
repressed 3.9-fold. AUH, which is involved in degrading
AU-rich mRNA's – including many proto oncogenes [48]
– is repressed 3.9-fold. HRASLS2 (down 3.9-fold) is
highly similar to HRASL3 which is an anti-apoptotic
tumor suppressor [49]. ARHI (repressed 3.3-fold) is a
member of the Ras homolog gene family. Expression of
ARHI is lost in many ovarian and breast cancers [50]. We
also found three tumor suppressor genes to be upregu-
lated in RCC: the BRCA1-binding protein BARD1, the
CDK4 inhibitor CDKN2B, and Cystatin A.

Several genes involved in DNA synthesis (MCM5,
TOP2A), G2 (BUB2, HEC) and mitosis (DOCK2, PRC1)
are also induced in RCC. This could be the result of the
higher mitotic index of the tumor cells or could reflect
tumor-specific alterations to the cell-cycle machinery.

Among the genes that have not been previously noted to
be differentially regulated in RCC, we found that aldey-
hyde oxidase and sulfite oxidase but not xanthine dehy-
drogenase (the three human enzymes that use a
molybdenum cofactor [51]), are down regulated. We also
found that MOCS1 and molybdopterin synthase [52] as
well as gephyrin [53], three of the four enzymes involved
in molybdenum cofactor biosynthesis, are also down reg-
ulated. It is unclear if or how the differential expression of
these molybdenum-related genes relates to RCC disease.

We also found that a component of the variation in gene
expression among RCC tumors is significantly correlated
with the Fuhrman grade of the tumor, and that this varia-
tion is more continuous than distinct between the Fuhr-
man grades. Since our study was designed to identify
genes that are differentially regulated in RCC, we did not
analyze enough samples of each of the different tumor

grades to identify genes that vary as a function of Fuhrman
grade with a rigorous false-positive threshold. Analysis of
additional tumors from the different Fuhrman grades
should allow us to identify these genes and may provide
additional insight into the biological processes underly-
ing RCC progression.

Conclusions
Filtering of microarray-derived gene expression data to
remove defective samples and undetected genes accompa-
nied by parametric analysis resulted in the identification
of 1,234 genes that are differentially expressed by more
than three-fold in renal cell carcinoma which we estimate
account for > 95% of all such genes. 800 of these genes
had not been reported as being differentially expressed in
any of five previous studies of RCC gene expression. Many
of the previous studies of RCC gene expression use ana-
lytic strategies that identify differential expression by the
fraction of tumor / normal comparisons that show a
greater than some threshold fold-change (a strategy we
refer to as sample-wise voting) that do not control for
false-positives or allow for direct estimations of power. Of
the genes previously identified as being differentially
expressed in RCC with these types of sample-wise voting
strategies, we found that we also identified these genes by
a parametric method only when stringent majority and
fold-change thresholds had been used. We also identified
more genes as being differentially expressed with a more
stringent fold-change threshold than most of the previous
studies had identified. These types of sample-wise voting
analyses are therefore likely to make false-positive and
false-negative classification errors and this likely accounts
for some of the failure of multiple previous microarray
studies to identify the same genes as being differentially
expressed. However a similar parametric analysis of data
from a distinct microarray platform also results in the
identification of a set of differentially expressed genes that
dissimilar to a degree that is beyond what would be
expected from false-positive errors alone. This could be
due to differences in probe efficiency between the micro-
array platforms or may indicate that our power estimation
is incorrect. Among the genes we are the first to identify as
being differentially expressed in RCC are several onco-
genes and tumor suppressor genes that likely play impor-
tant roles in renal cell carcinogenesis. This highlights the
need for rigorous statistical analysis in microarray studies.
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