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A B S T R A C T

We believe that, in parallel to the attempts for direct blockade of the SARS-CoV-2 penetration into host cell and
repurposing drugs, finding new therapeutic strategies for patients with lung injury or cardiovascular compli-
cations/coagulopathies associated with COVID-19 should be paid particular attention. Apelin or its receptor
agonists are of great potential treatment for COVID-19 through suppressing angiotensin-converting enzyme
(ACE) and angiotensin II (Ang-II) production, as well as, down-regulating angiotensin receptor 1 (AT1R) and
ACE2 up-regulation. These drugs have potential to improve acute lung injury and cardiovascular/coagulopathy
complications in COVID-19 which are associated with elevated Ang-II/Ang(1–7) ratio.

1. Introduction

Since December 2019, the novel coronavirus (SARS-CoV-2) was
identified in the pneumonia cases of unknown etiology in Wuhan,
China, and is rapidly spreading around the world. Given the rapid
spread and strong transmissibility of SARS-CoV-2, the epidemiologic
picture is varying on a daily basis. The respiratory symptoms including
acute respiratory distress syndrome (ARDS) has been recognized as the
major cause of death in the patients infected with SARS-CoV-2, and the
mortality remains very high despite the different therapeutic regimens
including repurposed antivirals, anti-inflammatory agents, and im-
munomodulators. Scientific evidence is lacking in many domains as
Coronavirus disease 2019 (COVID-19) is a novel disease and compre-
hensive knowledge of pathophysiology remains incomplete. So far,
drug repurposing and potential pharmaceutical treatments such as an-
tiretroviral lopinavir-ritonavir, and antimalarial hydroxychloquine and
chloroquine, the drugs thought to be the prospects for treating Covid-
19, failed to have any effect in the first trials, whereas may even raise
the risk of mortality. Therefore, finding potential therapeutic targets for
COVID-19 can be timely and of greatest importance to improve clinical
outcome and reduce mortality.

The renin-angiotensin system (RAS) is a key mechanism underlying
ARDS and cardiovascular diseases, so that the recent clinical findings
from SARS-CoV-2-infected humans and previous studies of SARS-CoV
spike protein-infected mice demonstrate the activation of the RAS and
remarkable increased serum Ang-II have a linear correlation to wor-
sening ARDS symptoms that was partly reversed by pharmacological
inhibition of AT1R in the mice [1]. By contrast, angiotensin-converting

enzyme 2 (ACE2) cleaves Ang-II to Ang(1–7) and protects against SARS-
CoV-triggered severe acute lung injury (ALI) and progression to ARDS.
The viruses strongly bind ACE2 for host cell entry and down-regulate
ACE2 expression that leads to excessive Ang-II formation and the sub-
sequent ALI [1]. This might be the rationale for the ongoing clinical
trials of recombinant human ACE2 (rhACE2) for coronavirus-associated
ALI and the cardiovascular/coagulation complications [2]. Therefore,
an appropriate therapeutic strategy for improving the lung injury and
adverse cardiovascular outcome in COVID-19 could be the suppression
of the RAS by simultaneous inhibiting Ang-II production and AT1R and
activating ACE2.

2. SARS-CoV-2 and ACE2

ACE2 is a key counter-regulator of the RAS and has considerable
homology to ACE that exhibits 42% sequence identity and 61% se-
quence similarity to ACE within the C-terminal domain [3]. Both ACE,
the enzyme that converts Ang-I to Ang-II, and ACE2 are expressed and
abundant in the human alveolar epithelial cells and extrapulmonary
organs including the heart and endothelium. ACE2 also acts as the es-
sential receptor for some respiratory viruses including SARS-CoV-2 and
SARS-CoV, through which the viruses gain entry to host cells [1,4,5].
Binding of SARS-CoV-2 spike protein to ACE2 followed by the proteo-
lytic cleavage of ACE2 by transmembrane serine protease 2 (TMPRSS2)
leads to increased internalization and shedding of ACE2 from cell sur-
face, and consequently decreased Ang(1–7)/Ang-II ratio [5]. Accord-
ingly, down-regulation or severely impaired activity of ACE2, along
with dominant increase in ACE activity and the subsequent Ang-II
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formation have been seen in patients with ARDS [1]. The elevated Ang-
II binds its receptor AT1R that can cause severe adverse effects in-
cluding (1) a rapid vasoconstriction and limited pulmonary circulation,
leading to vascular permeability and pulmonary edema in hypoxic
condition; (2) boost inflammatory responses; (3) enhanced reactive
oxygen species (ROS) production, (4) accelerated apoptotic pathways,
and (5) promoted pulmonary fibrotic events [6]. The excessive Ang-II
promotes vascular inflammation through the enhancement of adhesion
molecules, pro-inflammatory cytokines and chemokines which may
also contribute to the hypercoagulable state and endothelial dysfunc-
tion. Moreover, activation of the RAS stimulates transcription factor
NF-κB which converts the normal anticoagulant endothelium into a
procoagulant surface, expressing tissue factor (TF) with activated
plasminogen activator inhibitor-1 (PAI-1) [7].

