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Abstract: Obesity affects over one-third of Americans and increases the risk of cardiovascular disease
and type II diabetes. Interventional trials have consistently demonstrated that consumption of
plant-based diets reduces body fat in overweight and obese subjects, even when controlling for
energy intake. Nonetheless, the mechanisms underlying this effect have not been well-defined. This
review discusses six major dietary mechanisms that may lead to reduced body fat. These include
(1) reduced caloric density, (2) improved gut microbiota symbiosis, (3) increased insulin sensitivity,
(4) reduced trimethylamine-N-oxide (TMAO), (5) activation of peroxisome proliferator-activated
receptors (PPARs), and (6) over-expression of mitochondrial uncoupling proteins. Collectively, these
factors improve satiety and increase energy expenditure leading to reduced body weight.
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1. Introduction

The Centers for Disease Control and Prevention estimates that 35.6% of adults age ≥20 years
are obese, and more than 1.4 billion adults are overweight worldwide [1,2]. Obesity may shorten
human lifespan by 4–7 years, presumably due to the associated increased chronic disease risks for
type II diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer [3–5]. While a variety
of environmental factors influence the development of obesity, diet has a significant influence on
adiposity [6].

Plant-based diets have been consistently associated with reduced body weight in a multitude
of interventional trials [7,8]. In a comparative, randomized study, obese, middle-aged subjects
(n = 62) were assigned to consume ad libitum either an omnivorous, semivegetarian, pesco-vegetarian,
vegetarian, or vegan diet for six months [9]. The greatest weight loss after 6 months was in the
vegan (−7.5% of body weight) and vegetarian (−6.3% of body weight) subjects, compared with the
other groups (about −3.2% of body weight). In a large, prospective clinical trial with overweight
and obese subjects diagnosed with T2DM, subjects were randomly assigned to either a low-fat vegan
diet (n = 68) or a control, habitual diet (n = 45) with ad libitum intake [10]. After 22 weeks, subjects
consuming the vegan diet lost 5.1 kg of body weight compared to control (+0.1 kg). In a 12-month
randomized controlled trial, overweight and obese subjects with T2DM or CVD pathology were
assigned to either consume an ad libitum whole-foods, plant-based diet (n = 33) or receive standard
medical care (n = 32) [11]. Subjects consuming the plant-based diet lost 11.5 kg (p < 0.0001) compared
with the control group, which did not significantly change weight (−1.6 kg, p = 0.13). In the Adventist
Health Study-2, nonvegetarians, semivegetarians, pesco-vegetarians, lacto-ovo vegetarians, and vegans
(n = 60,903) were found to have significantly different body mass indexes (BMIs) [12]. A stepwise,
linear decrease in BMI was observed in accordance with a stepwise reduction in animal product
consumption, from nonvegetarians with the highest average BMI (28.8 kg/m2) to vegans with the
lowest average BMI (23.6 kg/m2). On average, vegans were the only dietary group in this cohort to be
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considered normal weight. T2DM incidence was also reduced in a stepwise fashion, with the highest
rates in nonvegetarians compared to vegans.

Despite the consistency by which plant-based diets are associated with reduced body weight [7,8],
the mechanisms by which this occurs have not been well-defined. The objective of this review is to
discuss the potential physiological and biochemical mechanisms that contribute to the reduction in
body fat in overweight or obese subjects consuming plant-based diets. Cumulatively, plant-based diets
may reduce body fat because of the overall decreased caloric intake and increased energy expenditure
due to increased thermogenesis (Figure 1).

Figure 1. Physiological effects of a plant-based diet and the interplay of organ systems in the context
of weight loss. Polyphenols and unsaturated fatty acids can act on muscle, liver, and adipose
tissue to upregulate the expression of peroxisome proliferator-activated receptor (PPAR)-α, which
increases β-oxidation leading to a reduced circulating pool of free fatty acids (FFAs), thus decreasing
the availability of FFA for adipose tissue uptake and hypertrophy. Additionally, polyphenols and
unsaturated fatty acids can act on adipose tissue to increase the expression of PPAR-γ, which results
in FFA uptake by adipose tissue, further decreasing the FFA pool. A decreased FFA pool improves
insulin sensitivity leading to increased thermogenesis due to improved glucose handling. A decreased
consumption of saturated fats, which are primarily derived from animal-based foods, further improves
insulin sensitivity. Polyphenols also act on uncoupling proteins (UCPs) within the mitochondria,
increasing thermogenesis. Foods of a lower caloric density, due to being higher in fiber and water, often
take up more stomach volume than calorie-dense foods, leading to overall reduced caloric intake and
early satiety. Increased short-chain fatty acid (SCFA) synthesis from fiber fermentation due to microbes
in the gut increases satiety hormones and delays gastric emptying. Favorable gut microbes resulting
from decreased animal product consumption decreases trimethylamine-N-oxide (TMAO) synthesis.
Decreased TMAO increases the presentation of more metabolically active beige adipose tissue.

