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Abstract: The ground motion of an earthquake or the ambient motion of a large engineered structure
not only has translational motion, but it also includes rotation around all three axes. No current
sensor can record all six components, while the fusion of individual instruments that could provide
such recordings, such as accelerometers or Global Navigation Satellite System (GNSS) receivers,
and rotational sensors, is non-trivial. We propose achieving such a fusion via a six-component
(6C) Kalman filter (KF) that is suitable for structural monitoring applications, as well as earthquake
monitoring. In order to develop and validate this methodology, we have set up an experimental
case study, relying on the use of an industrial six-axis robot arm, on which the instruments are
mounted. The robot simulates the structural motion resulting atop a wind-excited wind turbine
tower. The quality of the 6C KF reconstruction is assessed by comparing the estimated response to the
feedback system of the robot, which performed the experiments. The fusion of rotational information
yields significant improvement for both the acceleration recordings but also the GNSS positions, as
evidenced via the substantial reduction of the RMSE, expressed as the difference between the KF
predictions and robot feedback. This work puts forth, for the first time, a KF-based fusion for all six
motion components, validated against a high-precision ground truth measurement. The proposed
filter formulation is able to exploit the strengths of each instrument and recover more precise motion
estimates that can be exploited for multiple purposes.

Keywords: collocated vibration measurements; accelerometer; GNSS; rotational sensor; Kalman
filter; data fusion; structural monitoring; wind turbine; seismology; robot

1. Introduction

In recent years, Structural Health Monitoring (SHM) has gained significant ground
due to its potential in automating structural assessment under operational, but also ex-
treme event conditions (e.g., during earthquakes). Structural monitoring is most commonly
achieved via use of vibration-based information, which is typically acquired via accelerom-
eters (e.g., [1]), while more rarely Global Navigation Satellite System (GNSS) receivers are
also adopted to further measure displacements [2,3]. However, these instruments only
measure the 3 translational components and are missing the highly coupled rotational
motion present as well. For example both, translational and rotational motions are relevant
for the wind-excited motions of wind turbine structures, or even the ambient motions of an
engineered structure, such as a building or a bridge. For SHM, rotations and translations
offer important integral information, which are useful in correcting drifts that are typically
associated with utilization of acceleration information alone, as is commonly the practice
in vibration-based structural monitoring [3–6].
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In a similar manner, ground motions that are triggered by an earthquake contain
coupled translational and rotational components [7,8]. The six-component (6C) motion
can include oscillating, as well as permanent motion [9]. An accelerometer will record any
rotation around the horizontal axes as a translation, even though, in reality, it is simply
gravitational leakage. Though the GNSS instrument is not susceptible to this effect, the
GNSS antenna is influenced by rotation when positioned on a pole that is tilted during
ground motion. The rotation around the z-axis could also induce a phase wind up error,
although this would need a rotation of 18° to reach the noise amplitude of 1 cm. The
instrumentation that is used to measure displacements, and subsequently earthquake
magnitudes, can all be influenced by rotations.Therefore, it is important to measure the
rotation if the true motion is to be understood [10].

We address this problem by adding an instrument to a proposed hybrid monitoring
station for both structural and seismic monitoring, which can directly record these rotational
components. Such an enhancement has been proposed in the domain of seismic monitoring
by [7,9]. The use of rotational sensors for seismic applications has been applied for some
years already [7,11–21]. Furthermore, we will combine the three datasets with a standard
loosely coupled Kalman filter using co-located instrumentation. The filter allows for the
coupling of the three measurements, despite the different sampling rates, noise levels,
and frequency bands. This has already been successfully shown for the coupling of
accelerometers with GNSS data, as described in [22]. In a number of applications, relating
to seismic monitoring, this allows for a much more refined determination of the ground
motions at a better resolution than using seismic-only solutions [23–26]. A 6C Kalman filter
was later on shown by [19], where, for the first time, rotations were included in the filter
procedure. In their filtering implementation the authors use the rotations to correct the
noise-corrupt accelerometer measurements, but, in reality, the GNSS measurements are also
affected by the rotations. Dependent on the length and offset of the antenna phase center
to the point of rotation, the antenna will show rotation-induced translations. Because their
study used the GNSS positions as the ground truth, they were not able to see the influence
rotations have on them. By using the feedback system of our robot as the ground truth,
our work shows that taking this parameter into account will improve the filter-extracted
response estimation.

