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Abstract: Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi,
and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological
potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances)
estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them
are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article
demonstrate antiprotozoal activity and can be divided into three groups. The third group includes
endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group
includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides,
which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly,
the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with
a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal
activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the
genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities,
polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with
a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8%
show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic
endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities
with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus,
Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights
on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the
pharmaceutical industry.

Keywords: antiprotozoal; antitumor; polycyclic; peroxides; pharmacological potential; PASS

1. Introduction

Polycyclic endoperoxides are a rare group of naturally occurring metabolites found in
various parts of plants such as leaves, roots, bark, stems, seeds, fruits, and flowers [1–17].
In addition, they have been found in extracts of various types of marine invertebrates and
algae, and endoperoxides are synthesized by various types of fungi, fungal endophytes,
and other microorganisms [8,9,13–15,18–20].

As shown in recent years, many polycyclic endoperoxides, both natural and synthetic,
have antimalarial effects [21,22]. It is known that malaria or “swamp fever” refers to
a group of transmissible infectious diseases transmitted to humans by bites of female
mosquitoes belonging to the genus Anopheles, caused by parasitic protists of the genus
Plasmodium, mainly P. falciparum [23–25]. According to the WHO World Malaria Report,
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at the beginning of the 21st century, the incidence ranged from 350 to 500 million cases
per year, of which 1 to 3 million ended in death [26,27]. In connection with these ominous
data, any new sources of natural antimalarial agents are of great interest to medicine and
pharmacology, as well as to the pharmaceutical industry [28–30].

In this review, we will look at rare and unusual polycyclic endoperoxides isolated
from different terrestrial and marine sources. The biological activity of many polycyclic
endoperoxides has not been determined, and we present the pharmacological activities
detected experimentally and predicted based on the structure-activity relationships using
the PASS (Prediction of Activity Spectra for Substances) software [31–33]. PASS estimates
the probabilities of several thousand biological activities with an average accuracy of about
96%. Probability of belonging to the class of “actives” Pa is calculated for each activity,
providing the assessment of the hidden pharmacological potential of the investigated
natural polycyclic endoperoxides [2,7,13,14,17,31–33].

2. Polycyclic Endoperoxides Derived from Marine Sources

Marine algae (both microalgae and macrophytes) and invertebrates are the main
source of biologically active secondary metabolites, which include hydrocarbons, ter-
penoids, lipids, steroids, carotenoids, aromatic compounds, and alkaloids, as well as mixed
compounds containing heteroatoms and polycyclic endoperoxides [2,4–8,17–20,34–64].

A series of polycyclic peroxides such as contrunculin B (1) as well as the trunuclin
peroxides (2–7) were discovered in the extracts of Australian marine sponge Latrunculia
conulosa [65], Latrunculia sp. [66] and found in an Okinawan sponge Sigmosceptrella sp. [67].
Structures (1–16) can be seen in Figure 1, and their biological activity is presented in Table 1.
Two unusual endoperoxide diterpenoids (8 and 9) were isolated from the brown seaweed
Taonia atomaria [68]. Cytotoxic 8,11-epidioxy-7-hydroxy-3,12,15(17)-cembratrien-16,2-olide
called cembranolide C (or denticulatolide, 10) known as icthyotoxin was found in soft
corals Lobophytum denticulatum, Sinularia mayi, and Sarcophyton crassocaule and its acetate
(11) was also found in L. denticulatum extract [69–72].

Table 1. Biological activity of natural polycyclic peroxides derived from marine sources.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa ) * Additional Biological Activities, (Pa) *

1 Antiprotozoal (Plasmodium) (0.941)
Antineoplastic (0.929) Anti-inflammatory (0.963)

Apoptosis agonist (0.619) Antifungal (Candida) (0.638)

2
Antiparasitic (0.812) Antineoplastic (0.722) Anti-helmintic (0.761)

Antiprotozoal (Plasmodium) (0.735) Antimetastatic (0.625) Antifungal (0.702)

3
Antiparasitic (0.812) Antineoplastic (0.722) Anti-helmintic (0.761)

Antiprotozoal (Plasmodium) (0.735) Antimetastatic (0.625) Antifungal (0.702)

4
Antiparasitic (0.823) Antineoplastic (0.741) Anti-helmintic (0.731)

Antiprotozoal (Plasmodium) (0.714) Antimetastatic (0.633) Antifungal (0.673)

5
Antiparasitic (0.806) Antineoplastic (0.755) Anti-helmintic (0.832)

Antiprotozoal (Plasmodium) (0.742) Antimetastatic (0.681) Antifungal (0.689)

6
Antiparasitic (0.786) Antineoplastic (0.722) Anti-helmintic (0.774)

Antiprotozoal (Plasmodium) (0.721) Antimetastatic (0.625) Antifungal (0.712)

7
Antiparasitic (0.863) Antineoplastic (0.776) Anti-helmintic (0.744)

Antiprotozoal (Plasmodium) (0.716) Antimetastatic (0.654) Antifungal (0.731)

8 Antiprotozoal (Plasmodium) (0.922) Antineoplastic (0.913) Anti-inflammatory (0.937)

9 Antiprotozoal (Plasmodium) (0.929) Antineoplastic (0.929) Anti-inflammatory (0.929)

10 Antiprotozoal (Plasmodium) (0.798) Antineoplastic (0.975)
Alzheimer’s disease treatment (0.745)
Neurodegenerative diseases treatment

(0.662)
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Table 1. Cont.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa ) * Additional Biological Activities, (Pa) *

11 Antiprotozoal (Plasmodium) (0.802) Antineoplastic (0.983) Alzheimer’s disease treatment (0.722)

12 Antiprotozoal (Plasmodium) (0.844)
Antineoplastic (0.921) Antileukemic (0.599)

Chemopreventive (0.703) Immunosuppressant (0.585)

13 Antiprotozoal (Plasmodium) (0.835)
Antineoplastic (0.912) Antileukemic (0.602)

Chemopreventive (0.658) Immunosuppressant (0.565)

14 Antiprotozoal (Plasmodium) (0.829)
Antineoplastic (0.915) Antileukemic (0.599)

Chemopreventive (0.644) Immunosuppressant (0.602)

15
Antiprotozoal (Plasmodium) (0.948) Antineoplastic (0.835)

Anti-inflammatory (0.576)
Antiparasitic (0.542) Antimetastatic (0.635)

16
Antiprotozoal (Plasmodium) (0.964) Antineoplastic (0.742)

Antileukemic (0.509)
Antiparasitic (0.642) Antimetastatic (0.518)

* Only activities with Pa > 0.5 are shown.
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Norditerpenoid, aplypallidioxone (12) was detected in Australian encrusting sponge
Aplysilla pallida [73], and two abietic acids (13 and 14) that were previously found in plants
have also been found in green algae Elodea canadensis [74].

A guaiane-type sesquiterpene, 1,7-epidioxy-5-guaiene (15) was found and later iso-
lated from Axinyssa sponge [75], and an oxygenated sesquiterpenoid, 1,7-epidioxy-5-guaien-
4-ol called peroxygibberol (16), was isolated from a Formosan soft coral, Sinularia gibberosa,
which demonstrated moderate cytotoxicity toward a human liver carcinoma cell line [76].
Structures (16–35) can be seen in Figure 2, and their biological activity is presented in
Table 2.
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Table 2. Biological activity of natural polycyclic peroxides derived from marine sources.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

17 Antiprotozoal (Plasmodium) (0.925) Apoptosis agonist (0.961) Atherosclerosis treatment (0.734)
Antineoplastic (0.889) Immunosuppressant (0.721)

18 Antiprotozoal (Plasmodium) (0.889)
Apoptosis agonist (0.867) Anti-inflammatory (0.815)

Antineoplastic (0.841) Anti-ulcerative (0.736)
Antimetastatic (0.611)

19 Antiprotozoal (Plasmodium) (0.838)

Apoptosis agonist (0.977) Atherosclerosis treatment (0.911)
Chemopreventive (0.942) Hypolipemic (0.836)

Antineoplastic (0.915) Lipoprotein disorders treatment (0.826)
Antiparkinsonian, rigidity Anti-hypercholesterolemic (0.802)

relieving (0.711)
Prostate cancer treatment (0.687)

20 Antiprotozoal (Plasmodium) (0.798) Apoptosis agonist (0.943) Atherosclerosis treatment (0.738)
Antineoplastic (0.767) Lipoprotein disorders treatment (0.587)

21 Antiprotozoal (Plasmodium) (0.694)
Apoptosis agonist (0.961) Atherosclerosis treatment (0.628)
Chemopreventive (0.733) Antifungal (0.635)

Antineoplastic (0.731)

22 Antiprotozoal (Plasmodium) (0.839) Apoptosis agonist (0.854) Anti-inflammatory (0.809)
Antineoplastic (0.832) Anti-ulcerative (0.721)

23 Antiprotozoal (Plasmodium) (0.871) Chemopreventive (0.931) Atherosclerosis treatment (0.907)
Antineoplastic (0.919) Anti-hypercholesterolemic (0.788)

24 Antiprotozoal (Plasmodium) (0.819)
Apoptosis agonist (0.956) Atherosclerosis treatment (0.899)
Chemopreventive (0.933) Anti-hypercholesterolemic (0.823)

Antineoplastic (0.905)

25 Antiprotozoal (Plasmodium) (0.822)
Apoptosis agonist (0.966) Atherosclerosis treatment (0.919)

Antineoplastic (0.929) Hypolipemic (0.822)
Prostate cancer treatment (0.699) Lipoprotein disorders treatment (0.814)

26 Antiprotozoal (Plasmodium) (0.712) Apoptosis agonist (0.967) Atherosclerosis treatment (0.635)
Antineoplastic (0.740) Antifungal (0.623)