2. Mechanisms of Weight Loss

2.1. Calorie Density

Calorie density refers to the number of kilocalories (kcal) per unit weight of food. Whole plant-
foods contain mostly water by weight; thus, these foods generally have a low-calorie density (Figure 2).
Additionally, fiber constitutes weight yet does not contribute fully to the expected kilocalories of
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digestible carbohydrates. Short-chain fatty acid (SCFA) produced by bacteria of the gut due to fiber
fermentation contributes ~2 kcal/g [13].

Figure 2. Average calorie density of foods in kcal/lb. Foods higher in water and fiber are typically more
calorie dilute. Dry foods, foods with less fiber, and/or foods that are higher in fat content are more
calorie dense.

Individuals generally consume the same weight of food during meals, as such, the clear advantage
of consuming foods low in calorie density is that these foods can contribute to stomach volume, feelings
of fullness and satiety while maintaining low caloric intake [14]. Minimally processed foods of plant
origin, which are both high in water content and fiber, are generally lower in calorie density (Figure 1).
Exceptions arise for foods with minimal water, such as bread (including whole grain), which is dry;
thus, the calorie density is increased in these foods. Additionally, nuts, which are both dry and contain
calories derived mostly from fat, have significantly greater calorie density.

Despite the potential of these dry plant-foods to contain significant fiber content, factors affecting
dryness may be more influential in mitigating energy intake. For example, when obese and overweight
women (age 35–70 years) were randomly assigned to consume either three apples (n = 16), three pears
(n = 16), or three oat cookies (n = 17) every day for 10 weeks as part of an ad libitum diet, those who
consumed the apples and pears reduced their calorie intake by ~25 and ~20 kcal/d, respectively [15].
These calorie reductions were associated with significantly reduced body weight in both apple
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(β= −0.92 kg, p = 0.0001) and pear groups (β= −0.84 kg, p = 0.0004). However, despite the oat cookies
containing a similar fiber content (~6 g), those in the oat cookie group did not significantly alter their
energy intake and body weight. Considering that the weight of foods consumed largely impact caloric
intake [14], the water content of the fruits likely contributed substantially to these effects, since three
apples and three pears are both 300 g, whereas the three oat cookies were 60 g. It should be noted
that the food matrix is also of significance, and the disrupted fiber of the oats may have reduced
satiety. For example, a randomized, crossover study by Flood-Obbagy and Rolls [16] indicated that
consumption of whole apple segments with undisrupted fiber (intact) but not apple juice, with added
fiber, before an ad libitum meal, resulted in reduced energy intake.

Consuming foods of lower calorie density may be more advantageous for sustainable weight loss
compared to reducing portion sizes. In a crossover study, during ad libitum intake under isocaloric
conditions, young (19–35 years), normal weight (22.6 kg/m2) women (n = 24) subjects with 25% reduced
food portions consumed 10% fewer calories than standard condition meals (100% portion and 100%
energy density) [17]. However, when energy density was reduced by 25%, while keeping food weight
constant, subjects consumed 24% fewer calories, and satiety was improved compared to the standard
condition meal. In general, reducing the energy density of the overall diet is a suitable strategy for
weight loss [18].

In the context of a plant-based diet, in a single-arm investigation, obese men and women (age
25–64 years, n = 19) who consumed a traditional Hawaiian diet ad libitum for 3 weeks consisting
of mostly starchy tubers, fruits, and vegetables, with restricted intake of chicken and fish (142–198
g/d), reduced their average daily energy intake from 2594 to 1569 kcal [19]. Carbohydrates, which are
mostly derived from plants, increased from 51% to 78% of total energy, and subjects subsequently lost
~17 lb. In another single-arm intervention, ad libitum intake of a raw, plant-based diet for 4 weeks
containing 11.8 servings/d of fruits and 16 servings/d of vegetables resulted in a daily ~700 kcal deficit
with a weight loss of ~14.75 lb [20,21].

2.2. Role of the Gut Microbiota

The gut microbiome can influence energy balance and is a major site of small molecule production,
which can influence satiety and gut inflammation [22]. In general, the Bacteroidetes taxa have been
associated with reduced adiposity compared with Firmicutes, which are associated with obesity [23].
In a randomized, crossover trial, a 20% increase in Firmicutes was associated with ~150 greater kcals
absorbed, whereas a 20% increase in Bacteroidetes was associated with ~150 fewer kcal absorbed in
lean subjects [24]. Indeed, weight loss through a mere reduction in total kcal can shift bacterial gut
populations in obese individuals from Firmicutes to Bacteroidetes [23]. Highlighting this effect, lean
subjects (n = 12) who were overfed (3400 kcal/d) lost fewer calories in their stools (indicating greater
energy absorption) compared to a 2400 kcal/d diet [24]. Thus, simply consuming more kcal in a day
can shift the gut microbiome to more obesogenic taxa. Despite these compelling findings, associations
between specific bacterial taxa and health status have not been fully characterized [25] and require
further investigation.

