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Simple Summary: Tumor budding is a histopathologic characteristic which has led to a growing
interest in the prognosis prediction of cancers of various sites. We aimed to evaluate whether imaging
biomarkers could predict tumor budding status. Preoperative MRI radiomic features were used
as imaging biomarkers. Four machine learning classifiers were applied to build prediction models
using a training dataset. Internal validation was performed to validate the built models. As a
result, radiomics-based models predicted tumor budding status with a mean area under the receiver
operating characteristic value of 0.816 and a mean accuracy of 0.779 in the independent test dataset.
Final selected features were mostly from filtered images, implying the importance of filtering methods
in radiomics. Preoperative prediction of tumor budding status may help personalize treatment in
cervical cancer patients.

Abstract: Background: Our previous study demonstrated that tumor budding (TB) status was
associated with inferior overall survival in cervical cancer. The purpose of this study is to evaluate
whether radiomic features can predict TB status in cervical cancer patients. Methods: Seventy-four
patients with cervical cancer who underwent preoperative MRI and radical hysterectomy from 2011
to 2015 at our institution were enrolled. The patients were randomly allocated to the training dataset
(n = 48) and test dataset (n = 26). Tumors were segmented on axial gadolinium-enhanced T1- and T2-
weighted images. A total of 2074 radiomic features were extracted. Four machine learning classifiers,
including logistic regression (LR), random forest (RF), support vector machine (SVM), and neural
network (NN), were used. The trained models were validated on the test dataset. Results: Twenty
radiomic features were selected; all were features from filtered-images and 85% were texture-related
features. The area under the curve values and accuracy of the models by LR, RF, SVM and NN were
0.742 and 0.769, 0.782 and 0.731, 0.849 and 0.885, and 0.891 and 0.731, respectively, in the test dataset.
Conclusion: MRI-based radiomic features could predict TB status in patients with cervical cancer.
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1. Introduction

Precision medicine refers to medicine optimized to the genotypic and phenotypic
characteristics of an individual and disease. The growing focus on precision medicine in
oncologic fields is leading to an increased demand for predictable biomarkers, which can
be used in decision making in clinical practice. High-throughput data mining from medical
imaging, also called radiomic analysis, enables the development of an imaging biomarker
with the aid of recent advances in computer science. The term “radio” in radiomics
means radiology, and “omics” originally refers to the comprehensive assessment of various
molecule types within the cells of an organism. Omics includes various research fields,
including genomics, transcriptomics, proteomics, phenomics and radiomics. Because
such omics fields can interact with each other in the body, it is necessary to find an
association between the different research fields in order to comprehensively improve the
understanding of tumor biology and their clinical behavior.

Tumor budding (TB) is defined as the presence of a single cancer cell or clusters of
up to four cancer cells at the invasive tumor front or within the main tumor body. It has
emerged as a new possible biomarker to predict unfavorable clinical outcomes in various
cancer types from different organs [1,2], including colorectal, esophageal, pancreatic, and
cervical cancers [3]. Our previous studies demonstrated that TB status was associated with
tumor recurrence, lymph node metastasis, and poor overall survival in cervical cancer,
suggesting that it may be a prognostic biomarker [4,5].

Nonetheless, one of the disadvantages of histopathologic prognostic factors is that we
cannot determine them before surgical resection. It is conceivable that the treatment strategy
may vary according to each patient’s given prognosis (e.g., neoadjuvant therapy/surgical
extent) if the pathologic prognostic factors, such as TB status, can be predicted reliably by
a preoperative imaging study. Thus, we evaluated the possibility of magnetic resonance
imaging (MRI) radiomic features to predict TB status in patients with cervical cancer who
were undergoing radical hysterectomy.