3. Apelin-APJ system

Apelin peptides are endogenous ligands of the G protein-coupled
receptor APJ, which presents in vascular endothelial cells and, parti-
cularly, lung tissue. Apelin is a well characterized cardioprotective
peptide in the late stages of heart failure, thereby exogenous adminis-
tration of apelin can augment cardiac output and contractility in the
failing hearts and consequently improve the cardiac performance [8].
Previous in vitro and in vivo studies have exhibited the apelin-APJ
system counteracts the effects of ACE-Ang-II-AT1R axis and exogenous
apelin negatively regulates the RAS. Given that the SARS-CoV-2 infec-
tion induces ACE2 down-regulation and consequently activation of ACE
and Ang-II signaling, it is predictable that apelin has potential of alle-
viating the respiratory and cardiovascular complications through up-
regulating ACE2, which itself enhances Ang(1–7)/Ang-II ratio and
suppresses Ang-II signaling. On the other hand, ACE2 up-regulation
may increase the risk for susceptibility to SARS-CoV-2 infection,
therefore apelin or its analogues are proposed to be used in the late
stages of COVID-19 when the viral load is reduced. Even tough, the
recent findings elucidate that ACE inhibitors and AT1R blockers, which
were presumed to up-regulate ACE2, would not predispose to viral in-
fection and severity of COVID-19, but were associated with significantly
lower expression of ACE2 and the viral entry cofactor TMPRSS2 [9–11].

4. Apelin and COVID-19

The recent cohorts of COVID-19 patients confirm that hypertension
and other cardiovascular diseases are comorbidities in almost one-third
of the cases who developed ARDS [12]. Experimental and clinical stu-
dies suggest that Ang-II mediates inflammation systemically in the lung,
heart, and vascular endothelial cells. Moreover, ACE2, the receptor for
the SARS coronavirus, was identified as a regulator of acute lung injury,
and heart failure [13]. Since SARS-CoV-2 binds and down-regulates
ACE2 and consequently activates Ang-II-mediated pathological path-
ways in the endothelial and epithelial cells in the lung, heart and vas-
culature, apelin is assumed to play a critical role in alleviating Ang-II-
mediated acute lung and cardiovascular injuries and prothrombotic
events in COVID-19 patients. Although there is absence of basic and
clinical evidence on therapeutic effects of apelin or its analogues on
COVID-19 infection and the associated severe complications, preclinical
studies to date demonstrate that these peptides are able to ameliorate
the severity of ALI by reducing lung fluid accumulation, cytokine se-
cretion, and hypoxemia, which occur in COVID-19-associated ARDS,
and lead to downstream injury to the heart, kidney, and other organs
[14]. Therefore, these peptides may potentially block acute effects of
COVID-19, and their beneficial effects may extend to protecting other
organs from the cytokine storm and reducing mortality.

The apelins-12 and -13 inhibit the vasoconstrictive effect of Ang-II
and confers beneficial cardiovascular effects through ACE2/Ang(1–7)-
and/or L-arginine/endothelial nitric oxide synthase (eNOS)/nitric
oxide (NO)-dependent signaling pathways and prostacyclin (PGI2)

activation [15]. Apelin protects against cardiac fibrosis and vascular
remodeling through blocking Ang II-induced PAI-1 gene expression and
increasing NO production [16]. Experimental studies on diabetic rats
have demonstrated that apelin-13 ameliorates inflammation and oxi-
dative stress through significant down-regulation of AT1R gene ex-
pression and conversely up-regulation of ACE2 gene expression in
adipose tissue. Importantly, apelin-13 could confer a greater AT1R
down-regulation when was co-administered with angiotensin receptor 1
blocker Losartan [17].