Highlighting the complexity of the gut microbiota, microbiome dysbiosis associated with
obesity [26] promotes bile acid fermentation. More specifically, a small number of anaerobic bacteria
promote deconjugation and dehydroxylation of primary bile acids resulting in the presence of secondary
bile acids. These secondary bile acids have increased hydrophobicity and pKa, thereby increasing
their absorption into the gut wall [27]. Likely as a compensatory mechanism, secondary bile acids
can bind to nuclear farnesoid X receptor and G-protein-coupled bile acid receptor 1 of various tissues,
increasing energy expenditure and β-oxidation [28]. However, these secondary metabolites may also
decrease beneficial bacteria populations, such as Lactobacillus [29]. In 3T3-L1 preadipocytes cultured
with heat-killed Lactobacillus plantarum K21, significantly fewer lipid droplets accumulated during
differentiation compared to control [30]. Additionally, mice fed a high-fat diet supplemented with a
Lactobacillus plantarum K12 probiotic had significantly decreased body weight compared to high-fat
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diet fed control [30]. The probiotic-supplemented mice also had a decreased food efficiency ratio,
suggesting less energy absorbed from the food consumed, decreased leptin, and decreased triglycerides
compared to high-fat diet control.

In addition, decreased body weight facilitated by appetite suppression in those consuming
plant-based diets is largely mediated by the gut microbiome. This effect has been characterized as the
“second meal effect”, described as the phenomenon by which the first meal consumed at an earlier
time suppresses one’s appetite during a later meal, leading to reduced caloric intake and improved
glycemic control [31–35]. In a randomized, crossover trial with healthy young men (n = 43), an ad
libitum, macronutrient matched (19% protein, 53% carbohydrate, 28% fat) high-protein legume-based
meal (derived primarily from fava beans and split peas) led to increased fullness and increased satiety
compared to a high-protein animal-based meal (derived primarily from veal) [36]. Furthermore, 95 kcal
less of the legume-based meal was consumed compared to the animal-based meal. This process is
largely dependent on the colonic fermentation of indigestible fibers found in whole grains and starchy
legumes producing butyrate, propionate, and acetate SCFAs [37]. Besides being a direct source of
energy for colonocytes, SCFAs act as substrates for G-protein coupled receptors on various tissues,
stimulating the release of peptide YY (PYY), a hormone that reduces appetite and food intake, as well
as glucagon-like peptide (GLP-1), a hormone that delays gastric emptying [38].

In a randomized crossover trial, 16 healthy subjects, both men and women (mean age 23.8 years),
consumed brown beans during an evening meal, which resulted in increased breath SCFAs, increased
PYY, and decreased ghrelin, a hormone that stimulates appetite and fat storage, at breakfast compared
to a white bread meal [39]. Furthermore, blood glucose and insulin secretions during the breakfast
were also significantly decreased. In hyperinsulinemic subjects randomized to high-wheat fiber
consumption (n = 14) or low-wheat fiber consumption (n = 14), increased SCFAs and GLP-1 were
observed only in the high-wheat fiber group; however, these microbial adaptations took 1 year to
develop [40]. Gut bacteria populations, which digest these fibers in wheat and beans and produce
SCFAs, are found in much smaller quantities in those consuming animal-based diets [41]. In 10 healthy
subjects (age 21–33 years) who participated in a nonrandomized, controlled feeding study [41], it was
observed that during the plant-based feeding, acetate and butyrate were significantly greater than
when subjects consumed the animal-based diet. Furthermore, bile salt hydrolase activity and secondary
bile salts significantly increased during animal-based feeding, suggesting the suppression of beneficial
bacterial populations [29]. Further illustrating these effects, in a single-arm intervention, six obese
subjects (women n = 5, men n = 1) who were diabetic and/or hypertensive decreased their gut Firmicute
population and increased Bacteroidetes by consuming a strict vegan diet for 4 weeks [42]. In general,
cross-sectional and interventional data suggest a higher proportion of beneficial SCFA-producing
bacteria in those consuming vegan versus omnivorous diets [43].