2. Materials and Methods
2.1. Study Population

The records of 136 patients with cervical cancer who underwent preoperative MRI
and radical hysterectomy from 2011 to 2015 were reviewed retrospectively. This study
was conducted in accordance with the guidelines and approval from the institutional
review board of Kyungpook National University Hospital and Kyungpook National Uni-
versity Chilgok Hospital. The institutional review board provided a waiver of consent.
The patients were included based on the following criteria: (a) pathologically confirmed
cervical cancer; (b) evaluated by MRI preoperatively; and (c) pathologically described TB
status. The exclusion criteria were as follows: (a) not evaluated by MRI preoperatively; (b)
neoadjuvant chemotherapy before surgery; (c) no definite cervical tumor on preoperative
MRI; (d) did not have contrast-enhanced T1-weighted imaging or T2-weighted imaging;
and (e) inadequate image quality due to an intractable artifact. Eventually, 76 patients were
enrolled in this study (Figure S1). The enrolled patients were randomly allocated to the
training dataset (n = 48) and test dataset (n = 26).

2.2. Histopathological Evaluation

We reviewed the clinicopathologic information from the archives of medical records
and corresponding hematoxylin and eosin (H&E)-stained slides of cervical cancers. The
clinicopathologic parameters included age, FIGO stage, primary tumor size, histologic sub-
type, lymphovascular invasion (LVI), deep stromal invasion, parametrial invasion, lymph
node status, and TB status. For each case, all available H&E slides were independently re-
viewed for histopathological features and the quantitative assessment of TB was performed
by two pathologists (N.J.P and J.Y.P). The number of reviewed slides ranged from 8 to 25.
TB was defined as an isolated single cancer cell or small cell clusters comprising ≤4 tumor
cells located within the tumor area, with reference to the examination method used in our
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previous paper [4]. In brief, the greatest degree of TB was selected using the medium power
field (10× objective, Olympus, BX-53), and the highest number of TB per high-power field
(20× objective) was determined (the so-called “hotspot” counting method).

2.3. Image Acquisition

The preoperative MRI was obtained with three MR scanners (Discovery MR750, GE
Healthcare, 3T; Signa Excite, GE Healthcare, 1.5T; Magnetom Avanto, Siemens Healthcare,
1.5T). The same MR imaging sequences were obtained from all patients, including axial
and sagittal T2-weighted fast spin-echo (FSE), axial T1-weighted FSE, and axial and sagittal
T1-weighted FSE with fat saturation after gadodiamide administration. The MRI protocol
was as follows: axial T2-weighted images (repetition time/echo time, 3500–4500/90–110;
slice thickness, 5 mm, no gap; field of view, 22 × 22 cm to 26 × 26 cm; matrix, 320 × 224,
384 × 256), sagittal T2-weighted images (repetition time/echo time, 4000–6000/90–110;
slice thickness, 5 mm, no gap; field of view, 24 × 24 cm; matrix, 384 × 256, 416 × 256), and
axial T1-weighted images (repetition time/echo time, 700–800/minimum; slice thickness,
5 mm, no gap; field of view, 22 × 22 cm to 26 × 26 cm; matrix, 320 × 256, 384 × 224).

2.4. Segmentation and Preprocessing

Figure 1 illustrates the schematic diagram of the radiomic analysis. Before image
segmentation, the patient-sensitive information was anonymized. The primary tumor
lesion was semi-manually segmented on axial gadolinium-enhanced T1-weighted images
and T2-weighted images by the two radiation oncologists (S.H.P. and B.K.B), using the
annotation tool of 3D Slicer version 4.11.0 (www.slicer.org (accessed on 26 June 2020)).
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Figure 1. Illustration of the overall process of MRI radiomic analysis to predict tumor budding status.

The MRI images were resampled with a pixel space of 0.8 and slice thickness of 5 mm
using a linear interpolation algorithm. Because the MRI signal intensities are relative
values, we normalized the intensity using PyRadiomics. Normalization was based on the
all-gray values contained within the image, not just those defined by the region of interest
(ROI). The normalization scaling factor was set to 100. All voxel values were shifted by 300
to ensure that most voxels had positive values.

2.5. Radiomic Feature Extraction and Selection

The radiomic features were extracted from the ROIs on post-contrast T1-weighted
and T2-weighted images using Pyradiomics version 3.0 [6]. Eighteen first-order features,
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14 shapes, 24 gray-level co-occurrence matrix, 16 gray-level size zone matrix, 16 gray-level
run length matrix, 5 neighboring gray tone difference matrix, and 14 gray-level dependence
matrix features were extracted from the original and filter-applied images from postcontrast
T1-weighted and T2-weighted images, resulting in 2074 total features. The filters included
Laplacian of Gaussian filters with sigma values of 1.0 and 3.0 mm and wavelet filters (eight
combinations of high- and low-pass filters on each dimension). The detailed definition
of each feature has been described elsewhere (https://pyradiomics.readthedocs.io/en/
latest/index.html (accessed on 10 October 2021)). A fixed bin width of 5 was used. The
Image Biomarkers Standardization Initiative guideline was followed [7]. Each feature was
standardized using z-score normalization to have a mean of 0 and a standard deviation
(SD) of 1 [8].