This study presents the results of fusing these three heterogeneous measurements
via adoption of a linear Kalman filter (KF). In our KF setup, the GNSS data serve as the
observation, whilst the pre-rotated acceleration and pre-rotated antenna phase center offset
serve as inputs to the state and measurement equations of the filter. A detailed description
is offered in Section 2.3. We use an experimental setup comprising an industrial six-axis
robot arm in order to validate the results of the proposed fusion scheme. We use the robot
as a motion generator and further use the feedback system as reference “ground truth”.
The robot is exploited here as a first proof of concept for creating a controllable movement
that can mimic structural response and allow for the verification and validation of the
proposed algorithm. As the robot is unable to execute small amplitude and high-frequency
motions that are typically linked to earthquakes or stiff structural systems, we opt for the
simulation of an alternate type of structural response, namely the motion that results at
the top of a wind turbine tower. Structural monitoring is particularly relevant for these
types of structures, as their deformation is a decisive feature for their design [27], while
their vibrational response carries important information on condition [28]. However, it is
noted that the wind turbine motion is only used here as an example application, which is
intended to illustrate the potential of the proposed 6C monitoring station for more general
applications. During the performed robotic motion a GNSS antenna, an accelerometer and
a rotational sensor are attached to a platform at the end of the arm (details are described
in Section 2.1). A similar approach was followed in [29], where a 3C high-rate GNSS
experiment was performed while using a similar robot system, which allowed for them
to analyze the GNSS processing results for different baseline lengths between the moving
and static antenna for relative positioning. Furthermore, Lin et al. [30] demonstrate a
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rotation correction scheme for accelerometer recordings, illustrated on motion generated
by a robotic arm. In this work, we are, for the first time, demonstrating results from a 6C
experiment, where a ground truth is available and used for a quality assessment of the
instrument recordings. The proposed structural monitoring methodology is outlined in
Section 2.1, with the verification of the filter results presented in Section 3.

2. Methodology
2.1. Experimental Setup

The proposed experimental setup for verifying a next generation monitoring station
consists of three measuring instruments and a six-axis industrial robot arm, performing
the 6C motions. The great advantage of using a robot arm lies in the fact that we have
full control over the conducted experiment. While executing the prescribed motions, the
robot features a feedback system for stabilizing its own trajectory. This comes with two
main advantages. Firstly, it allows the robot to closely match the prescribed input motion.
Secondly, it ensures the availability of a high-precision 6C ground truth, which serves
for the validation of our instrumentation and the fusion process that is achieved by the
suggested KF scheme. Nonetheless, minor stability issues may still occur at two locations:
the connection to the concrete ground and the instrument platform itself. The robot is
bolted to the ground via a 1.5 cm thick metal platform, which could be subject to minor
bending. The bending of this platform would not be seen in the robot feedback, but
recorded by the mounted instruments. Additionally, flexure of the steel platform on the
robot arm, which is used to support the different instruments, could result in differential
motion in the case of high frequencies, with respect to the motion executed by the robot.
Both of these occurrences are considered to be negligible in our experiment, since the
motion is well within the robot limitations, and the platform is rigid.

Although the motion of the robot is highly repeatable, three main limitations arise:
(1) there is a weight limit of 7 kg that we can load onto the robot arm, which restricts the
instruments loaded for a single experiment—this is especially important for the rotational
sensors. Instruments that are typical in geodesy and classical seismology include high-
quality instrumentation with low weight, but there is currently no rotational sensor with
similar quality-to-size proportions [31]; (2) during large accelerations, the axes of the robot
arm are subject to large forces, which will initiate a full stop if they overstep a certain
threshold; and, (3) the smallest rotation steps are at 0.005°, which limits the sensitivity with
which we can perform earthquake-like motions.