27 Antiprotozoal (Plasmodium) (0.713) Apoptosis agonist (0.966) Atherosclerosis treatment (0.636)
Antineoplastic (0.742) Antifungal (0.624)

28 Antiprotozoal (Plasmodium) (0.776) Apoptosis agonist (0.929) Atherosclerosis treatment (0.721)
Antineoplastic (0.758) Lipoprotein disorders treatment (0.632)

29 Antiprotozoal (Plasmodium) (0.778) Apoptosis agonist (0.922) Atherosclerosis treatment (0.714)
Antineoplastic (0.756) Lipoprotein disorders treatment (0.599)

30 Antiprotozoal (Plasmodium) (0.711) Apoptosis agonist (0.971) Atherosclerosis treatment (0.623)
Antineoplastic (0.788) Antifungal (0.644)

31 Antiprotozoal (Plasmodium) (0.699) Apoptosis agonist (0.954) Atherosclerosis treatment (0.699)
Antineoplastic (0.737) Antifungal (0.676)

32 Antiprotozoal (Plasmodium) (0.778) Apoptosis agonist (0.942) Atherosclerosis treatment (0.667)
Antineoplastic (0.732) Antifungal (0.645)

33 Antiprotozoal (Plasmodium) (0.778)
Apoptosis agonist (0.961) Hypolipemic (0.854)

Antineoplastic (0.889) Anti-eczematic (0.812)
Proliferative diseases treatment (0.522) Atherosclerosis treatment (0.787)

34 Antiprotozoal (Plasmodium) (0.833) Apoptosis agonist (0.856) Anti-inflammatory (0.815)
Antineoplastic (0.838) Anti-ulcerative (0.729)

35 Antiprotozoal (Plasmodium) (0.866) Apoptosis agonist (0.849) Anti-inflammatory (0.811)
Antineoplastic (0.839) Antifungal (0.677)

* Only activities with Pa > 0.5 are shown.
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An extract of a marine sponge, Lendenfeldia chondrodes has led to the isolation and iden-
tification of two C-24 stereoisomers (17 and 18) of steroid, 5R,8R-epidioxy-24-hydroperoxy-
cholesta-6,28(29)-dien-3α-ol. Obtained data with the molecular formula of steroid indicated
that a hydroperoxy group and a vinyl group are attached at position-24 in both the R- and S-
configurations [77], and cytotoxic steroid, (3β,5α,8α,24R,25R)-epidioxy-24,26-cyclocholesta-
6,9(11)-dien-3-ol (19) was identified from Tethya sp. [78].

Interestingly, steroid, (3β,5α,8α)-epidioxycholest-6-en-3-ol (20) was found in three
cone snail species, Conus ebraeus, C. leopardus, and C. tessulatus (family Conidae) [79], and
was also present in the extract of polychaete worm Perinersis aibuhitensis [80], it was also iso-
lated from the steroid fraction of sponges Axinella cannabina, Luffariella cf. variabilis [81,82],
the tunicate Cynthia savignyi [83], and in long-spined sea urchin Diadema setosum [84].
Isolated steroid showed antibacterial, antifungal, and cytotoxic activities [81–84]. Detection
of this steroid in various species of marine invertebrates could indicate that they all share a
food chain, and the source of this steroid may be algae.

(3β,5α,8α)-Epidioxy-24-methylenecholest-6-en-3-ol (21) has been isolated from the
several marine invertebrates, tunicate Ascidia nigra, pillar coral Dendrogyra cylindrus, marine
sponge Thalysias juniperina, and sea hare Aplysia dactylomela [85]; in addition, this steroid
was found in the tunicates Dendrodoa grossularia and Ascidiella aspersa, the gastropoda
Aplysia depilans and Aplysia punctata [86], the sea anenome Metridium senile [87], and the
sponge Tethya aurantia [88].

(3β,5α,8α,22E,24S)-Epidioxy-24-methylcholesta-6,22,25-trien-3-ol called axinysterol
(22), (3β,5α,8α,24R)-Epidioxy-24-methylcholest-6-en-3-ol (23) and (3β,5α,8α,22E,24R)-
Epidioxystigmasta-6,22-dien-3-ol (24) were detected in MeOH extract of the marine sponge
Luffariella cf. variabilis [85].

22,23-Dihydro-5,8-epidioxystigmast-6-en-3-ol (25) was surrounded by Luffariella cf.
variabilis, Tethya sp., and sea squirt Dendrodoa grossularia [82,85–88]. (3β,5α,8α)-Epidioxy-
22,23-cyclopropacholest-6-en-3-ol (26) and (3β,5α,8α)-endoperoxy-23-demethylgorgost-
6-en-3-ol (27) were discovered in soft corals Sinularia maxima, S. gibberosa and Sinularia
sp. [89,90].

(3β,5α,8α,22E,24S)-Epidioxyergosta-6,9(11),22-trien-3-ol (28) was found in two tuni-
cates Ascidia nigra and Dendrogyra cylindrus and sponge Thalysias juniperina [82,85,91], and
(3β,5α,8α)-epidioxy-24-methylcholesta-6,9(11),24(28)-trien-3-ol (29) was detected in Ascidia
nigra [85,88].

(3β,5α,8α,22E,24R)-Epidioxy-23,24-dimethylcholesta-6,22-dien-3-ol (30) was isolated
from MeOH extract of the single-celled algae Odontella aurita [92], and it was also found in
edible mushrooms Lentinus edodes, which are also known as shiitake [93].

(3β,5α,8α,22E)-Epidioxy-24-norcholesta-6,22-dien-3-ol (31) was detected in the sea
pen, opisthobranch mollusk Virgularia sp. [94], and in A. nigra, D. cylindrus, and T. junipe-
rina [85]. (3β,5α,8α,24(28E))-Epidioxy-24-ethylcholesta-6,24(28)-dien-3-ol (32) has been
isolated and structure elucidated from several tunicates, namely Ascidia nigra and Dendro-
gyra cylindrus, and (3β,5α,8α,24(28)Z)-form was detected in Dendrodoa grossularia [85,86].

Cytotoxic (3β,5α,8α,22E,24R)-epidioxyergosta-6,22-dien-3-ol (33), well-known as
5α,8α-peroxyergosterol, is the most widely distributed steroid in the plant kingdom, lichens
and fungi [5,6], and is also found in marine sponges Axinella cannabina, Halichondria sp.,
Suberites carnosus, Spirastrella abata, Thalysias juniperina [85,95–97], the sea lily Gymnocrinus
richeri [98], and tunicates Ascidia nigra, Dendrogyra cylindrus [88].

Two cytotoxic steroids, 5α,8α-epidioxy-cholesta-6,9(11),24-trien-3β-ol (34) and 5α,8α-
epidioxy-cholesta-6,23-dien-3β,25-diol (35) were isolated from a marine sponge Monanchora
sp. [99]. Series 5α,8α-epidioxysteroids: 20, 21, 23, 32, and 36–41 were isolated from the
MeOH extracts of the Gorgonian Eunicella cavolini and the tunicate Trididemnum inarmatum.
Compound (36), bearing a cyclopropyl moiety in the side chain, exhibited the highest an-
tiproliferative activity [100]. Structures (36–41) can be seen in Figure 3, and their biological
activity are presented in Table 3.
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Table 3. Biological activity of natural polycyclic peroxides derived from marine sources and fungi.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

36 Antiprotozoal (Plasmodium) (0.884) Antineoplastic (0.859) Anti-inflammatory (0.881)
Apoptosis agonist (0.719) Antifungal (0.644)

37
Antiprotozoal (Plasmodium) (0.816) Antineoplastic (0.725) Analgesic (0.812)

Antiparasitic (0.806) Antimetastatic (0.625) Antifungal (0.745)

38
Antiprotozoal (Plasmodium) (0.789) Antineoplastic (0.721) Analgesic (0.806)

Antiparasitic (0.807) Antimetastatic (0.625) Antifungal (0.730)

39
Antiprotozoal (Plasmodium) (0.765) Antineoplastic (0.732) Antileukemic (0.729)

Antiparasitic (0.763) Antimetastatic (0.633) Antifungal (0.670)

40
Antiprotozoal (Plasmodium) (0.778) Antineoplastic (0.726) Antileukemic (0.717)

Antiparasitic (0.745) Antimetastatic (0.681) Antifungal (0.669)

41
Antiparasitic (0.814) Antineoplastic (0.734) Anti-helmintic (0.765)

Antiprotozoal (Plasmodium) (0.744) Antimetastatic (0.625) Antifungal (0.708)

42
Antiparasitic (0.863) Antineoplastic (0.799) Anti-helmintic (0.731)

Antiprotozoal (Plasmodium) (0.716) Antimetastatic (0.689) Antifungal (0.705)

43 Antiprotozoal (Plasmodium) (0.882) Antineoplastic (0.824) Anti-inflammatory (0.821)

44 Antiprotozoal (Plasmodium) (0.702) Apoptosis agonist (0.910) Anti-inflammatory (0.686)
Antineoplastic (0.782) Antileukemic (0.659)

45 Antiprotozoal (Plasmodium) (0.898) Antineoplastic (0.856) Alzheimer’s disease treatment (0.732)

46 Antiprotozoal (Plasmodium) (0.775) Antineoplastic (0.868) Alzheimer’s disease treatment (0.698)

47 Antiprotozoal (Plasmodium) (0.844) Antineoplastic (0.843) Antifungal (0.659)
Chemopreventive (0.712) Immunosuppressant (0.582)

48 Antiprotozoal (Plasmodium) (0.835) Antineoplastic (0.823) Antifungal (0.662)
Chemopreventive (0.679) Immunosuppressant (0.565)

49 Antiprotozoal (Plasmodium) (0.829) Antineoplastic (0.818) Antileukemic (0.645)
Chemopreventive (0.644) Immunosuppressant (0.602)

50
Antiprotozoal (Plasmodium) (0.743) Antineoplastic (0.788) Antifungal (0.670)

Antiparasitic (0.671) Antimetastatic (0.603) Anti-inflammatory (0.656)

51 Antiprotozoal (Plasmodium) (0.752) Antineoplastic (0.859) Antifungal (0.670)
Prostate cancer treatment (0.655) Anti-inflammatory (0.661)

52 Antiprotozoal (Plasmodium) (0.752) Antineoplastic (0.859) Analgesic (0.843)

* Only activities with Pa > 0.5 are shown.