The features to build the prediction models were selected using the training dataset.
In the first step, a logistic regression (LR) was used to screen the potential features. Only
the features with p < 0.05 were chosen to proceed to the next selection step. In the second
step, the least absolute shrinkage and selection operator (LASSO) regression was employed
to select the features to construct a prediction model with a five-fold cross validation.

2.6. Statistical Analysis and Machine Learning (ML) Model Building

The differences in patient characteristics between the training and test dataset were
compared using Student’s t-test, Pearson chi-square test, and Fisher’s exact test. Four
ML classifiers, including LR, random forest (RF), support vector machine (SVM), and
neural network (NN), were used to build a model to predict TB status in the training set.
We implemented the R package of “neuralnet” (version 1.44.2) which trains NN models
using backpropagation, resilient backpropagation, or the globally convergent algorithm
based on resilient backpropagation [8,9]. In our neural network model, resilient backpropa-
gation was applied. During classifier training, the hyperparameters were optimized by
grid search. Then, the trained ML models were validated on the test dataset. The pre-
dicted likelihood was calculated using the area under the receiver-operating characteristic
(ROC) curve to measure the ML models’ performance. Moreover, the accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value were assessed. All
statistical analyses, including ML, were performed using R version 3.2.4 (R Foundation for
Statistical Computing, Vienna, Austria). p < 0.05 was considered to indicate a statistically
significant difference. The R package of “glmnet,” “caret,” “randomForest,” “kernlab,” and
“neuralnet,” were used for analysis. The code implemented in this work is available at
http://github.com/RO-KNU/tumorbudding/ (accessed on 25 September 2021).

3. Results

Seventy-four patients were enrolled in this study (Figure S1). The median age of
patients at diagnosis was 50 years (range, 28–78). Fifty-four patients (73.0%) had squamous
cell carcinoma, fifteen (20.3%) had adenocarcinoma, and five (6.8%) had adenosquamous
cell carcinoma. The International Federation of Gynecology and Obstetrics (FIGO) stage
was IB1 in 14 patients (18.9%), IB2 in 24 (32.4%) patients, IB3 in 4 patients (5.4%), IIA in
1 patient (1.4%), IIB in 8 patients (10.8%), and IIIC1 in 23 patients (31.1%). The median
tumor size was 2.5 cm (range, 0.4–8.0). The median TB count was 4.0 (0–40). The TB status
was binarily classified with a cutoff value of 4.

The patients were semi-randomly partitioned into a training set of 48 patients and a
test set of 26 patients (Figure S1). The patients from the training set and those from the test
set were not significantly different in terms of TB counts (p > 0.999), age (p = 0.400), FIGO
stage (p = 0.517), histology (p = 0.580), tumor size (p = 0.417), LVI (p = 0.828), deep stromal
invasion (p = 0.903), parametrial invasion (p > 0.999), and lymph node metastasis status
(p = 0.760) (Table 1).

In a univariate logistic regression analysis, 29 features were significantly associated
with TB status in the training dataset. The selected features from the logistic analysis were
subjected to the next feature selection step by LASSO regression (Figure S2). Among them,

https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
http://github.com/RO-KNU/tumorbudding/
http://github.com/RO-KNU/tumorbudding/


Cancers 2021, 13, 5140 5 of 11

20 features were finally selected to build prediction models (Table 2). All of these were
extracted from filter-applied images (3 with a Laplacian of Gaussian filter and 17 with a
wavelet filter). Seventeen features (85%) were texture-related features.

Table 1. Clinicopathologic characteristics of the 74 patients.