Given the robot’s limitation in generating low amplitude rotations, experiments of
rather large amplitudes need to be carried out, allowing for use of a light-weight, but
high-quality, inertial measurement unit (KVH 1750 IMU). While this suffices for these
proof-of-concept experiments, this device is not ideal for general monitoring, as its response
is not sufficiently broad-band to capture strong earthquake motions, and it does not have
the resolution to capture low amplitude motions on typical infrastructure. Additionally, we
used a Javad antenna and Septentrio receiver, as well as an EpiSensor and Centaur digitizer
to measure the performed motions in displacement and acceleration. The specifications
of all three instruments are listed in Table A1. To have both the accelerometer and the
rotational sensor placed near the point of rotation, we mounted these separately and carried
out the experiment twice. The instrument setup, together with the orientation of the three
axes of the local coordinate frame, can be seen in Figure 1, below.

The motion performed in the experiment is 300 s in duration and includes translations
in the horizontal axes as well as rotations around them. No motion is executed along or
about the z-axis. Nonetheless, low-amplitude and high-frequency ticks are visible in the
vertical axis, due to changes of the rotation direction of the robot axis. The basis for our
experiment is the motion on top of a wind turbine tower, during wind excitation, as seen
in Figure 2. The simplified motion includes five main frequencies, where the translation in
the x-axis was coupled with the rotation around y and vice versa. The dominant frequency
range is 3 Hz. Table A2 shows the exact values and amplitudes. We performed three
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different amplitude sets for these frequencies and performed them twice. Table 1 shows the
different amplitudes for the three experimental sets. The naming is designed to facilitate
comprehension for the reader. T: translation, R: rotation, L: large, S: small.

x

y
z

1

2
3

Figure 1. The experiment set-up showing (1) the KR AGILUS-2, KR 6 R900 sixx robot arm, (2) KVH
1750 IMU, and (3) Javad GrAnt G3T Global Navigation Satellite System (GNSS) Antenna. The
location of (2) is also where the EpiSensor is placed.

Figure 2. The experiment that was conducted on the robot simulates the motion at the top of a wind
turbine excited by wind. The amplitudes have been adapted to show a diverse range of motion.

Table 1. Relative amplitudes of the three different experiments.

TLRL TLRS TSRS

Tx Tx Tx/10
Ty Ty Ty/10
Rx Rx/10 Rx/10
Ry Ry/10 Ry/10
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Set 1 (TLRL) is characterized by large rotations and large translations. Set 2 (TLRS)
has the same translation amplitude but lower rotations. Set 3 (TSRS) uses small amplitudes
in both, translations and rotations. Figure 3 depicts the experiment TLRL, including the
difference of the robot feedback (RFB) to the input motion and the root mean squared
error (RMSE) thereof. The three different experimental sets will demonstrate the following
five challenges: low amplitudes for GNSS as compared to the noise level, GNSS antenna
phase center corrections, large gravitational leakage for the accelerometer, low-frequency
motion for the accelerometer, and low-frequency motion for the rotational sensor. These
instrumentation challenges, as well as the Kalman filter performance, will be analyzed in
comparison to the robot feedback.

Figure 3. Time series of the robot feedback (RFB) of experiment TLRL as displacements and rotations
in and around all three axes in a right-hand coordinate system in black. The z-axis input was set to
zero for translations and rotations, but the robot requires axis direction changes when performing
the experiment and these are seen as high-frequency ‘ticks’. These high-frequency offsets or ‘ticks’
are observed in the measured RFB signal, a feature of the robot arm. In red, the difference of the RFB
to the programmed input motion is visible with the corresponding root mean squared error (RMSE)
that is noted in the upper right corner.