2.3. Insulin Sensitivity, Carbohydrates, and Diet-Induced Thermogenesis

Obesity is tightly linked with the development of insulin resistance, the underlying cause of
T2DM [44]. While current nutrition recommendations to manage T2DM largely revolve around the
management of carbohydrates [45], it is misleading to assume that insulin resistance is caused by
excessive carbohydrate intake. Certainly, refined carbohydrate sources and added sugars are associated
with insulin resistance and T2DM [46,47]. However, the consumption of refined carbohydrates and
added sugars may merely associate with unhealthy lifestyle habits and weight gain, which increases the
risk for these disease states [48]. Della Pepa et al. [49] recently compiled evidence from epidemiological
and interventional studies showing that consumption of whole grains, a rich carbohydrate source,
reduces the risk for T2DM. In addition, increasing carbohydrate consumption from unrefined sources
can improve insulin sensitivity. In a single-arm investigation of subjects (n = 20) with T2DM, switching
to a weight-maintaining, high-fiber, plant-based diet (70% carbohydrate by composition) nearly
eliminated the need for exogenous insulin injections within 2 weeks [50].
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A large body of evidence supports the hypothesis that insulin resistance is a pathology characterized
by lipotoxicity [51]. Saturated fat (SFA), particularly palmitate, can inhibit insulin signaling in myocytes
at the cytosolic level due to the accumulation of free fatty acid (FFA) intermediates, ceramide and
diacylglycerol [52]. Additionally, excessive palmitate oxidation facilitates mitochondrial dysfunction,
which reduces ATP synthesis, thus lowering ATP bioavailability for insulin signaling and increasing
oxidative stress [53,54]. Plant-based diets may contain low levels of SFAs, which are mainly derived
from oils such as palm and coconut oil; however, SFAs in the American diet are primarily derived from
animal-based foods (Table 1). This may explain why plant-based dietary patterns are associated with
reduced insulin resistance compared to animal-based diets [55].

Table 1. Saturated fat content of plant- and animal-based foods.

Food Type Total Saturated Fat g/100 g Total Unsaturated Fat g/100g 1

Animal-derived foods

Butter, unsalted 50.5 26.4
Cheese, cheddar 19.4 9.8

Pork, cured, bacon, baked 14.2 23.8
Cream, fluid, light (coffee cream) 10.2 5.3

Beef, ground, 80% lean, baked 6.2 9.3
Eggs, hard-boiled 3.3 5.4

Fish, salmon, Atlantic, farmed,
cooked, dry heat 2.4 8.6

Milk, whole 1.9 1.0
Yogurt, Greek, plain, low-fat 1.2 0.6

Chicken breast, skin removed, baked 1.0 2.0

High-fat plant-derived foods

Oil, Coconut 82.5 8
Oil, palm 49.3 46.3
Oil, Olive 13.8 83.5

Nuts, almonds 3.8 43.8
Avocados, raw 2.1 11.8

1 includes both monounsaturated and polyunsaturated fats. Data derived from USDA food database [56].

Modulating FFA concentrations either pharmacologically or via lipid infusion reveals that increased
FFA reduces insulin sensitivity in humans [57–60]. It should be noted that FFAs can be elevated by
dietary means (consumption of SFA-rich foods) or endogenously in the case of obesity [52,61,62]. This
largely explains why those who are obese that undergo significant weight loss, either with calorie
restriction or bariatric surgery, can reverse insulin resistance [63–65].

Increased insulin sensitivity in itself may directly impact body weight. Indeed, subjects who
are insulin resistant have reduced energy expenditure from carbohydrate ingestion due to impaired
glucose handling [66]. Since carbohydrate and whole grain consumption can independently increase
energy expenditure [67], increasing insulin sensitivity may significantly impact body weight. This may
explain the observation as to why a variety of interventions have found similar caloric intakes between
nonvegetarian and plant-based subjects, yet greater reductions in fat mass within the plant-based
arm [68–71]. A 2005 randomized, ad libitum investigation by Barnard et al. [72] found that overweight
women (n = 29) who consumed a plant-based diet for 14 weeks lost 2 kg more than the control
group (n = 30) despite near equivalent caloric intakes. However, regression analysis revealed that the
observed increase in the thermic effect of food significantly contributed to the weight loss that occurred
in those consuming the plant-based diet.

Compared to a calorie-restricted American Diabetes Association (ADA) diet, subjects randomly
assigned to consume an ad libitum vegan diet (n = 49) for 74 weeks significantly reduced glycated
hemoglobin (a crude measure of insulin resistance) compared to the ADA dietary group (n = 50) in
those who did not alter their medications (−0.40% in vegan subjects vs. +0.01% in ADA subjects) [68].
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Interestingly, both dietary groups had similar caloric intake (1366 kcal in the vegan group vs. 1422 kcal
in the control group, p = 0.90). While weight was not significantly different between groups (p = 0.25),
waist circumference trended towards significance in subjects within the vegan group compared to the
control group (−4.2 cm and −1.8 cm, respectively, p = 0.06) suggesting reduced fat mass [73].