3. Polycyclic Endoperoxides Derived from Fungi and Fungal Endophytes

Fungi, fungal endophytes, myxomycetes, and the lichenized Ascomycetes are of
great interest to pharmacologists and chemists, since they produce many biologically
active substances, such as aromatic and phenolic compounds, tannins, hydrocarbons,
lipids, unusual steroids, triterpenoids, heterocyclic compounds, peptides, and polycyclic
endoperoxides [101–114].

In fungi, both cultivated and wild, polycyclic endoperoxides are found in small
quantities, but ergosterol peroxide (33) is the most abundant [5,6]. Below, we present data
on the distribution of this steroid and other polycyclic endoperoxides in fungi, fungal
endophytes and lichens.

Trung and co-workers [115], using a modernized quantitative high-performance liquid
chromatography method, found that ergosterol peroxide is present in wild mushrooms
such as Fomitopsis dochmius, F. carneus, Daldinia concentrica, Ganoderma applanatum, G. loba-
tum, G. multiplicder G. lucidum, Phellinus igniarius, and Trametes gibbosa. In addition, this
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steroid has been detected in other species of wild fungi, fungal endophytes and lichens:
Claviceps purpurea, Ganoderma lucidum, G. tsugae, G. sichuanense, Daedalea quercina, Piptoporus
betulinus, Cryptoporus volvatus, Guignardia laricina, Lampteromyces japonicus, Botrytis cinerea,
Lactarius uvidus, L. volemus, Cryptoporus volvatus, Dictyonema glabratum, Lasiosphaera nippon-
ica, Gloeophyllum odoratum, Gymnopilus spectabilis, Hericium erinaceus, Hypsizigus marmoreus,
Inonotus obliquus, I. radiatus, Lenzites betulina, Meripilus giganteus, Microporus flabelliformis,
Naematoloma fasciculare, Phellinus pini, P. ribis, P. torulosus, Roseoformes subflexibilis, Pyropoly-
porus fomentarius, Pisolithus tinctorius, Polyporus tuberaster, Pseudephebe pubescens [5,6,17,116],
and from the edible mushroom Volvariella volvacea [117]. In addition, ergosterol peroxide
has been found in some Ascomycetes, Aspergillus sp., A. niger, A. oryzae, A. flavus, A. terreus,
and A. fumigatus, Fusurium monilforme, F. osysporum, Penicillium rubrum, and P. scleroti-
genum [5]. Ragasa [118] researched Philippine mushrooms and found ergosterol peroxide
in Auricularia auricula-judae, Coprinopsis lagopus, Pleurotus florida, and Phellinus gilvus.

It is known that ergosterol peroxide isolated from edible or medicinal mushrooms
demonstrates antitumor activity against colorectal cancer, hepatocellular carcinoma, prostate
cancer, myeloma, and leukemia [119–123], and it also possesses antioxidant, anti-inflammatory,
and antiviral activities, as well as induce the apoptosis of cancer cells [124–128].

Endoperoxide (42), bearing a keto group at the 12 position, has been isolated from
the fungus Fusarium monilforme [129]. Endoperoxy glycoside (43) was detected in ethanol
extract of the fungus Lactarius volemus, which demonstrated anticancer activity [130,131].
Ergosterol peroxide (33) and unusual steroid called asperversin A (44) have been isolated
from endophytic fungus of Aspergillus versicolor that was isolated from the seaweed Sar-
gassum thunbergii. Both steroid antibiotics showed antibacterial activity against Escherichia
coli and Staphylococcus aureus [132], and another steroid named fuscoporianol D (45) was
found in a MeOH extract of in field-grown mycelia of Inonotus obliquus [133].

Several steroids containing a 5,9-position peroxide moiety have been isolated from
some mushroom extracts. For example, endoperoxide (46) was found in Boletus calopus
white mushroom [134], and steroid (47) produces by two fungi Panellus serotinus and Lepista
nuda [135]. Two steroids named nigerasterols A and B (48 and 49) were isolated from the
extracts of an endophytic fungus of Aspergillus niger MA-132, which was isolated from the
mangrove plant Avicennia marina [136], and steroids (49–52) were found in Buna shimeji
and Pleurotus ostreatus [137]. A rare chamigrane-type sesquiterpenes called steperoxides A
(53), B (54), C (55), and D (56) have been isolated from the hydnoid fungus Steccherinum
ochraceum [Phanerochaetaceae]. Compound (53) demonstrated anticancer properties, and
compounds (54 and 57) showed significant antimicrobial activity against Staphylococcus
aureus [138–141]. Structures (53–68) can be seen in Figure 3, and their biological activity are
presented in Table 4.

Anti-tumor nor-sesquiterpene endoperoxides called talaperoxide A (57), B (58), C
(59), and D (60) were isolated from culture of fungi Talaromyces species HN21-3C, and
from a mangrove endophytic fungus, Talaromyces flavus isolated from the mangrove plant
Sonneratia apetala [142]. Isolated fungal metabolites demonstrated antineoplastic activity
against MCF-7, MDA-MB-435, HepG2, HeLa, and PC-3 cancer cell lines [143,144]. Semi-
synthetic derivative (61) of the fungal derived natural product showed the antiparasitic and
cytotoxic activity against Trypanosoma brucei and Hela cells, respectively [145]. Chamigrane
endoperoxide named merulin C (62), were isolated from the culture broth extract of an
endophytic fungus of Xylocarpus granatum [146].
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Table 4. Bioactivity of natural polycyclic peroxides derived from fungi and fungal endophytes.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

53
Antiprotozoal (Plasmodium) (0.911) Antineoplastic enhancer (0.825) Antifungal (0.688)

Antiparasitic (0.643) Antineoplastic (0.794) Anti-inflammatory (0.661)

54
Antiprotozoal (Plasmodium) (0.916) Antineoplastic (0.833) Antifungal (0.676)

Antiparasitic (0.650) Apoptosis agonist (0.710) Anti-inflammatory (0.661)

55 Antiprotozoal (Plasmodium) (0.919) Antineoplastic (0.839)

56
Antiprotozoal (Plasmodium) (0.904) Antineoplastic (0.814) Antifungal (0.646)

Antiparasitic (0.649) Apoptosis agonist (0.670) Anti-inflammatory (0.589)

57 Antiprotozoal (Plasmodium) (0.913)
Antineoplastic (0.795) Antifungal (0.688)

Apoptosis agonist (0.760) Anti-inflammatory (0.612)

58
Antiprotozoal (Plasmodium) (0.902) Antineoplastic enhancer (0.825) Antifungal (0.646)

Antiparasitic (0.666) Antineoplastic (0.794) Anti-inflammatory (0.611)

59 Antiprotozoal (Plasmodium) (0.923) Antineoplastic (0.865) Antifungal (0.671)

60
Antiprotozoal (Plasmodium) (0.908) Antineoplastic enhancer (0.816) Antifungal (0.677)

Antiparasitic (0.652) Antineoplastic (0.799) Anti-inflammatory (0.622)

61 Antiprotozoal (Plasmodium) (0.920) Antineoplastic (0.825) Antifungal (0.721)

62 Antiprotozoal (Plasmodium) (0.935)
Antineoplastic (0.716)

Antifungal (0.709)
Antineoplastic (renal cancer) (0.598)

63
Antiprotozoal (Plasmodium) (0.839) Antineoplastic (0.756)

Antifungal (0.705)
Antiparasitic (0.780) Antineoplastic (renal cancer) (0.592)

64 Antiprotozoal (Plasmodium) (0.836) Antineoplastic (0.758) Antifungal (0.711)

65 Antiprotozoal (Plasmodium) (0.835) Antineoplastic (0.756) Antifungal (0.705)

66 Antiprotozoal (Plasmodium) (0.877) Antineoplastic (0.848) Antiviral (0.768)

67 Antiprotozoal (Plasmodium) (0.877) Antineoplastic (0.848) Antiviral (0.768)

68 Antiprotozoal (Plasmodium) (0.938) Antineoplastic (0.912) Anti-inflammatory (0.908)

* Only activities with Pa > 0.5 are shown.

Caryophyllene-derived meroterpenoids, called cytosporolides A (63), B (64), and C
(65), which have a unique peroxylactone skeleton, were isolated from cultures of the fungus
Cytospora sp. Obtained metabolites demonstrated significant antimicrobial activity against
the Gram-positive bacteria Staphylococcus aureus and S. pneumonia [147].

Two unprecedented spiroketal endoperoxides named chloropupukeanolides A (66)
and B (67) were isolated from an endophytic fungus Pestalotiopsis fici. Compound (66)
showed significant anti-HIV-1 and cytotoxic effects [148].

It is known that natural hypocrellin is a dark red dye with photodynamic activity
against several microorganisms was isolated from the fungus Hypocrella bambusae, and its
photooxidation product called peroxyhypocrellin (68) has an anthracene endoperoxide
arrangement within the perylene quinone structure [149]. Structures (42–68) can be seen in
Figures 3 and 4, and their biological activity is presented in Tables 3 and 4.
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4. Polycyclic Endoperoxides Derived from Plants and Liverworts

The largest amount of endoperoxides has been found, isolated and partially biological
activity determined in plants and liverworts [1,2,5,6,8,9,14,19,150–154].