Because we are using the robot feedback as a ground truth for the accomplished
motion and, therefore, as a reference for comparing the KF estimates, it is important to
determine the quality and repeatability of these signals. This was analyzed by comparing
the four repetitions of one experiment with each other and calculating the RMS of the
discrepancies (error) in terms of the translations and rotations. The RMSE is calculated by
using the difference of all experiment pairs (expj and expi), resulting in six RMSE values,
as seen in the following equation:

RMSEmean =
1
6

3

∑
i=1

4

∑
j=i+1

√√√√ N

∑
n=0

(expj,n − expi,n)2

N
, f or N = length o f signal (1)
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Table 2 shows the mean of the resulting six RMSE error values per experiment and per
axis. The TLRL and TSRS experiments show very low RMSE values of below 0.35 mm in
the three translational axes. The RMSE discrepancy in the rotational axes appear lower for
large motions with values between 0.16 and 0.02 mrad than for lower amplitude motions
with 0.28 and 0.07 mrad. This is expected, since the robot is at its resolution limit for
small rotations. The TLRS experiment yields worse results than the other two. With a
translational RMSE discrepancy five to 30 times larger than for the other experiments, the
quality is definitely lower. The reason for the high RMSE is primarily attributed to the lack
of precise synchronization, as described in Figure A1 in the Appendix. The sub-mm RMSE
values of the RFB during experiments, for which a better synchronization is achieved,
allow for us to compare the instrument recordings of the different repetitions. Therefore,
we can trust that the robot has high-quality repeatability, allowing for us to combine
instrument recordings that were collected over different experiments, as well as use the
RFB from different repetitions to compare against each other. For this reason, we use the one
repetition of the TLRS experiment that features precise synchronization as the ground truth
for all TLRS experiments. We are aware that not mounting the instruments simultaneously
will induce additional errors deriving from the noise from different repetitions. However, it
was the only way to ensure that the IMU as well as the EpiSensor can be as near as possible
to the point of rotation of the robot arm. Otherwise, the EpiSensor would have been subject
to additional and larger effects that originate from apparent forces (Centrifugal, Coriolis,
and Euler forces), since all three are dependent on the length of the offset between point of
rotation and the instrument explained in Section 3.1.

Table 2. RFB repeatability. Mean of the RMSE of the differences between the 4 repetitions per experiment.

Experiment Tx Ty Tz Rx Ry Rz
[mm] [mm] [mm] [mrad] [mrad] [mrad]

TLRL 0.1435 0.1053 0.0079 0.0240 0.0792 0.1582
TLRS 4.3604 1.6556 0.0359 0.0636 0.2692 0.3417
TSRS 0.3500 0.1021 0.0188 0.0714 0.1549 0.2835

2.2. Pre-Processing

Perhaps a main hurdle in merging different instruments into a combined motion
solution lies in time synchronization. The design of a robust monitoring station requires a
single timing device, which provides the timing for all deployed instruments. This assures
synchronized time stamps and, therefore, better quality of the sensor fusion. Such a timing
device was not yet implemented in our study, so time corrections had to be applied in
emulating the final solution see Table A3. The procedure for time correction is described in
more detail in Appendix A.3. Additionally, we independently and separately mounted the
accelerometer or the IMU and GNSS antenna as near as possible to the rotation point and
performed the three experimental sets twice in order to have both the accelerometer and
IMU close to the point of rotation. This means that, in reality, 12 individual experiments
were setup, with the EpiSensor (accelerometer) data shifted in time to match the IMU
recordings, resulting in six experiments to be fused in the KF.