In a 16-week randomized trial, an ad libitum vegetarian diet trended towards promoting greater
reductions in intramyocellular lipids of the thigh (n = 38) compared to the hypocaloric ADA diet in
diabetic individuals (n = 37) [70]. Additionally, weight loss was nearly twice as great in the vegetarian
group than the hypocaloric diet group (−6.2 kg vs. −3.2 kg, respectively). In a similarly designed
investigation, subjects consuming a vegan diet (n = 38) experienced improved β-cell function and
increased insulin sensitivity versus the control group (n = 37) [71]. This occurred despite nearly
equivalent caloric intakes (1582 kcal for control group vs. 1450 kcal for vegan group, p = 0.69). However,
body weight, particularly fat mass, was significantly reduced in the vegan group compared to the
control group (39.1 to 39.5 kg and 42.0 to 38.1 kg, respectively, p < 0.001). It is likely that the improved
insulin sensitivity observed in these trials contributed to reduced adiposity by increasing energy
expenditure associated with glucose handling.

2.4. Obesogenic Effects of Trimethylamine-N-Oxide

L-carnitine can be found in small amounts in plant-based foods such as avocado and beans;
however, red meats and other animal products are the main sources of L-carnitine [74]. On the
other hand, while red meat and eggs are rich sources of choline, plant-based foods such as soybeans,
potatoes, and most beans are also considered good sources of choline [56]. Choline and L-carnitine are
metabolized by gut bacteria to produce trimethylamine (TMA) [75]. In the liver, TMA is a substrate for
flavin-monooxygenase-3 (FMO3) and is oxidized to form trimethylamine-N-oxide (TMAO). TMAO is
tightly associated with the development and risk of atherosclerosis by potentially inhibiting reverse
cholesterol transport and promoting thrombosis [76,77].

In a cross-sectional investigation (n = 137), subjects with the highest concentrations of TMAO
had the greatest BMI and waist circumference [78]. However, these findings were confounded by
greater energy intake within the highest TMAO bracket. Interestingly, when correlation analysis
was conducted adjusting for BMI and energy intake, those with the highest TMAO intake had the
greatest degree of insulin resistance and adipose tissue dysfunction, which may inherently result in
a decreased thermic effect of food. Indeed, a linear association between TMAO concentrations and
T2DM incidence has been observed [79]. Additionally, FMO3 knockout mice were protected against
high-fat diet-induced obesity. In this murine model, TMAO may mediate this effect by preventing
white adipose tissue from becoming more metabolically active and energy intensive as beige adipose
tissue. These effects may be clinically relevant as beige adipose tissue is present in both mice and
humans [80], although human trials are needed to confirm the effects of TMAO on adipose tissue.

Interestingly, TMAO production does not occur in those consuming vegan diets. For example,
a dietary challenge of 250 mg d3-carnitine and an 8 oz steak resulted in a significant increase in plasma
TMAO concentrations in an omnivorous subject in a time-dependent manner; however, there was
no increase in TMAO concentrations in the vegan counterpart [77]. This effect was replicated in
vegan/vegetarian (n = 5) and omnivorous subjects (n = 5) who consumed 250 mg d3-carnitine alone.
Furthermore, fasting vegans/vegetarians (n = 23) had significantly less plasma TMAO compared with
fasting omnivorous subjects (n = 51). This can be attributed to the dominant bacterial enterotype,
primarily Bacteroidetes, which does not produce TMA, that resided in these individuals consuming
plant-based diets [77]. Further evidence supports this diet-enterotype–TMAO connection, as vegetarians
were found to have significantly fewer TMAO-producing bacterial populations than omnivorous
counterparts [81]. While the strength of association between TMAO and CVD is strong, more evidence
is needed to confirm the association between TMAO and obesity [82].
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2.5. Unsaturated Fatty Acids and the Role of PPAR

Despite the relatively high caloric density of nuts (Figure 2), nuts surprisingly are not associated
with weight gain and, in fact, are associated with reduced body weight and waist circumference [83].
Although a good source of fiber, the mechanisms by which nuts reduce body weight appear to be
independent of this nutrient. The mechanisms attributed to nuts and weight loss primarily are due
to incomplete mastication of the cell walls, improved satiety, and thermogenic effects [84]. Nuts are
relatively low in SFA, and increased thermogenesis may stem from the higher unsaturated fat content
of nuts (Table 1), as SFAs (found primarily in dairy and other animal-based foods) may be more
obesogenic [85]. High-fat feeding studies illustrate this effect. In a nonrandomized crossover study
using radio-labeled carbon, 13C-oleate was oxidized at a 21% greater rate than 13C-palmitate in 10
healthy men [86]. In a 4-week crossover study, 8 obese or overweight subjects consumed high-fat
diets (40% of energy, fixed for macronutrient composition) ad libitum [87]. Subjects consumed either a
high-SFA diet (24.4% SFA, 12.5% monounsaturated fat (MUFA)) or a high MUFA-rich diet (11% SFA,
22.3% MUFA). Both diets were designed to exceed calorie needs (~3000 kcal/d). Despite nonsignificant
differences in kcal consumed on both diets (3003 kcal on SFA-rich diet vs. 2843 kcal on MUFA-rich diet,
p = 0.16), SFA consumption nonsignificantly increased body weight (+0.6 kg) and body fat percent
(+0.8%), whereas MUFA consumption significantly decreased body weight (−1.6 kg) and body fat
percent (−1.1%).