Characteristic Training Set (n = 48) Test Set (n = 26) p-Value

Age (years) 49.1 ± 11.8 51.4 ± 10.1 0.4

FIGO stage (n, %)

0.517 †

IB1 11 (22.9%) 3 (6.3%)
IB2 12 (25.0%) 12 (25.0%)
IB3 3 (6.3%) 1 (2.1%)
IIA 1 (2.1%) 0 (0.0%)
IIB 5 (10.4%) 3 (6.3%)

IIIC1 16 (33.3%) 7 (14.6%)

Histology (n, %)

0.580 †Squamous cell carcinoma 36 (75.0%) 18 (37.5%)
Adenocarcinoma 8 (16.7%) 7 (14.6%)

Adenosquamous carcinoma 4 (8.3%) 1 (2.1%)

Tumor size (cm) 2.8 ± 1.6 2.6 ± 1.0 0.417

Lymphovascular invasion (n, %) 23 (47.9%) 11 (22.9%) 0.828

Deep stromal invasion (n, %) 33 (68.8%) 19 (39.6%) 0.903

Parametrial invasion (n, %) 12 (25.0%) 7 (14.6%) >0.999

Lymph node metastasis (n, %) 16 (33.3%) 7 (14.6%) 0.76

Intratumor budding

>0.999
Intratumor budding counts 7.8 ± 9.9 7.7 ± 10.3
Intratumoral budding (n, %)

>4 27 (56.3%) 15 (31.3%)
≤4 21 (43.8%) 11 (22.9%)

Data are means ± standard deviations or numbers of patients with percentages in parentheses. Calculated by
using the Student’s t test for continuous variables and the chi-square test for categoric variables, unless stated
otherwise. † Calculated by using Fisher’s exact test.

Table 2. Selected radiomic features by univariate logistic regression analysis and LASSO regression
in training dataset.

MR Sequence Feature Name

T1

log.sigma.1.0.mm.3D_glszm_ZonePercentage
log.sigma.3.0.mm.3D_ngtdm_Contrast

wavelet.LLH_gldm_LargeDependenceEmphasis
wavelet.LHH_firstorder_Skewness

wavelet.HLL_glszm_SizeZoneNonUniformityNormalized
wavelet.HLH_gldm_LargeDependenceHighGrayLevelEmphasis

wavelet.HHL_gldm_DependenceVariance.
wavelet.LLL_glcm_InverseVariance.

T2

log.sigma.3.0.mm.3D_ glcm_Imc2
wavelet.LLH_glszm_HighGrayLevelZoneEmphasis
wavelet.LLH_glszm_LowGrayLevelZoneEmphasis

wavelet.LLH_glszm_SmallAreaHighGrayLevelEmphasis
wavelet.LHL_gldm_HighGrayLevelEmphasis
wavelet.LHL_gldm_LowGrayLevelEmphasis

wavelet.LHL_glrlm_HighGrayLevelRunEmphasis
wavelet.LHL_glrlm_LowGrayLevelRunEmphasis

wavelet.LHL_glszm_GrayLevelNonUniformityNormalized
wavelet.LHH_firstorder_Kurtosis

wavelet.HLH_glszm_ZoneEntropy
wavelet.LLL_firstorder_Minimum

LoG, Laplacian of Gaussian filter; gldm, gray level dependence matrix; glszm, gray level size zone matrix; glcm,
gray level co-occurrence matrix; glrlm, gray level run length matrix.
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Table 3 shows the summary of prediction performance to predict TB status by various
ML classifiers in the test dataset. The ROC curves are presented in Figure 2. The AUC values
of the models by LR, RF, SVM, and NN were 0.742, 0.782, 0.848 and 0.891, respectively, in
the test dataset. The accuracy of LR, RF, SVM, and NN were 0.769, 0.731, 0.885 and 0.731,
respectively, in the test dataset.

Table 3. Performance of machine learning classifiers for predicting tumor budding status in
test dataset.