The GNSS raw data are processed with the commercial GrafNav software in relative
positioning mode, using a very short baseline of 5 m. We are using GPS, GLONASS, Galileo,
and Beidou satellites for our L1/L2 solution with a sampling rate of 100 Hz. An L1/L2
solution means that we use the signals of the two frequencies L1 and L2 for GPS/GLONASS,
E1 and E5b for Galileo, and B1l and B2l for Beidou to determine the positions. This is the
best possible solution for GNSS, yielding the lowest noise. The observation time series for
the filter only includes the horizontal components. The vertical (z) component is assumed
to equal zero, since the high-frequency tick motion of the robot that is seen in Figure 3 is
well below the noise level of the GNSS.
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All of the instrument recordings, as well as the robot feedback (RFB), are interpolated
to the EpiSensor time-stamps with a sampling rate of 250 Hz for the IMU, EpiSensor, and
RFB data, and a sampling rate of 100 Hz for the GNSS data. The IMU data are integrated
and high-pass filtered with a corner frequency of 0.001 Hz, while the other instruments are
left unfiltered.

2.3. 6C Kalman Filter

The methodology that is chosen for the combination of the three instruments is the
standard sensor fusion linear Kalman filter (KF). An advantage is the ability of combining
diverse instruments, measuring different quantities and at different sampling rates. These
measurements are then assigned distinct weights through appropriately configured process
and measurement noise co-variance matrices, which optimize the combined input to output
the desired estimated quantities. In the field of navigation and odometry, the KF is a
renowned methodology, which has been in use for decades [32]. The KF combination of
GNSS with an accelerometer sensor for seismic applications has first been successfully
shown by [23]. Almost a decade later, the rotations were included for the first time into
the filter equations to correct the orientation of the acceleration sensor [19]. The basis of
the proposed configuration is taken from [23] and it is developed further for use with the
6C configuration. Two pre-computations are executed prior to the filter itself, namely the
integration of the angular velocity ṙk, see Equation (2), and the rotation of the acceleration
recordings ak into the local coordinate system, see Equation (4). The filtering and integration
could be implemented within the filter itself, allowing for real-time application. The goal of
this paper was not a real-time implementation, so it is not done here. The angular velocities
are integrated with a simple trapezoidal rule for time steps k− 1 and k that are separated
by dt, as in Equation (2). The resulting angles rk are then input into the Euler rotation
matrix Rk in Equation (3), which is used to rotate the acceleration recordings back into
the local frame in Equation (4). GNSS antennas are often attached to a pole with varying
length and the tilting of this pole can potentially introduce additional translations. In
our case, the short antenna pole is also offset in a positive y-direction, since the IMU and
EpiSensor are situated over the point of rotation, as seen in Figure 1. Coupled with the
antenna phase center offset, the vector from the point of rotation to the antenna phase
center is h =

[
−7.76 mm 51.69 mm 213.28 mm

]
. With the knowledge of the occurring

rotations, we calculate the displacements that arise with Equation (5), and use them during
the filter process.

ṙk =

φ̇k
θ̇k
ψ̇k

, rk =

φk
θk
ψk

 = rk−1 +
ṙk−1 + ṙk

2
dt (2)

Rk =

 cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ

cφsθcψ + sφsψ cφsθsψ + sφcψ cθcφ

, with cθ , sθ : cos(θk), sin(θk) (3)

ar
k = (Rk · (ak − g)) + g, with g : gravitational acceleration (4)

hr
k = Rk · h (5)

The state (process) equation of the KF is designed while using the standard adoption of
displacement and velocity in the state vector x. The measured and pre-rotated acceleration
ar and the rotated height vector hr, serve for formulating the KF input vector u, as defined
in Equation (6).
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xk =



dx
dy
dz
vx
vy
vz


k

=



1 0 0 dt 0 0
0 1 0 0 dt 0
0 0 1 0 0 dt

1 0 0

03×3 0 1 0
0 0 1


︸ ︷︷ ︸

A

xk−1 +



dt2

2 0 0

0 dt2

2 0 03×3

0 0 dt2

2
dt 0 0

0 dt 0 03×3
0 0 dt


︸ ︷︷ ︸

B

uk + wk (6)

where uk =
[

ar
x ar

y ar
z hr

x hr
y hr

z

]T

k
, w is the process noise vector, which is assumed

to be drawn from a zero mean multivariate normal distribution with covariance Q. A and
B are the state and input matrices.