A possible explanation is the regulation of peroxisome proliferator-activated receptor (PPAR) by
these fatty acids. PPAR-α is a nuclear transcription factor found primarily in oxidative tissues such
as skeletal muscle, liver, and adipose tissue [88] and upregulates β-oxidation at the transcriptional
level [89]. PPAR-α upregulates the production of transport enzymes, acyl-coenzyme A oxidase and
carnitine palmitoyl transferase I, which facilitate translocation of fatty acids into peroxisomes and
mitochondria, respectively. Unlike, PPAR-α, PPAR-γ is expressed primarily in adipocytes, and it
facilitates efficient storage of lipids by upregulating the expression of lipoprotein lipase, fatty acid
transport protein, and CD36, all of which promote FFA flux into the adipocyte and triglyceride
assembly [90]. As discussed, efficient lipid storage is important in the prevention of insulin resistance,
as excess lipids within circulation can deposit in muscle tissue [51]. The antidiabetic drug class
of thiazolidinediones are a PPAR-γ agonist and improve insulin resistance in nondiabetic obese
subjects [91]. In an animal model, PPAR-γ knockout mice exhibit increased serum FFA and insulin
resistance [92]. Dietary ligands for this family of PPARs include MUFA, which is a much more sensitive
ligand than SFA [89]. Thus, nuts, which are rich in MUFA, may upregulate lipid metabolism and
improve insulin sensitivity by upregulating PPAR-α and PPAR-γ, potentially leading to decreased body
weight [93]. However, this pathway mediated by nuts has not been directly experimentally tested.

2.6. The Role of Polyphenols on Uncoupling Proteins (UCP) and PPAR

Plant-based foods are a rich source of phytochemicals, which can serve as ligands, substrates,
inhibitors, and cofactors for a variety of enzymes [94]. The consumption of phytochemicals, particularly
polyphenols, which are present in a variety of plant foods (e.g., berries, grapes, onions, apples, cacao,
green tea, soy, whole grains, etc.), are associated with reduced mortality and chronic disease risk [95–98].
Polyphenols are hydroxylated bioactive compounds that may also impact body fat, as an inverse
association between polyphenol consumption and body weight has been observed [99,100]. In fact,
in a randomized, interventional trial consisting of 17 obese, middle-aged men and women, 12-week
consumption of 370 mg/d of polyphenols extracted from grapefruit, green tea, grape, black carrot,
and guarana seed resulted in a 6.7% reduction in body mass and 7.1% reduction in fat mass in obese
subjects compared to placebo [101]. Further, in a three-arm, randomized trial, obese subjects with
metabolic syndrome consumed 4 cups/d of green tea (n = 13) or the phenolic equivalent of a green
tea extract (~900 mg catechins; n = 10) for 8 weeks. In both green tea and green tea extract groups,
significant reductions in body weight were observed (−2.5 kg and −1.9 kg, respectively) compared to
control (n = 12) [102].



Nutrients 2019, 11, 2712 9 of 19

The upregulation of mitochondrial membrane uncoupling proteins (UCP) may be partly
responsible for these effects. While mitochondrial oxidative phosphorylation is coupled to ATP
synthesis, basal proton (H+) leak through the inner mitochondrial membrane generates heat [103],
a significant contributor to basal thermogenesis. Similarly, UCP also captures free H+ to generate heat
and is involved in cold-induced thermogenesis [104]. Several UCP isoforms exist: UCP-1 comprises
up to 10% of total mitochondrial protein in brown and beige adipose tissue, while UCP-2 and UCP-3
are found in much smaller quantities, 0.01% and 0.1%, respectively [104]. While both unsaturated
and SFA can upregulate UCP expression [105,106], polyphenols may also target UCPs. In 3t3-L1
adipocytes, the green tea polyphenol, (−)-epigallocatechin-3-gallate, in a dose-dependent manner (0–10
µM), promoted an increase in UCP-2 mRNA over the course of 24 h [107]. Tea catechins in vivo also
resulted in increased UCP-1 expression in brown adipose tissue and decreased white adipose tissue
mass in male rats fed a high-fat 500 mg TC/100 g chow diet for 8 weeks [108]. In addition, resveratrol
consumption (4 g/kg of food) in mice increased UCP-1 expression in brown adipose tissue [109].