Classifier AUC (95% CI) Accuracy
(95% CI) Sensitivity Specificity PPV NPV

LR 0.742
(0.572–0.907)

0.769
(0.564–0.910) 0.857 0.737 0.546 0.933

RF 0.782
(0.528–0.884)

0.731
(0.522–0.884) 0.750 0.722 0.546 0.867

SVM 0.849
(0.740–1.000)

0.885
(0.699–0.976) 0.900 0.875 0.818 0.933

NN 0.891
(0.768–1.000)

0.731
(0.522–0.884) 0.667 0.786 0.727 0.733

AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value;
LR, logistic regression; RF, random forest; SVM, support vector machine; NN, neural network.
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Figure 2. Receiver-operating characteristic (ROC) curves of the prediction models constructed by
logistic regression (LR), random forest (RF), support vector machine (SVM), and neural network
(NN) algorithms using MRI radiomic features in the test dataset.

4. Discussion

This study demonstrates that MRI radiomic features could successfully predict TB
status in the test dataset. Various ML models with 20 selected radiomic features showed a
mean AUC of 0.816 (SD, 0.067) and a mean accuracy of 0.779 (SD, 0.073) in the test dataset.
Specifically, AUC values of SVM and NN models were 0.849 (95% CI, 0.740–1.000) and
0.891 (95 CI, 0.768–1.000), respectively. Generally, prediction performance of models with
an AUC of 1.0 is perfect, 0.9–0.99 is excellent, 0.8–0.89 is good, 0.7–0.79 is fair, 0.51–0.69 is
poor, and 0.5 is no better than when determined by chance [10]. Our SVM and NN models
incorporating MRI radiomic features showed good prediction performance in predicting
TB status.
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Several studies have tried to correlate histopathologic characteristics with radiomic
features—in most of which, LVI, one of the well-known adverse prognostic factors, was
investigated. In a radiomic nomogram introduced by Li et al. to predict LVI in cervical
cancer [11], the authors reported that the prediction model had an AUC, specificity, and
sensitivity of 0.727, 0.828, and 0.692, respectively, in the validation dataset. Likewise,
a MRI radiomics study by Hua et al. revealed that radiomic features combined with
a deep-learning technique in tumors and peritumoral lesions could predict LVI status,
with an AUC of 0.775 in the test dataset [12]. However, to the best of our knowledge,
no study has investigated the correlation between radiomic features and TB status. This
approach to predict histopathologic characteristics using radiomic features is clinically
meaningful because histopathologic characteristics can only be confirmed after surgical
resection, whereas radiomic features can be determined preoperatively.

It has been noted that TB reflects the epithelial–mesenchymal transition (EMT) pro-
cess [13,14]. EMT is known as a multistep dynamic process of tumor cell dissociation from
the main tumor, where the tumor cells temporarily lose their epithelial characteristics and
acquire mesenchymal characteristics instead [15]. Each radiomic feature harbors informa-
tion regarding the tumor size, shape, or texture. Because texture-related features represent
the heterogeneity of the tumor itself among various radiomic feature categories, radiologic
and histopathologic characteristics can be complementary (Figure 3). The results in terms
of feature selection add weight to this hypothesis. In this study, the final selected features
were mostly texture features (85%), suggesting that these might be related to the tumor
microenvironment profile, like EMT.
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associated with the prognosis of other cancer types, including esophageal, gastric, pan-
creatic, breast, and head and neck cancer in meta-analyses [21–26]. Our group revealed 
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Moreover, in our recent report, TB status was an independent prognostic factor for recur-
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Although patients with early-stage cervical cancer treated with radical hysterectomy 
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verse prognostic factors for recurrence have been identified, such as tumor size, deep stro-
mal invasion, LVI, positive resection margin, lymph node metastasis, and parametrial in-
vasion. Among these factors, positive resection margin, lymph node metastasis and para-
metrial invasion are classified as high-risk factors, and adjuvant chemoradiotherapy is 
indicated [27]. Because tumor size, deep stromal invasion, and LVSI modestly increase the 
risk of recurrence, they are known as intermediate-risk factors [28–30]. When these three 
factors combined, the recurrence risk increased to 15–20%, which was similar to that in 
patients with high-risk factors. Although the Sedlis criteria has been the most frequently 
used in stratifying prognostic groups using these three factors, its prediction performance 
was disappointing [31]. Accordingly, there are efforts underway to find additional bi-
omarkers in patients with intermediate-risk cervical cancer. Thus, radiomics and TB sta-