The only observations, which are included in the observation vector yk of the devised
KF, pertain to the GNSS positions p = [px py pz]T , as seen in Equation (7).

yk =

px
py
pz


k

=



1 0 0
0 1 0
0 0 1

03×3


︸ ︷︷ ︸

C

xk +


03×3

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

D

uk + zk (7)

where z is the process noise vector, which is assumed to be drawn from a zero mean
multivariate normal distribution with covariance G. C and D are the feedthrough (or
feedforward) matrices, respectively.

Table 3 summarizes the steps of the linear KF. The prediction step utilizes the state
equation of the filter to obtain a prior estimate of the state, xk|k−1. Here, the notation xi|j is
used to denote the estimate of the state x at time step i, being conditioned on information
up to time step j. The prior estimate of the covariance matrix Pk|k−1 of the state vector is
estimated using the information from time step k− 1, as well as the process noise variance
matrix Q. The availability of measurements is not yet taken into account. In the subsequent
update step, the innovation dyk, i.e., the difference between the actually measured GNSS
data, yGNSS

k , and the KF-predicted prior estimate of the displacement yk|k−1 is calculated
as dyk = yGNSS

k − C xk|k−1 −D uk. This is later used for the correction of the prior given
the measurement information at time step k , i.e., the posterior KF estimate xk|k. For this,
the Kalman gain K needs to be further calculated, through the variance of the state vector
and the measurement noise variance matrix G. The Kalman gain is finally used as a weight
(gain) to correct the prior estimate of the state variance Pk|k, as well as the state itself, xk|k,
as outlined in the summary equations of Table 3.

Table 3. The Kalman filter (KF) Algorithm.

Initialization

Set x0 & P0

Prediction Step

xk|k−1 = A xk−1|k−1 + B uk
Pk|k−1 = A Pk−1|k−1 AT + Q

Update Step

dyk = yGNSS
k − C xk|k−1 −D uk

Kk = Pk|k−1 C (C Pk|k−1 CT + G)−1

xk|k = xk|k−1 + Kk dyk
Pk|k = (I6x6 −Kk C) Pk|k−1
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At this point, it is recalled that the measurements that are to be fused are acquired at
different sampling rates. More specifically, the GNSS unit employs a 100 Hz sampling rate,
while the IMU and rotational sensor sample at 250 Hz. The KF naturally allows such a
multi-rate sensor fusion. The KF states are estimated at 250 Hz, which requires a linear
interpolation at every second GNSS 100 Hz time step to offer observations that align with
integer multiples of the 1/250 time step of the process equation of the KF. For the time
steps, where no GNSS observations are available, the filter operates in prediction mode,
while using the process equation, and the update step is skipped. Thus, the prior predicted
state and the state variance are not corrected with the Kalman gain, but are directly taken
as the posterior. The GNSS sampling rate is high enough to ensure that the drifts that are
caused by numerical integration (process equation) are minimal.

The process and measurement noise covariance matrices Q and G allow for tuning the
filter, based on the confidence that is attributed to the state equations (integration) and the
assumed reference observations (GNSS). The tuning refers to the amount of correction that
is applied to the state vector through the Kalman gain in the update step of Table 3. These
covariance matrices can be auto-tuned within the filter itself, by quantifying the actual
model errors [33]. However, for this study, we are keeping these matrices constant (time-
invariant) during the filter procedure. The chosen values are based on the RMSE of the
difference between the instruments and robot feedback (RFB), and they have additionally
been tuned based on how well the KF estimation agrees with the RFB. In Table 4, the values
for Q and G are explicitly shown. The TSRS experiment features slightly different Q values,
because the translation amplitudes are lower for this experiment.

Table 4. Diagonal elements of process noise and measurement noise covariance matrices. The off-diagonal elements are
assumed zero, thus making the assumption of uncorrelated noise components.