Besides upregulating thermogenesis resulting from increased UCP expression, polyphenols can
also target PPARs [110], thus improving insulin sensitivity and potentiating the effects of thermogenesis.
For example, 12-week consumption of yerba mate, a rich source of polyphenols, at a dose of 1g/kg
by mice fed a high-fat diet reduced body weight, epididymal fat mass, and increased PPAR-γ
expression [111]. Similar effects on PPAR-γ were observed in mice fed a high-fat diet supplemented
with 1% sorghum powder, another rich source of polyphenols, for 14 weeks [112]. While body weight
was nonsignificantly lower in mice consuming a 1% sorghum high-fat diet compared to control
high-fat diet (38.44 vs. 41.44 g, respectively), PPAR-γ was significantly increased, which coincided with
significantly decreased fasting glucose (7.14 vs. 10.01 mmol/L) and insulin (59.53 vs. 120.58 pmol/L)
indicating increased insulin sensitivity. Additional animal studies have also indicated upregulation
of β-oxidation in liver, muscle, and adipose tissue via increased PPAR-α expression [113–117]. Thus,
polyphenols can act in a multitargeted approach to increase thermogenesis and reduce body weight.

Although olive oil is one of the most calorically dense foods (Figure 2), it also contains both
polyphenols [118] as well as unsaturated fatty acids, which theoretically should contribute to reduced
body weight. A 3-year follow-up of the Prevención con Dieta Mediterránea (PREDIMED) study, in
which subjects (n = 7447) were randomly assigned to either a control diet or to consume nuts (5 g/d
walnuts, 7.5 g/d hazelnuts, and 7.5 g/d almonds) or olive oil (50 g/d), energy density was not associated
with increased body weight [119]. In a randomized trial, overweight women consumed either 25 mL
of soybean oil (n = 20) or extra virgin olive oil (n = 21) for breakfast as part of a hypocaloric diet [120].
Insulin sensitivity was improved to a greater extent in those consuming extra virgin olive oil (p = 0.054),
and body fat was reduced to a greater extent in the olive oil group compared to the soybean oil group
(p = 0.072).

In contrast, 12 overweight, diabetic subjects were assigned to consume a higher carbohydrate
diet plus ~1 tbsp of olive oil/d or a high monounsaturated fat-rich diet including ~4 tbsp of olive/d
with similar total caloric intakes (~1950 kcal/d) for 6 weeks, but no significant changes were observed
in body weight between the two groups [121]. Further, in a 3-week randomized, crossover study,
middle-aged and overweight men and women consumed either 4 tbsp of corn oil (n = 27) or extra
virgin olive oil (n = 27) as part of a ~2400 calorie diet [122]. Body weight did not change following the
intervention in either group. However, based on the evidence, to claim that olive oil can be used as a
weight-loss strategy would be misleading. In fact, a very-high olive oil diet could potentially elicit
weight gain despite energy compensation from thermogenesis. For example, rats consumed a 25%
extra virgin olive oil diet for 20 weeks, after which they became obese and insulin resistant [123]. Thus,
healthy subjects consuming olive oil in moderate quantities may not elicit weight gain due to increased
UCP [124,125] and PPAR expression [89]. However, feeding studies examining the effects of olive oil
on body weight in which olive oil is added on top of basal calories have not been conducted. Thus,
adding olive oil to one’s diet cannot be recommended for overweight or obese subjects as part of a
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weight-loss strategy, as it is unclear as to whether increased UCP and PPAR would compensate for the
high caloric density of the food when daily calories are in excess from adding olive oil.

3. Considerations for Health beyond Weight Loss

3.1. Plant-Based Versus Animal-Based Diets for Weight Loss

Those consuming plant-based diets typically have a much higher percentage of calories derived
from carbohydrates (~10% median increase in percent carbohydrates in vegans vs. omnivores) [126].
Despite the consistent ability of plant-based diets to reduce body weight, paradoxically, diets very high
in animal-based foods and low in carbohydrates may also reduce body weight [127]. Low-carbohydrate
diets are typically higher in SFA, and whole grains, legumes, and fruits are minimized. However,
reductions in body weight (a) do not necessarily translate to reductions in fat mass and (b) do not
directly translate to improved health outcomes.

A review of human metabolic trials demonstrates that, calorie for calorie, restricting dietary fat
results in more weight loss than restricting dietary carbohydrates [128]. For example, in a randomized,
controlled-feeding study with obese men and women (n = 19), estimated reductions in grams of body fat
per day from restricting dietary carbohydrates was estimated to be 53 g/d; however, restricting dietary
fat resulted in 89 g/d of body fat loss [129]. Interestingly, over the course of 6 d, body weight reductions
were greater in those reducing dietary carbohydrates compared to those reducing dietary fat (−1.85 vs.
−1.3 kg). Nonetheless, those restricting dietary fat lost more body fat than those restricting dietary
carbohydrates. These results illustrate the discrepancy between reduced body weight and reduced
body fat in the case of low-carbohydrate diets derived primarily from animal-based foods. Initial
losses in body weight on such diets may be due to loss of lean muscle, both from glycogen depletion
and break down of skeletal muscle to release amino acids for gluconeogenesis. Thus, restricting
dietary carbohydrates, which are the bulk of plant-based foods that are beneficial to health (e.g., whole
grains [130], legumes [131,132], and fruits [133]), may not be a desirable strategy for weight loss.