A peroxide-sesquetepene, called nardosaldehyde (69) was isolated from the roots
of Nardostachys chinensis, and biological activity was not determined [155]. Structures
(69–89) can be seen in Figure 5, and their biological activity is presented in Tables 5 and 6.
Peroxygibberol (16) is marine peroxide (5.9%) was also found in Agarwood oil obtained
from highly infected Aquilaria malaccensis wood [156].
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An antimalarial guaiane-type sesquiterpenoids (70), nardoperoxide (71), and isonar-
doperoxide (72) were isolated from Nardostachys chinensis roots [157–159], and in addition
to this, nardoguaianone A (73), B (74), C (75), and D (76) were also highlighted from the
same plant [160].

Widdarol peroxide (77) and its analogue (78) were found in hexane extract from
the fruits of Schisandra grandiflora, which showed anti-proliferative activity against Hela
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(cervical cancer), A549 (lung cancer), DU-145 (prostate cancer), and MCF-7 (breast cancer)
cancer cell lines [161].

Table 5. Biological activity of the natural polycyclic peroxides derived from plants.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

69
Antiprotozoal (Plasmodium) (0.930) Antineoplastic (0.674) Phobic disorders treatment (0.604)

Antimetastatic (0.536) Ovulation inhibitor (0.550)

70
Antiprotozoal (Plasmodium) (0.756) Antineoplastic (0.787) Analgesic (0.883)

Antiparasitic (0.662) Antimetastatic (0.591)

71
Antiprotozoal (Plasmodium) (0.729) Antineoplastic (0.788) Analgesic (0.883)

Antiparasitic (0.662) Antimetastatic (0.591) Antileukemic (0.564)

72
Antiprotozoal (Plasmodium) (0.743) Antineoplastic (0.769) Analgesic (0.883)

Antimetastatic (0.591) Antileukemic (0.564)

73
Antiprotozoal (Plasmodium) (0.755) Antineoplastic (0.801) Analgesic (0.883)

Antiparasitic (0.662) Antimetastatic (0.591) Antileukemic (0.564)

74
Antiprotozoal (Plasmodium) (0.722) Antineoplastic (0.855) Analgesic (0.843)

Antiparasitic (0.510) Prostate cancer treatment (0.641) Anti-inflammatory (0.648)

75

Antiprotozoal (Plasmodium) (0.739) Antineoplastic (0.855) Analgesic (0.843)
Antiparasitic (0.510) Prostate cancer treatment (0.641) Antileukemic (0.513)

Antimetastatic (0.517) Antibacterial (0.503)

76 Antiprotozoal (Plasmodium) (0.964) Apoptosis agonist (0.862) Antifungal (0.538)

Antineoplastic (0.694) Antiviral (Arbovirus) (0.536)

77

Antiprotozoal (Plasmodium) (0.954) Apoptosis agonist (0.910) Atherosclerosis treatment (0.520)
Antiparasitic (0.553) Antineoplastic (0.768)

Antimetastatic (0.587)

78

Antiprotozoal (Plasmodium) (0.805) Antineoplastic (0.949) Anti-inflammatory (0.924)
Apoptosis agonist (0.797) Antifungal (0.703)

Antimetastatic (0.505)

79 Antiprotozoal (Plasmodium) (0.855) Antineoplastic (0.582) Immunosuppressant (0.706)

80 Antiprotozoal (Plasmodium) (0.900) Antineoplastic (0.873) Anti-psoriatic (0.630)

81 Antiprotozoal (Plasmodium) (0.964) Antineoplastic (0.602) Phobic disorders treatment (0.725)

* Only activities with Pa > 0.5 are shown.

Polycyclic sesquetepene, 1α,8α-epidioxy-4α-hydroxy-5αH-guai-7(11),9-dien-12,8-olide
(79), which has anti-influenza viral properties, were isolated from the plant Curcuma wenyu-
jin, which is mainly in the Wenzhou region of China [162] and was recently found in the
flowering plant Acorus calamus [163]. Diterpenoid, (E,E)-15-hydroxylabda-8(17),11,13-trien-
16-al (80) was detected in an extract of Alpinia chinensis [164]. Cadinane sesquiterpene,
(−)-(5S,6S,7S,9R,10S)-7-hydroxy-5,7-epidioxycadinan-3-ene-2-one (81) was isolated and
identified from the aerial part of the invasive plant Eupatorium adenophorum [165]. Diter-
penoids called mulinic acid (82) and 17-acetoxymulinic acid (83) have been isolated from
the aerial parts of Mulinum crassifolium (Umbelliferae) [166,167], and semi-synthetic deriva-
tives (94, 95 and 96) were obtained from mulinic acid [168,169].

A cytotoxic seven-membered endoperoxide hemiacetal called coronarin B (84) was
isolated from the flowers of Alpinia chinensis and Hedychium coronarium [164,170,171].
Unusual diterpene peroxide (85), with potent activity against Plasmodium falciparum, has
been isolated from Amomum krervanh [172].
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Table 6. Biological activity of the natural polycyclic peroxides derived from plants.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

82 Antiprotozoal (Plasmodium) (0.868) Antineoplastic (0.887) Anti-inflammatory (0.946)

83 Antiprotozoal (Plasmodium) (0.809) Antineoplastic (0.813) Anti-inflammatory (0.898)

84
Antiprotozoal (Plasmodium) (0.882) Apoptosis agonist (0.948) Anti-inflammatory (0.867)

Antineoplastic (0.921) Antifungal (0.789)

85
Antiprotozoal (Plasmodium) (0.912) Antineoplastic (0.813) Cardiotonic (0.939)

Cardiovascular analeptic (0.660)

86

Antiprotozoal (Plasmodium) (0.996) Antineoplastic (0.797) Antifungal (Candida) (0.915)
Antiprotozoal (Toxoplasma) (0.930) Apoptosis agonist (0.787) Anti-schistosome (0.911)
Antiprotozoal (Leishmania) (0.923) DNA synthesis inhibitor (0.747) Antifungal (Cryptococcus) (0.853)

Antiparasitic (0.869) Immunosuppressant (0.720) Diuretic (0.837)
Antiprotozoal (Coccidia) (0.780) Antifungal (0.827)

87

Antiprotozoal (Plasmodium) (0.996) Apoptosis agonist (0.919) Antifungal (Candida) (0.979)
Antiprotozoal (Leishmania) (0.966) Antineoplastic (0.847) Anti-schistosome (0.961)
Antiprotozoal (Toxoplasma) (0.918)

Antiparasitic (0.883) DNA synthesis inhibitor (0.644) Antifungal (Cryptococcus) (0.955)

Antiprotozoal (Coccidia) (0.794) Antifungal (0.846)

88

Antiprotozoal (Plasmodium) (0.996) Apoptosis agonist (0.919) Antifungal (Candida) (0.979)
Antiprotozoal (Leishmania) (0.966) Antineoplastic (0.847) Anti-schistosome (0.961)
Antiprotozoal (Toxoplasma) (0.918) DNA synthesis inhibitor (0.644) Antifungal (Cryptococcus) (0.955)

Antiparasitic (0.883) Antifungal (0.846)
Antiprotozoal (Coccidia) (0.794) Angiogenesis inhibitor (0.738)

89

Antiprotozoal (Plasmodium) (0.996) Apoptosis agonist (0.890) Antifungal (Candida) (0.976)
Antiprotozoal (Leishmania) (0.949) Antineoplastic (0.820) Anti-schistosome (0.975)
Antiprotozoal (Toxoplasma) (0.928) Immunosuppressant (0.704) Antifungal (Cryptococcus) (0.953)

Antiparasitic (0.880) DNA synthesis inhibitor (0.590) Antifungal (0.828)
Antiprotozoal (Coccidia) (0.792) Antifungal (Aspergillus) (0.627)

90

Antiprotozoal (Plasmodium) (0.996) Apoptosis agonist (0.866) Antifungal (Candida) (0.977)
Antiprotozoal (Leishmania) (0.957) Antineoplastic (0.793) Anti-schistosome (0.970)
Antiprotozoal (Toxoplasma) (0.918) DNA synthesis inhibitor (0.545) Antifungal (Cryptococcus) (0.950)

Antiparasitic (0.880) Antifungal (0.832)
Antiprotozoal (Coccidia) (0.818) Antifungal (Aspergillus) (0.761)

91

Antiprotozoal (Plasmodium) (0.982) Apoptosis agonist (0.787) Antifungal (Candida) (0.921)
Antiprotozoal (Leishmania) (0.966) Antineoplastic (0.755) Anti-schistosome (0.915)

Antiparasitic (0.876) DNA synthesis inhibitor (0.592) Antifungal (0.849)
Antiprotozoal (Toxoplasma) (0.875) Antifungal (Cryptococcus) (0.749)

Antiprotozoal (Coccidia) (0.649) Antifungal (Aspergillus) (0.631)
Antiviral (CMV) (0.603)

92

Antiprotozoal (Plasmodium) (0.990) Apoptosis agonist (0.884) Anti-schistosome (0.960)
Antiprotozoal (Leishmania) (0.929) Antineoplastic (0.828) Antifungal (Candida) (0.942)
Antiprotozoal (Toxoplasma) (0.899) DNA synthesis inhibitor (0.607) Antifungal (0.868)

Antiparasitic (0.886) Antifungal (Cryptococcus) (0.825)
Antiprotozoal (Coccidia) (0.689) Antiviral (CMV) (0.668)

Antifungal (Aspergillus) (0.607)

93

Antiprotozoal (Plasmodium) (0.860) Antineoplastic (0.883) Anti-eczematic (0.934)
Prostate disorders treatment (0.675) Anti-inflammatory (0.819)

Cardiovascular analeptic (0.733)
Anti-psoriatic (0.690)

* Only activities with Pa > 0.5 are shown.