Apelin protects against ALI and ARDS through suppression of NF-
κB- and NLRP3 inflammasome-mediated inflammatory responses and
secretion of IL-1β and IL-18 from cells. Apelin also down-regulates
mitochondrial ROS-triggered oxidative damage and mitochondria
apoptosis [18]. Studies of animal models of ARDS have shown that
post-injury activation of apelin-APJ system alleviates pulmonary in-
flammation and lung injury responses, and improves the oxygenation
and lung edema by activating Akt-eNOS signal transduction and in-
hibiting the pro-inflammatory tumor necrosis factor-α (TNF-α),
monocyte chemoattractant protein-1 (MCP-1) and oxidative stress.
Deletion of apelin in the mice have been shown to induce the Ang-II-
mediated pro-fibrotic processes, e.g. transforming growth-factor beta
(TGF-β) and matrix metalloproteinase (MMPs) signaling, in the heart
and lung, while exogenous apelin attenuated the TGF-β expression and
further Ang-II-stimulated cardiac remodeling and pulmonary fibrosis
[18]. ALI/ARDS is certainly associated with pulmonary endothelial
injury and inflammatory/oxidative/procoagulant responses. Im-
portantly, apelin expression is enhanced in response to ARDS and ac-
tivation of apelin/APJ system protects against Ang-II-induced en-
dothelial inflammation and prothrombotic event. Thus, apelin might
have potential of anti-thrombotic effects by increasing Ang(1–7)/Ang-II
ratio and blocking the Ang-II-AT1R binding (Fig. 1).

In addition to the therapeutic effects, apelin can potentially act as a
predictor in the development of coagulopathies and cardiovascular
disorders, including pulmonary embolism (PE) [18]. Apelin-13 has
been reported to acutely enhance in the serum of patients with early-
stage PE. Accordingly, apelin expression in lung tissue is up-regulated
in a dog model of acute PE within the first hours and declined within
24 h, whereas intravenous administration of apelin reduces mean pul-
monary arterial pressure and vascular resistance [18]. On the other
hand, Ang-II elevation may cause the down-regulation of apelin and its
receptor in the late stages of pathological status including hypoxia,
which is a major manifestation of PE. Thus, exogenous apelin can
possibly ameliorate the hypoxic state through inhibition of the ex-
cessive Ang-II generation in the later stages of SARS-CoV-2 infection.
The potential therapeutic effect of apelin or its receptor agonists ab-
sorbs greater attention when the recent reports from different countries
confirm the distinct abnormal coagulation parameters (e.g. pro-
thrombin time, INR and activated partial thromboplastin time) and PE
in hospitalized patients with severe COVID-19 disease [12,19]. Im-
portantly, the COVID-19 non-survivors have shown increasingly high
levels of thromboembolism predictive parameters, including D-dimer
and fibrin degradation products (FDP), and cases of disseminated in-
travascular coagulation (DIC) [12].

5. Clinical potential in COVID-19

Extrapolating data from experimental and clinical implications of
drugs targeting apelin/APJ system in pulmonary and cardiovascular
pathologies to COVID-19 suggests that apelin or its receptor agonists
up-regulate ACE2 or increase its activity, thereby leading to suppression
of ACE-Ang-II system that drives acute lung injury, coagulopathies and
acute/chronic cardiac injury in COVID-19 patients. Moreover, apelin
could be a plasma marker for the lung and cardiac injuries. To date, a
plethora of apelin receptor biased agonists have been characterized and
MM07, among all, has the highest affinity to apelin receptor and effi-
cacy to enhance cardiac output and vasodilation, as well as, to alleviate
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pulmonary arterial hypertension and pulmonary vascular remodeling in
humans and rats [20]. MM07 can ameliorate myocardial ischemia–r-
eperfusion injury and ischemic cardiomyopathy certainly by suppres-
sing mitochondrial ROS production, delaying the opening of mi-
tochondrial permeability transition pores (mPTP) and lipid
peroxidation [8]. Another endogenous apelin receptor agonist Elabela/
Toddler activates the receptor downstream pathways, and induces aorta
vasodilatation, more importantly, in response to Ang-II stimulation
[15]. The small-molecule biased agonist CMF-019 potentially elicits a
cardioprotective effect in heart failure and myocardial infarction, since
this compound could increase cardiac contractility and cardiac output
with limited effects on vasculature in rats with experimental left ven-
tricle catheterisation and jugular vein cannulation [21]. Besides, the
apelin receptor agonists are capable of negatively regulating ACE-Ang-
II-AT1R axis through heterodimeric interaction of apelin receptor and
AT1R, which modulates their protective effects in the cardiovascular
and pulmonary tissues [8].

6. Conclusions

In conclusion, we believe that, in parallel to the intriguing attempts
for direct blockade of the SARS-CoV-2 penetration, finding new ther-
apeutic strategies for patients with ongoing lung injury or cardiovas-
cular complications/coagulopathies associated with COVID-19 should
be paid particular attention. Nevertheless, failure of the majority of the
current results of the drug repurposing strategies for COVID-19 sounds
alarm despite of the initial encouraging data. This warns us to cau-
tiously propose new drugs and therapeutic regimens for patients with
COVID-19 in the critical circumstance. Therefore, additional, experi-
mental and clinical studies are urgently required.
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