In a 4-week, repeated measures metabolic ward study evaluating the effects of a ketogenic diet
(15% protein, 5% carbohydrate, 80% fat) compared to a baseline diet (15% protein, 50% carbohydrate,
35% fat) in 17 men (age 18–50 years, BMI 25–35 kg/m2), urinary nitrogen significantly increased,
indicating increased protein utilization, which coincided with decreased fat loss over the course of the
intervention [134]. Unsurprisingly, fasting serum FFA during the ketogenic diet increased from 0.479
to 0.803 mmol/L, a FFA concentration typically present in those who are diabetic, obese, or insulin
resistant [135]. Indeed, it has been observed in a secondary analysis of this trial that the ketogenic
diet resulted in a significant degree of insulin resistance as assessed by homeostatic model assessment
of insulin resistance (HOMA-IR) [136]. Furthermore, low-density lipoproteins and high-sensitivity
C-reactive protein (hs-CRP) significantly increased, suggesting increased CVD risk.

Low-carbohydrate diets may also negatively impact artery function [137,138], indicative of
oxidative stress and inflammation [139]. Additionally, preliminary data suggest that an Atkins diet,
characterized by very high animal protein intake, significantly reduced myocardial perfusion and
increased hs-CRP and lipoprotein(a) over the course of 1 year in those with CVD [140]. A comprehensive
review of prospective studies found that those consuming the least carbohydrates (<40% of energy)
had a much higher mortality rate compared with median carbohydrate intake (50–55% of energy)
in a dose-dependent manner [141]. While those with higher-carbohydrate intakes (>70% of energy)
also had higher mortality, this effect was not apparent when carbohydrates were derived from whole
plant-food (e.g., whole grains). Collectively, these data suggest that chronic disease risk may be
promoted by diets derived primarily from animal-based foods.

3.2. Health Effects of Plant-Based Diets

Plant-based diets are associated with reduced mortality, particularly from CVD and cancer [142].
Indeed, interventional trials have revealed that plant-based diets can reverse atherosclerosis and
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improve myocardial perfusion [140,143,144], an effect exclusive to plant-based diets. These effects
may be attributed to decreased inflammation and oxidative stress [21,145]. Clinical evidence also
suggests that plant-based diets may facilitate prostate cancer regression [146], and preliminary data
indicate improved risk factors associated with breast cancer [147]. Pilot data in subjects previously
diagnosed with prostate cancer suggest that a plant-based diet can increase telomere length compared
to a control group receiving standard care, suggesting the potential for an extended lifespan [148].
As such, plant-based diets may provide benefits in the prevention of chronic disease beyond reduced
fat mass.

It should be noted that plant-based diets derived from refined or processed sources would not be
expected to elicit beneficial effects including weight loss, reduced inflammation, and mortality
as discussed. For example, in a composite prospective study including individuals from the
Nurses’ Health Study 1 and 2 as well as the Health Professionals Follow-up Study (n = 116,969),
dietary patterns of unhealthy plant-based diets (uPD) versus healthy plant-based diets (hPD) were
documented [149]. Foods comprising uPD were defined as fruit juice, refined grains, potatoes, desserts,
and sugar-sweetened beverages, while a hPD comprised whole grains, fruits, vegetables, nuts, legumes,
vegetable oils, as well as coffee and tea. Combined data from both uPD and hPD indicated an −8%
reduced risk of CVD. However, when dietary patterns were discriminated, uPDs were associated
with a 32% increase in risk of CVD, while hPDs were associated with a 25% reduction in risk of CVD.
Further analysis of these cohorts found that hPDs were associated with reduced T2DM risk even after
BMI adjustments (−44%) and that uPDs were associated with increased T2DM risk (+16%) [150]. In an
analysis of NHANES III, similar observations were observed in relation to total mortality, as total
plant-based diets and uPDs were not associated with reduced mortality [151]. However, those with the
greatest adherence to hPDs had reduced mortality. Lastly, in a smaller, cross-sectional study consisting
of 240 middle-aged women, hPD was significantly associated with reduced inflammatory biomarkers
compared to uPD [152]. Thus, based on these data, consumption of a plant-based diet comprising
unrefined, whole plant-foods can confer beneficial health effects

4. Conclusions

Plant-based diets can reduce body fat via a variety of mechanisms, which cumulatively lead to
reduced calorie intake and increased energy expenditure. These mechanisms include reduced caloric
density of the overall diet and improved satiety, in part due to increased production of SCFAs by the
gut microbiota. Additionally, increased insulin sensitivity, PPAR and UCP expression, and a potential
increase in beiging of white adipose tissue contribute to increased thermogenesis. Future investigations
utilizing plant-based diets in the context of controlled feeding studies are warranted to establish these
metabolic compensatory mechanisms. Additionally, the aforementioned proposed mechanisms require
further human trials to establish the mechanistic link between plant-based diets and body fat loss.
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