Endoperoxide called artemisinin (86) was found in 1979 in the extract of the Chinese
herb qinghaosu (Artemisia annua) [173]. Currently, artemisinin and its derivatives (87–93)
are widely used throughout the world as antimalarial drugs against the protozoan par-
asites [174–177]. An interesting mechanism of action for these compounds appears to
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involve heme-mediated degradation of the endoperoxide bridge to form carbon-centered
free radicals, and these free radicals are selectively toxic to malaria parasites [178–180].
Artemisinin and its derivatives exhibit antitumor, antifungal, and other activities [181–183].
Structures (90–114) can be seen in Figure 6, and their biological activity is presented in
Tables 6 and 7.

Table 7. Biological activity of natural polycyclic peroxides derived from plants.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

94 Antiprotozoal (Plasmodium) (0.868) Antineoplastic (0.887) Anti-inflammatory (0.946)

95 Antiprotozoal (Plasmodium) (0.874) Antineoplastic (0.870) Anti-inflammatory (0.941)

96 Antiprotozoal (Plasmodium) (0.889) Antineoplastic (0.769) Anti-inflammatory (0.918)

97
Antiprotozoal (Plasmodium) (0.936) Antineoplastic (0.932) Anti-inflammatory (0.958)

Apoptosis agonist (0.617) Antifungal (Candida) (0.630)

98
Antiprotozoal (Plasmodium) (0.936) Antineoplastic (0.932) Anti-inflammatory (0.958)

Apoptosis agonist (0.617) Antifungal (Candida) (0.630)

99 Antiprotozoal (Plasmodium) (0.928) Antineoplastic (0.681) Anti-inflammatory (0.544)

100 Antiprotozoal (Plasmodium) (0.916) Antineoplastic (0.854) Anti-inflammatory (0.945)

101
Antiprotozoal (Plasmodium) (0.879) Antineoplastic (0.866) Anti-inflammatory (0.934)

Antiparasitic (0.649) Antimetastatic (0.623) Anti-helminthic (0.609)

102
Antiprotozoal (Plasmodium) (0.965) Antineoplastic (0.792) Carminative (0.652)

Antiparasitic (0.576) Antimetastatic (0.584)

103 Antiprotozoal (Plasmodium) (0.954) Apoptosis agonist (0.565) Carminative (0.832)

104
Antiprotozoal (Plasmodium) (0.956) Antineoplastic (0.670) Anti-eczematic (0.700)

Antiparasitic (0.574) Antimetastatic (0.587) Antifungal (0.593)

105
Antiprotozoal (Plasmodium) (0.959) Antineoplastic (0.678) Anti-eczematic (0.711)

Antiparasitic (0.581) Antimetastatic (0.588) Antifungal (0.599)

106 Antiprotozoal (Plasmodium) (0.938) Antineoplastic (sarcoma) (0.734) Carminative (0.812)

107 Antiprotozoal (Plasmodium) (0.945) Antineoplastic (sarcoma) (0.529) Anti-eczematic (0.715)

108 Antiprotozoal (Plasmodium) (0.881) Antineoplastic (0.699) Anti-eczematic (0.734)

109
Antiprotozoal (Plasmodium) (0.884) Antineoplastic (0.862) Anti-eczematic (0.861)

Antiparasitic (0.672) Apoptosis agonist (0.795) Anti-inflammatory (0.679)

110
Antiprotozoal (Plasmodium) (0.967) Antineoplastic (0.911) Anti-eczematic (0.836)

Antiparasitic (0.811) Apoptosis agonist (0.883) Antifungal (0.812)
Antiprotozoal (Leishmania) (0.731) DNA synthesis inhibitor (0.652) Antibacterial (0.667)

111 Antiprotozoal (Plasmodium) (0.889) Antineoplastic (0.769) Angiogenesis stimulant (0.644)

112
Antiprotozoal (Plasmodium) (0.917) Antineoplastic (0.797) Carminative (0.724)

Prostate cancer treatment (0.650) Anti-inflammatory (0.697)

113
Antiprotozoal (Plasmodium) (0.752) Antineoplastic (0.946) Anti-inflammatory (0.949)

Apoptosis agonist (0.782) Anti-eczematic (0.896)

114
Antiprotozoal (Plasmodium) (0.925) Antineoplastic (0.914) Anti-eczematic (0.851)

Antiparasitic (0.741) Anti-helmintic (0.702)

* Only activities with Pa > 0.5 are shown.
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Endoperoxy cuparene-type sesquiterpenoids (97 and 98, structures are shown in
Figure 6, and activity is shown in Table 7) were identified from the Japanese liverwort
Jungermannia infusca [184,185]. The chamigranes called merulin B (99) and C (100) have
been found in an extract of the culture broth of a Thai mangrove-derived fungus [186,187].

Muurolane sesquiterpene endoperoxide, 1,4-peroxy-5-hydroxy-muurol-6-ene (101)
has been obtained from plant Illicium tsangii (family Schisandraceae) [188–190]. The perox-
ide called schisansphene A (102) was isolated from the plant Schisandra sphenanthera, also
known as the magnolia berry [191].
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Highly oxygenated sesquiterpene (+)-muurolan-4,7-peroxide (103) was found in the
essential oil of the liverwort Plagiochila asplenioides [192], and two sesquiterpene endoper-
oxides (104 and 105) were isolated from the aerial parts of the invasive plant Eupatorium
adenophorum [193,194]. Unusual endoperoxide (106) was detected in the Ligularia veitchi-
ana [195], compound (107) was isolated from the leaves of Eupatorium adenophorum [196],
and metabolite (108) was found in extracts of the Xylopia emarginata [197]. The aerial parts
of Montanoa hibiscifolia afforded rare endoperoxide (109) [198].

The xanthane-type sesquiterpenoid 4β,5β-epoxyxanthatin-1α,4α-endoperoxide (110)
was found in the aerial parts of Xanthium strumarium [199], and 2α,5α-endoperoxide
(111), which possess the 6α,12-eudesmanolide structure, was detected in areal parts of the
Artemisia herba-alba [200]. The sesquiterpene peroxide (112) has been found from the aerial
parts of Croton arboreous [201].

Allohimachalane peroxide (113) has been obtained from Illicium tsangii [188–190], and
an unusual sesquiterpene lactone with endoperoxide group, called tehranolide (114) with
strong antimalarial activity has been discovered in many Iranian Artemisia species: A.
aucheri, A. austriaca, A. biennis, A. campestris, A. deserti, A. diffusa, A. gypsacea, A. haussknechtii,
A. kermanensis, A. kopetdaghensis, A. kulbadica, A. oliveriana, A. persica, A. santolina, A. sieberi,
A. tschernieviana, A. ciniformis, A. incana, A. turanica, and A. tournefortiana [202].

The hemiacetal of tricycloperoxyhumulone A (115) was detected in hops (Humulus
lupulus) [203]. Structures (115–128) can be seen in Figure 7, and their biological activity
is presented in Table 8. Highly oxygenated limonoid featuring an unprecedented 3,4-
peroxide-bridged A-seco skeleton called walsuronoid A (116) was isolated from Walsura
robusta (family Meliaceae). The isolated peroxide showed weak antimalarial activity [204].

Table 8. Biological activity of natural polycyclic peroxides derived from plants.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

115
Antiprotozoal (Plasmodium) (0.920) Antineoplastic (0.719) Allergic conjunctivitis treatment (0.597)

Apoptosis agonist (0.716)

116
Antiprotozoal (Plasmodium) (0.904) Antineoplastic (0.752) Anti-inflammatory (0.815)

Apoptosis agonist (0.656) Antifungal (0.533)

117
Antiprotozoal (Plasmodium) (0.886) Antineoplastic (0.899) Antifungal (0.807)

Antiparasitic (0.548) Apoptosis agonist (0.852) Antimitotic (0.690)

118
Antiprotozoal (Plasmodium) (0.891) Antineoplastic (0.902) Antifungal (0.854)

Antiparasitic (0.603) Apoptosis agonist (0.833) Antimitotic (0.702)

119
Antiprotozoal (Plasmodium) (0.877) Antineoplastic (0.904) Antifungal (0.836)

Antiparasitic (0.567) Apoptosis agonist (0.834) Antimitotic (0.721)

120
Antiprotozoal (Plasmodium) (0.878) Antineoplastic (0.879) Antifungal (0.823)

Antiparasitic (0.601) Apoptosis agonist (0.821) Antimitotic (0.704)

121
Antiprotozoal (Plasmodium) (0.734) Antineoplastic (0.828) Anti-psoriatic (0.607)

Chemopreventive (0.785) Anti-eczematic (0.546)

122
Antiprotozoal (Plasmodium) (0.955) apoptosis agonist (0.783) Anti-inflammatory (0.731)

Antineoplastic (0.762) Lipid metabolism regulator (0.617)

123
Antiprotozoal (Plasmodium) (0.702) Apoptosis agonist (0.910) Anti-inflammatory (0.686)

Antineoplastic (0.782) Lipid metabolism regulator (0.631)

124
Antiprotozoal (Plasmodium) (0.869) Apoptosis agonist (0.853) Anti-inflammatory (0.869)

Antiprotozoal (Leishmania) (0.582) Antineoplastic (0.804) Antifungal (0.707)

125 Antiprotozoal (Plasmodium) (0.848) Antineoplastic (0.821) Anti-inflammatory (0.899)
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Table 8. Cont.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

126
Antiprotozoal (Plasmodium) (0.835) Apoptosis agonist (0.919) Anti-inflammatory (0.858)

Antineoplastic (0.842) Diuretic (0.748)

127
Antiprotozoal (Plasmodium) (0.891) Antineoplastic (0.874) Hepatoprotectant (0.838)

Apoptosis agonist (0.871) Antifungal (0.716)

128
Antiprotozoal (Plasmodium) (0.891) Antineoplastic (0.874) Hepatoprotectant (0.838)

Apoptosis agonist (0.871) Antifungal (0.716)

* Only activities with Pa > 0.5 are shown.
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A cytotoxic peroxytriterpene dilactone called pseudolarolide I (117) has been isolated
from the seeds of Pseudolarix kaempferi [205], and the leaves of P. kaemferi contains three
triterpene peroxides, pseudolarolides Q (118), R (119), and S (120) [206]. An unusual
glycoside, 3β,15α,25-trihydroxy-16,23-dioxo-6α,19α-epidioxy-9,10-seco-9,19-cyclolanost-5
(10),9(11)-diene 3-O-α-1-arabinopyranoside called podocarpaside E (121), was isolated
from the roots of Actaea podocarpa [207].