Figure 3. MRI images of two representative cases showing a high tumor budding (TB) count (a) and low TB count (c).
Corresponding hematoxylin- and eosin-stained images at 100× original magnification taken from a radical hysterectomy
specimen (b,d), respectively. (b) A patient shows a high TB count. (d) A patient shows a low TB count. Corresponding
heatmaps showing the radiomic features of those who had a high TB count (e) and low TB count (f). Each row and column
represent one patient and one radiomic feature, respectively.
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The prognostic relevance of TB status is well-established in colorectal cancers, which
prompted the inclusion of this histopathologic characteristic in the recent WHO classifica-
tion of colorectal cancer. Many studies showed that TB status was significantly associated
with disease-specific survival in colorectal cancer [16–19]. In addition, T stage and lymph
node metastasis were shown to be related to TB status in colorectal cancer [20]. Besides its
prognostic relevance in colorectal cancer, it has been demonstrated that TB was associated
with the prognosis of other cancer types, including esophageal, gastric, pancreatic, breast,
and head and neck cancer in meta-analyses [21–26]. Our group revealed that integrated TB
status could improve survival prediction models in cervical cancer [4]. Moreover, in our
recent report, TB status was an independent prognostic factor for recurrence and nodal
metastasis [5].

Although patients with early-stage cervical cancer treated with radical hysterectomy
generally have a favorable outcome, ~20% of them experience recurrences. Several adverse
prognostic factors for recurrence have been identified, such as tumor size, deep stromal
invasion, LVI, positive resection margin, lymph node metastasis, and parametrial invasion.
Among these factors, positive resection margin, lymph node metastasis and parametrial in-
vasion are classified as high-risk factors, and adjuvant chemoradiotherapy is indicated [27].
Because tumor size, deep stromal invasion, and LVSI modestly increase the risk of re-
currence, they are known as intermediate-risk factors [28–30]. When these three factors
combined, the recurrence risk increased to 15–20%, which was similar to that in patients
with high-risk factors. Although the Sedlis criteria has been the most frequently used in
stratifying prognostic groups using these three factors, its prediction performance was dis-
appointing [31]. Accordingly, there are efforts underway to find additional biomarkers in
patients with intermediate-risk cervical cancer. Thus, radiomics and TB status, individually
or comprehensively, are promising as new biomarkers. Preoperative information of TB
status may make it possible to personalize treatment, including the extent of surgery and
the addition of adjuvant therapy.

The final selected features in our prediction model were mostly texture features, which
were derived from filtered images (Table 2). These findings were in contrast with those
from the study of Li et al. [11], which showed that first-order statistics and shape features
were selected for radiomic nomogram to predict LVI. In contrast, our results agreed with
those of Hua et al., wherein the final selected features included three texture features
and two first-order features. Note that all selected features in this study were features
extracted after filtering. The features extracted from filtered images may reflect tumor
characteristics not visible in the original images. The Laplacian of Gaussian filter can both
sharpen and smoothen the original images, and it is commonly used for edge detection. A
number of studies have reported that the features from Laplacian of Gaussian filters are
related to tumor phenotype, gene expression, stage, and clinical outcome [32–36]. Wavelet
filters can decompose the original image into low- and high-frequency components, and its
incorporation in radiomics has improved prediction performance in other series [37,38]. For
example, a combination of wavelet-filtered and unfiltered texture features improved the
model performance for predicting pathologic complete remission status after neoadjuvant
chemotherapy in a breast cancer study [37]. Taken together, the filtering method is a
useful tool to capture the heterogeneity pattern in a spatial pixel distribution, allowing the
improvement of its biologic relevance with radiomic features.

Despite the encouraging results, this study has some limitations. First, there may
be concealed selection biases due to its retrospective nature. Second, its small number of
patients may compromise its statistical reliability. Third, the prediction model was not
validated through the external dataset, although an internal validation was performed.
Therefore, the results should be cautiously scrutinized before its routine application in
clinical practice. Despite these limitations, to the best of our knowledge, here we have the
first report on an association between MRI radiomic features and TB status.
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5. Conclusions

Preoperative MR-based radiomic features may be associated with TB status in patients
with cervical cancer who were treated with radical hysterectomy. Therefore, MRI radiomic
features have potential as practical imaging biomarkers predicting prognostic histologic
characteristics, such as TB status.
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