A triterpene, 5α,6α-epidioxy-5β,6β-epoxy-9,13-dimethyl-25,26-dinoroleanan-3β-ol
acetate, called aceranol acetate (122), which shows anti-inflammatory activity, was isolated
from the stems and leaves of Acer mandshuricum [208]. The isolated compound also
exhibited moderate activity against four human cancer cell lines (HL-60, SK-OV-3, A549,
and HT-29).

A peroxy-multiflorane triterpene ester, (3α,5α,8α,20α)-5,8-epidioxymultiflora-6,9(11)-
diene-3,29-diol 3,29-dibenzoate (123), was isolated from the processed seeds of Trichosanthes
kirilowii. The obtained compound showed in vitro cytotoxicity against human-tumor cell
lines (Hela, HL-60, and MCF-7) [209]. A peroxy triterpene, 3β-acetoxy-1β,11α-epidioxy-12-
ursene (124), was isolated from the aerial roots of Ficus microcarpa [210]. An antimicrobial
triterpenoid, 1α,5α-dioxy-11α-hydroxyurs-12-en-3-one (125), was found and obtained from
the rhizome of Vladimiria muliensis [211].

The benzene extract of the bark of Sapium baccatum contained the nor-triterpene
peroxide baccatin (126), which has been isolated and studied [212]. Two highly oxygenated
ursane-type triterpenoids, (2β,3β)-3,25-epidioxy-2,24-dihydroxyursa-12,20(30)-dien-28-
oic acid (127) and (2β,3β)-3,25-epidioxy-2,24-dihydroxyurs-12-en-28-oic acid (128), were
detected in the EtOH extract of Gentiana aristata [213].

Highly oxygenated steroidal metabolites called physalin K (129) and Q (130) were
found in extracts of the areal parts of Physalis alkekengi var. franchetii [214]. Structures
(129–143) can be seen in Figure 8, and their biological activity is presented in Table 9. Plant
withanolide called jaborosalactone 15 (131) was isolated from the flowering plant Jaborosa
odonelliana, which was collected during autumn in Argentina [215]. Physangulidine G (132)
was isolated from the aerial parts of Deprea bitteriana, D. cuyacensis, and D. zamorae [216].

Table 9. Biological activity of natural polycyclic peroxides derived from plants.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

129
Antiprotozoal (0.969) Antineoplastic (0.812) Immunosuppressant (0.586)

Antiprotozoal (Plasmodium) (0.966) Antimetastatic (0.504) Antifungal (0.521)

130
Antiprotozoal (0.967) Antineoplastic (0.819) Antibacterial (0.657)

Antiprotozoal (Plasmodium) (0.966) Antimetastatic (0.504) Antifungal (0.521)

131
Antiprotozoal (0.837) Antineoplastic (0.788) Antifungal (0.609)

Antiprotozoal (Plasmodium) (0.820) Antibacterial (0.557)

132 Antiprotozoal (Plasmodium) (0.883) Antineoplastic (0.890) Antifungal (0.666)

133

Antiprotozoal (Plasmodium) (0.846) Apoptosis agonist (0.934) Hypolipemic (0.820)
Antineoplastic (0.890) Anti-hypercholesterolemic (0.608)

Prostate cancer treatment (0.636) Atherosclerosis treatment (0.679)

134 Antiprotozoal (Plasmodium) (0.894) Antineoplastic (0.875) Antifungal (0.703)

135
Antiprotozoal (Plasmodium) (0.952) Antineoplastic (0.756) Anti-eczematic (0.863)

Apoptosis agonist (0.689) Anti-psoriatic (0.640)

136

Antiprotozoal (Plasmodium) (0.782) Antineoplastic (0.879) Anti-eczematic (0.684)
Antiprotozoal (0.776) Antineoplastic (sarcoma) (0.671) Anti-inflammatory (0.681)

Antineoplastic (renal cancer) (0.615)

137 Antiprotozoal (Plasmodium) (0.908) Antineoplastic (0.833) Antifungal (0.714)
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Table 9. Cont.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

138

Antiprotozoal (Plasmodium) (0.970) Apoptosis agonist (0.920) Antifungal (Candida) (0.908)
Antiparasitic (0.867) Antineoplastic (0.850) Antifungal (Cryptococcus) (0.844)

DNA synthesis inhibitor (0.687) Antifungal (0.812)

139
Antiprotozoal (Plasmodium) (0.972) Apoptosis agonist (0.938) Antifungal (Candida) (0.903)

Antiparasitic (0.864) DNA synthesis inhibitor (0.754) Antifungal (0.833)

140
Antiprotozoal (Plasmodium) (0.977) Antineoplastic (0.914) Antifungal (Candida) (0.899)

DNA synthesis inhibitor (0.733) Antifungal (0.834)

141 Antiprotozoal (Plasmodium) (0.894) Antineoplastic (0.943) Anti-inflammatory (0.883)

142
Antiprotozoal (Plasmodium) (0.983) Apoptosis agonist (0.955) Antifungal (0.858)

Antiparasitic (0.868) Antineoplastic (0.841) Antibacterial (0.633)
DNA synthesis inhibitor (0.712)

143
Antiprotozoal (Plasmodium) (0.988) Apoptosis agonist (0.950) Antifungal (0.860)

Antiparasitic (0.859) Antineoplastic (0.848) Antibacterial (0.635)
DNA synthesis inhibitor (0.718)

* Only activities with Pa > 0.5 are shown.
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A unique compound, a 3,9-(1,2,3-trioxocine)-type steroid called rauianodoxy (133),
and an ergosterol peroxide (33) were isolated from the Australian plant Rauia nodosa (family
Rutaceae) [217]. An unusual endoperoxide called schinalactone A (134), which has a
compressed ring A and shows anticancer activity against PANC-1 cell lines, was detected
in the stems and roots of the magnolia vine, Schisandra sphenanthera [218].

A secoadianane-type steroid (135) was found and identified in the herbaceous plant
Dorstenia brasiliensis (Moraceae) [219,220]. A polycyclic peroxide called vielanin D (136),
which showed anti-plasmodial activity, was extracted from fresh and dry leaves of the plant
Senecio selloi [221]. The peroxy steroid (16S,23R)-16,23-epoxy-23,25-epidioxycycloartan-3-
one (137) was found in the Texas yellow-star, Lindheimera texana (Asteraceae) [222].

Two triterpenes, called gilvanol (138) and 3-deoxydilvanol (139), have been detected in
the extracts of the red-bark oak, Quercus gilva [170,223]. An interesting endoperoxide, adian-
5-ene ozonide (140) was found in the fern leaves of Adiantum monochlamys (Pteridaceae)
and Oleandra wallichii (Davalliaceae), and another peroxide, a triterpene ozonide (141), was
detected in the root extract of Senecio selloi [224,225].

Interesting and rare 1,2,4-trioxolanes (142 and 143) were derived from natural two
allobetulin derivatives; however, biological activity has not been determined [226]. Two
9,13-diepoxy labdane diterpenoids called amoenolide K (144) and its 19-acetate (145) were
detected in the areal parts from Amphiachyris amoena [227], and ent-8β,12α-epidioxy-12β-
hydroxylabda-9(11),13-dien-15-oic acid γ-lactone (146) was obtained from the aerial parts
of Premna oligotricha [228]. Structures (144–154) can be seen in Figure 9, and their biological
activity is presented in Table 10.

Molecules 2021, 26, x FOR PEER REVIEW 21 of 39 
 

 

adian-5-ene ozonide (140) was found in the fern leaves of Adiantum monochlamys (Pterida-
ceae) and Oleandra wallichii (Davalliaceae), and another peroxide, a triterpene ozonide 
(141), was detected in the root extract of Senecio selloi [224,225]. 

Interesting and rare 1,2,4-trioxolanes (142 and 143) were derived from natural two 
allobetulin derivatives; however, biological activity has not been determined [226]. Two 
9,13-diepoxy labdane diterpenoids called amoenolide K (144) and its 19-acetate (145) were 
detected in the areal parts from Amphiachyris amoena [227], and ent-8β,12α-epidioxy-12β-
hydroxylabda-9(11),13-dien-15-oic acid γ-lactone (146) was obtained from the aerial parts 
of Premna oligotricha [228]. Structures (144–154) can be seen in Figure 9, and their biological 
activity is presented in Table 10. 

O

O

O

H

O

144 R = H
145 R = Ac

146

MeOOC
147

OOH

O O

OAc
H

AcO

150 Jungermatrobrunin A

HO

O

O

O
O

OH

151 Triptotin A

O

O
O

OH

O

O

O

OH

O

HO
HO O O

H
H

154 Steenkrotin B

O

O O

H

H

O

153 Caniojane

COOH

148

O

O

AcO

O

O

O O

H

149 EBC-325

O

O

O
O

OH

H
OR

OH

OH

O

O OH

152 Triptotin B

 
Figure 9. Bioactive polycyclic endoperoxides derived from plants. 

  

Figure 9. Bioactive polycyclic endoperoxides derived from plants.



Molecules 2021, 26, 686 22 of 39

Table 10. Biological activity of natural polycyclic peroxides derived from plants.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

144
Antiprotozoal (Plasmodium) (0.900) Antineoplastic (0.873) Respiratory analeptic (0.635)

Apoptosis agonist (0.850) Anti-psoriatic (0.630)

145
Antiprotozoal (Plasmodium) (0.893) Antineoplastic (0.873) Respiratory analeptic (0.642)

Apoptosis agonist (0.852) Anti-psoriatic (0.639)

146 Antiprotozoal (Plasmodium) (0.846) Antineoplastic (0.857) Antifungal (0.685)

147

Antiprotozoal (Plasmodium) (0.888) Antineoplastic (0.824) Choleretic (0.545)
Chemopreventive (0.675) Immunosuppressant (0.532)
Apoptosis agonist (0.750)

148
Antiprotozoal (Plasmodium) (0.734) Antineoplastic (0.798)

Antiparasitic (0.544)

149 Antiprotozoal (Plasmodium) (0.801) Antineoplastic (0.871) Prostate disorders treatment (0.627)

150 Antiprotozoal (Plasmodium) (0.915) Antineoplastic (0.848) Antibacterial (0.647)

151 Antiprotozoal (Plasmodium) (0.772) Antineoplastic (0.726) Antileukemic (0.602)

152 Antiprotozoal (Plasmodium) (0.829) Antineoplastic (0.685) Anti-eczematic (0.794)

153
Antiprotozoal (Plasmodium) (0.905) Antineoplastic (0.805) Carminative (0.505)

Antiparasitic (0.727) Antibacterial (0.504)

154
Antiprotozoal (Plasmodium) (0.854) Antineoplastic (0.804) Antimitotic (0.597)

Antifungal (0.553)

* Only activities with Pa > 0.5 are shown.

Diterpenic acids (13, 14, 147 and 148) have been identified from lipid extract of the
different species. The diterpenic acid methyl ester (147) was isolated from the leaves of
Moroccan Juniperus thurifera and J. phoenicea [229], compound (148) was detected in MeOH
extract of Safvia oxyodon [230], and two abietic acids (13 and 14) were obtained from areal
parts from the Abies marocana, Lepechinia caulescens, and Caryopteris nepetaefolia [231–233].

The diterpenoid endoperoxide called EBC-325 (149) was obtained from an extract
of Croton insularis [234,235]. The diterpenoid endoperoxide called jungermatrobrunin A
(150), detected in the liverwort Jungermannia atrobrunnea, has an unusual rearrangement-
kaurene skeleton with a peroxide bridge [236], and two similar oxygenated diterpenes
called triptotins A (151) and B (152) were found in extracts of the Tripterygium wilfordii [237].
The roots of Jatropha curcas contained peroxide caniojane (153) [238], and another peroxide
called steenkrotin B (154) was found in ethanol extract of the leaves of Croton steenkampianus
(Euphorbiaceae), which displayed mild anti-plasmodial activity [239].

Several adamantane type polycyclic polyprenylated acylphloroglucinols (155–164)
possessing an unprecedented seco-adamantane architecture combined with a peroxide
ring have been isolated and identified from extracts of some plants [240]. Thus, one
compound called hypersubone B (155) was isolated from the leaves of Hypericum subsessile
and exhibited significant cytotoxicity against four human cancer lines in vitro, HepG2,
Eca109, HeLa, and A549 [241], and hyperisampsins N (157) and O (158), which exhibited
significant cytotoxic activities toward HL-60 cells, were found in the aerial parts of H.
sampsonii [242]. Structures (155–164) can be seen in Figure 10, and their biological activity
is presented in Table 11.
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Table 11. Biological activity of natural polycyclic peroxides derived from plants.

No Antiprotozoal Activity, (Pa) * Anticancer and Related Activities, (Pa) * Additional Biological Activities, (Pa) *

155
Antiprotozoal (Plasmodium) (0.861) Antineoplastic (0.788) Antioxidant (0.551)

Antiparasitic (0.503) Apoptosis agonist (0.784) Antibacterial (0.505)
Chemopreventive (0.521)

156
Antiprotozoal (Plasmodium) (0.862) Antineoplastic (0.767) Hypolipemic (0.581)

Apoptosis agonist (0.744)

157
Antiprotozoal (Plasmodium) (0.874) Antineoplastic (0.761) Antiviral (Arbovirus) (0.579)

Apoptosis agonist (0.743)

158
Antiprotozoal (Plasmodium) (0.875) Antineoplastic (0.735)

Apoptosis agonist (0.675)

159

Antiprotozoal (Plasmodium) (0.861) Antineoplastic (0.788) Antioxidant (0.551)
Antiparasitic (0.503) Apoptosis agonist (0.784) Antibacterial (0.505)

Chemopreventive (0.521)

160
Antiprotozoal (Plasmodium) (0.875) Antineoplastic (0.735)

Apoptosis agonist (0.675)

161
Antiprotozoal (Plasmodium) (0.874) Antineoplastic (0.761) Antiviral (Arbovirus) (0.579)

Apoptosis agonist (0.743)

162
Antiprotozoal (Plasmodium) (0.811) Apoptosis agonist (0.892) Antioxidant (0.657)

Antineoplastic (0.710)

163
Antiparasitic (0.798) Antineoplastic (0.958) Antifungal (0.867)

Antiprotozoal (Plasmodium) (0.731) Apoptosis agonist (0.630) Antibacterial (0.864)
Antiprotozoal (Leishmania) (0.557) Cytostatic (0.576) Immunosuppressant (0.797)

164

Antiparasitic (0.779) Antineoplastic (0.960) Respiratory analeptic (0.879)
Antiprotozoal (Plasmodium) (0.744) Proliferative diseases treatment (0.740) Immunosuppressant (0.754)

Chemopreventive (0.666) Angiogenesis inhibitor (0.569)
Apoptosis agonist (0.627)

165

Antiparasitic (0.771) Antineoplastic (0.963) Respiratory analeptic (0.879)
Antiprotozoal (Plasmodium) (0.737) Proliferative diseases treatment (0.742) Immunosuppressant (0.754)

Chemopreventive (0.656) Angiogenesis inhibitor (0.569)
Apoptosis agonist (0.629)

166

Antiparasitic (0.798) Antineoplastic (0.959) Respiratory analeptic (0.936)
Antiprotozoal (Plasmodium) (0.732) Anticarcinogenic (0.732) Immunosuppressant (0.773)

Chemopreventive (0.731) Angiogenesis inhibitor (0.620)
Apoptosis agonist (0.622)

167
Antiparasitic (0.813) Antineoplastic (0.960) Immunosuppressant (0.781)

Antiprotozoal (Plasmodium) (0.728) Chemopreventive (0.740) Anti-inflammatory (0.765)
Apoptosis agonist (0.631) Analeptic (0.788)

168

Antiparasitic (0.843) Antineoplastic (0.962) Respiratory analeptic (0.964)
Antiprotozoal (Plasmodium) (0.771) Proliferative diseases treatment (0.834) Neuroprotector (0.675)

Apoptosis agonist (0.666)
Antimetastatic (0.517)

169
Antiprotozoal (Plasmodium) (0.874) Antineoplastic (0.761) Antiviral (Arbovirus) (0.579)

Apoptosis agonist (0.743)

170
Antiprotozoal (Plasmodium) (0.875) Antineoplastic (0.735)

Apoptosis agonist (0.675)

171

Antiprotozoal (Plasmodium) (0.861) Antineoplastic (0.788) Antioxidant (0.551)
Antiparasitic (0.503) Apoptosis agonist (0.784) Antibacterial (0.505)

Chemopreventive (0.521)

* Only activities with Pa > 0.5 are shown.
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Figure 10. Bioactive adamantane type polycyclic endoperoxides derived from plants.

Peroxysampsones A and B (156 and 162) were isolated from the roots of the Chi-
nese medicinal plant H. sampsonii, and compound (156) showed comparable activity with
norfloxacin against a NorA over-expressing multidrug-resistant strain of Staphylococcus
aureus SA-1199B [243]. Two prenylated benzophenone derivatives, plukenetiones C (159)
and hydroperoxide (160), have been isolated from the fruits of the Barbadian plant Clusia
plukenetii [244], and otogirinin B (98) was detected in Hypericum erectum [245]. Garcimulti-
florone G (163), which shows anti-inflammatory activity, was isolated from the fruits of
Garcinia multiflora [246], and another polycyclic peroxide called goianone (164) was found
in fruits extracts of Clusia rosea [247].

Unusual polycyclic endoperoxides pregnane glycosides named periplocosides A (165),
B (166) C (167), D (168), K (169), F (170), and E (171) have been isolated from the antitu-
mor fraction, which was obtained from the CHCl3 extract of Periploca sepium [248–250].
Structures (165–171) can be seen in Figure 11, and their biological activity is presented in
Table 11.
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5. Comparison of Biological Activities of Natural Polycyclic Endoperoxides

It is currently accepted that the biological activity of both natural and synthetic
compounds depends on their structure [33,251,252]. Despite the activity cliffs observed
for some drug-like compounds [253], which can be considered as a violation of this rule,
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structure-activity relationships (SAR) are widely used in medicinal chemistry for finding
and optimization new pharmacological agents [254].

PASS is the first software for in silico estimation of biological activity profiles [33,255],
of which the development has been started more than 30 years ago [256]. Its current
implementation predicts about 8000 pharmacological effects, molecular mechanisms of
action, pharmacological effects, toxicity, side effects, anti-targets, transporters-related
interactions, gene expression regulation, and metabolic terms [31]. Due to the utilization of
chemical descriptors that reflect the essential features of ligand-target interactions and a
robust mathematical approach for analysis of structure-activity relationships, the average
accuracy of PASS predictions was 96% [31,252,257,258]. Based on the PASS predictions
provided by the appropriate web-service [259], over 29,000 researchers from 104 countries
selected the most promising virtually designed molecules for synthesis and determined
the optimal directions for testing their biological activity [260–264].

In this study, PASS predictions were used to estimate the general pharmacological
potential for the analyzed natural polycyclic endoperoxides. For about 8000 pharmacologi-
cal effects and molecular mechanisms of action, probabilities of belonging to the class of
“actives” Pa, varied from zero to one, were estimated. The higher the Pa value is, the higher
the probability of confirming the predicted activity in the experiment. On the other hand,
estimated Pa values might be relatively small for some activities if the analyzed molecule
is not like the active compounds from the PASS training set. Thus, PASS prediction inter-
pretation requires considering two contradictory issues high probability of activity vs. high
structural novelty. The researcher decides which issue is more critical, depending on the
task or the project [18,31,35,257,258].

5.1. Antiprotozoal Activity of Natural Polycyclic Endoperoxides

Currently, about 120,000 articles have been published that are devoted to antiprotozoal
and antiparasitic activities of both natural and synthetic compounds [265–271].

Analyzing the data obtained with PASS of natural polycyclic endoperoxides and
artemisinin and its analogs currently used in medicine, it can be stated that for all polycyclic
endoperoxides, antiprotozoal activity is estimated with a Pa from 70 to 99.6%. For some
compounds, antiparasitic activity is also estimated, with a Pa from 50 to 88.3%. The
antiprotozoal and antiparasitic activities predicted using the PASS are shown in Tables 1–11,
and the chemical structures are shown in Figures 1–11. A 3D graph of the predicted
pharmacological activities of artemisinin (86) and its analogs is shown in Figure 12.

Artemisinin and its analogs (both natural and synthetic) are widely used in medical
practice and are essential antimalarial treatment components. Figure 12 shows the pre-
dicted pharmacological activities of artemisinin and its analogs using PASS, and Figure 13
demonstrates the predicted pharmacological activities of artemisinin.

5.2. Antitumor and Other Activities of Natural Polycyclic Endoperoxides

Many natural products exhibit antitumor and related activities and belong to different
classes of chemical compounds, such as alkaloids, aromatic and phenolic metabolites,
lipids, glycosides, and compounds containing acetylene or epoxy moieties [272–278]. These
compounds also refer to various types of terpenoids, including steroids, triterpenoids,
carotenoids, and polycyclic endoperoxides.

More than one million articles and reviews have been devoted to various antitumor
and related activities of both natural and synthetic compounds. In an earlier section, we
presented and discussed the antitumor activity of polycyclic endoperoxides isolated from
various terrestrial and aquatic organisms computed using PASS.

According to the PASS estimates presented in Tables 1–11, many endoperoxides
demonstrate antitumor and related activities to varying degrees. However, we are inter-
ested in compounds for which such activity is estimated with more than 95% probability.
Figure 14 demonstrates natural compounds and their predicted antitumor activity with
Pa > 95%.
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having a found confidence of more than 90 percent. Antiprotozoal selective activity of artemisinin 
against obligate intracellular protozoan parasites belonging to the genera Plasmodium (99.5%), Tox-
oplasma (93%), Leishmania (92.3%), and Coccidia (78%) is the main pharmacological activity. In addi-
tion, artemisinin demonstrated strong anti-schistosomal activity (91.1%) against Schistosoma man-
soni, a human blood fluke parasite. Additionally, artemisinin shows antifungal activity against an 
opportunistic pathogenic yeast Candida (91.5%) and Cryptococcus (85.3%), although anticancer ac-
tivity is found at 80%. 

Figure 12. The 3D graph shows the predicted and calculated pharmacological activities of artemisinin
(86) and its analogs, such as 12α-OH-artemisinin (87), 12β-OH- artemisinin (88), artemether (89),
arteether (90), artelinate (91), and artesunic acid (92). According to the PASS data, artemisinin and its
analogs (86–92) show selective activity against obligate intracellular protozoan parasites belonging
to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia, which is the main pharmacological
activity with a confidence level of more than 90%. In addition, all these endoperoxides show
antifungal activity against the opportunistic pathogenic yeasts Candida and Cryptococcus, as well as
anticancer activity for some compounds; the confidence level exceeds 90 percent.
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Figure 13. The 3D graph shows the predicted and calculated pharmacological activities of artemisinin (86), which was
found in 1979 in the extract of the Chinese herb Qinghaosu (Artemisia annua). According to PASS data, this endoperoxide
demonstrated 16 different activities, with 5 activities having a found confidence of more than 90 percent. Antiprotozoal
selective activity of artemisinin against obligate intracellular protozoan parasites belonging to the genera Plasmodium
(99.5%), Toxoplasma (93%), Leishmania (92.3%), and Coccidia (78%) is the main pharmacological activity. In addition,
artemisinin demonstrated strong anti-schistosomal activity (91.1%) against Schistosoma mansoni, a human blood fluke
parasite. Additionally, artemisinin shows antifungal activity against an opportunistic pathogenic yeast Candida (91.5%) and
Cryptococcus (85.3%), although anticancer activity is found at 80%.
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Figure 14. The 3D graph shows the predicted and calculated antitumor activity of selected polycyclic
endoperoxides (compound numbers: 11, 17, 30, 33, 142, 143, 164, and 165) showing the highest degree
of confidence, more than 95%. These polycyclic endoperoxides can be used in clinical medicine as
agents with strong antitumor activity.

Some polycyclic endoperoxides, in addition to antiparasitic, antiprotozoal, and antitu-
mor activities, demonstrate other activities with Pa > 90%, which should also be mentioned
in this article. This is primarily anti-inflammatory activity. Figure 15 demonstrates such
compounds as well as their predicted anti-inflammatory activity. It should also be noted
that endoperoxide artemisinin (86) and its analogs, and some other compounds, show
antifungal activity. Figure 16 demonstrates predicted antifungal activity with Pa> 90%.
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with varying degrees of reliability, and among them, the artemisinin group and some 
other compounds are significantly distinguished from of all endoperoxides presented and 
have a strong antiprotozoal activity. Our data only confirm that the artemisinin group has 
unique properties, which is why it has been used in medical practice for more than 50 
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Figure 15. The 3D graph shows the predicted and calculated anti-inflammatory activity of selected
polycyclic endoperoxides (compound numbers: 1, 8, 9, 68, 94, 95, 96, 97, 98, 100, and 113) showing
the highest degree of confidence, i.e., more than 95%. These polycyclic endoperoxides can be used as
potential agents with strong anti-inflammatory activity.
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Figure 16. The 3D graph shows the predicted and calculated antifungal activity of selected polycyclic
endoperoxides (compound numbers: 86, 87, 88, 89, 90, 91, 92, 138, and 139) polycyclic endoperoxides
showing the highest degree of confidence, more than 95%.

6. Conclusions

In this review, we presented more than 170 polycyclic endoperoxides isolated from
various sources and showed that all endoperoxides demonstrate antiprotozoal activity
with varying degrees of reliability, and among them, the artemisinin group and some other
compounds are significantly distinguished from of all endoperoxides presented and have a
strong antiprotozoal activity. Our data only confirm that the artemisinin group has unique
properties, which is why it has been used in medical practice for more than 50 years in the
fight against malaria parasites. In addition, the artemisinin group has a high antifungal
activity, while some other endoperoxides have a strictly strong anti-inflammatory activity.

Compounds such as (19), (23), and (25) exhibited anti-hypercholesterolemic action,
and compounds (166) and (168) have a strong stimulating effect on the respiratory and
vasomotor centers of the brain. However, to confirm the conclusions regarding the in silico
estimations, more research is required.
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47. Řezanka, T.; Temina, M.; Tolstikov, A.G.; Dembitsky, V.M. Natural microbial UV radiation filters - mycosporine-like amino acids.

Folia Microbiol. 2004, 49, 339–352. [CrossRef]
48. Kuklev, D.V.; Domb, A.J.; Dembitsky, V.M. Bioactive acetylenic metabolites. Phytomedicine 2013, 20, 1145–1159. [CrossRef]
49. Kuklev, D.V.; Dembitsky, V.M. Chemistry, origin, antitumor and other activities of fungal homo-dimeric alkaloids. Mathews J.

Pharmaceut. Sci. 2016, 1, 004.
50. Kilimnik, A.; Kuklev, D.V.; Dembitsky, V.M. Antitumor Acetylenic Lipids. Mathews J. Pharmaceut. Sci. 2016, 1, 005.
51. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Novel antitumor agents: Marine sponge alkaloids, their synthetic analogs and

derivatives. Mini Rev. Med. Chem. 2005, 5, 319–336. [CrossRef]
52. Dembitsky, V.M. Betaine ether-linked glycerolipids: Chemistry and biology. Prog. Lipid Res. 1996, 35, 1–51. [CrossRef]
53. Dembitsky, V.M.; Maoka, T. Allenic and cumulenic lipids. Prog. Lipid Res. 2007, 46, 328–375. [CrossRef] [PubMed]
54. Dembitsky, V.M.; Smoum, R.; Al-Quntar, A.A.; Ali, H.A.; Pergament, I.; Srebnik, M. Natural occurrence of boron-containing

compounds in plants, algae and microorganisms. Plant Sci. 2002, 163, 931–942. [CrossRef]
55. Dembitsky, V.M.; Levitsky, D.O. Arsenolipids. Prog. Lipid Res. 2004, 43, 403–448. [CrossRef]
56. Dembitsky, V.M.; Rozentsvet, O.A.; Pechenkina, E.E. Glycolipids, phospholipids and fatty acids of brown algae species. Phyto-

chemistry 1990, 29, 3417–3421. [CrossRef]
57. Dembitsky, V.M.; Pechenkina-Shubina, E.E.; Rozentsvet, O.A. Glycolipids and fatty acids of some seaweeds and marine grasses

from the Black Sea. Phytochemistry 1991, 30, 2279–2283. [CrossRef]
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