Experiment Q1,1 Q2,2 Q3,3 Q4,4 Q5,5 Q6,6 G1,1 G2,2 G3,3

mm2 mm2 mm2 mm2

s2
mm2

s2
mm2

s2 mm2 mm2 mm2

TLRL/TLRS 1.25 · 10−6 1.5 · 10−7 1 · 10−13 4 · 10−6 4 · 10−7 4 · 10−12 3 · 10−8 2 · 10−8 3 · 10−10

TSRS 1.25 · 10−6 1.5 · 10−6 1 · 10−13 1 · 10−4 4 · 10−5 4 · 10−12 3 · 10−8 2 · 10−8 3 · 10−10

In order to assess the influence the rotations of the two instruments, the accelerometer
and the GNSS antenna, have on the KF combination, we perform three different realisations;
(I) full KF combination, including the effect of rotation on both, the GNSS and EpiSensor,
(II) only taking account of rotations on the EpiSensor, ignoring the effect of rotation on the
GNSS and (III) excluding rotation completely. In comparison to (I), we do not correct for
the rotation of the antenna pole in (II) and Equation (5) becomes hr

k = h. In (III), we set rk
to zero, which, in practice, results in Equations (4) and (5), becoming ar

k = ak and hr
k = h.

3. Results

The proposed Kalman filter aims at reproducing the true 6C motion performed by
the robotic arm. By including the influence of the rotations in the input vector, we obtain
rotation-free state estimates. While the setup of the filter equations already gives a direct
weight to each system, the covariance matrices additionally allow for experiment-specific
tuning. The measured quantity that was employed as KF observation yk is assumed to
be the most trustworthy; here, GNSS position recordings. This section elaborates on the
influence of the equation setup and the tuning of the process and measurement noise
covariance matrices on the prediction results.

3.1. Influence of Rotations on Acceleration

For an inertial sensor, such as the accelerometer, rotations about a horizontal axis lead
to a leakage of the gravitational acceleration into the horizontal axes and out of the vertical
axis, producing spurious horizontal and vertical translations. It is not only the gravitational
vector that affects the measurement, but also the misorientation of the sensor. Additionally,
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the apparent forces, such as Centrifugal, Coriolis, and Euler components, induce additional
accelerations that can lead to a misinterpretation of the data. Equations (8)–(10) denote how
the calculations are performed, with ṙ the angular velocity of the robot and with binst =
[0 mm 30 mm 50 mm] designating the distance from the point of rotation to the EpiSensor
instrument. In the absence of precise knowledge of where each force feedback module
is situated inside the instrument case, the calculation of each of these three acceleration
components cannot be precise. Because binst is constant, no Coriolis force is induced by
the robot angular velocity. Therefore, we have calculated the power spectrum of the other
two apparent forces and plotted it together with the RFB data to obtain an estimate of the
possible amplitude. Figure 4 shows that with the assumed offset binst from the point of
rotation, the apparent forces do not have a significant impact on the accelerometer data. In
view of the minor effects, we have decided to omit a correction procedure for these terms.

acentri f ugal = ṙ× (ṙ× binst) (8)

acoriolis = 2(ṙ× ḃinst) (9)

aeuler = r̈× binst (10)

Figure 4. The figure includes six datasets; ‘raw’ is the EpiSensor data, ’corrected’ denotes the back
rotated acceleration, ‘grav leakage’ is the rotated gravitational vector, ’RFB’ is the robot feedback
and the two calculated apparent forces converted to displacements are denoted in yellow. The insets
zoom into the key frequency peaks per axis.

Figure 4 illustrates how the raw acceleration overshoots at the main periods of motion
around 3 s in the horizontal axes x and y. At these same periods, the gravitational leakage
is of course significant. The correction for the gravitational leakage then results in the
corrected data set, which nicely follows the black RFB line until around a period of 10 s.
Beyond 10 s the accelerometer begins to severely deviate. This is mostly due to the fact that
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long-period motions have very small accelerations that are close to or below the resolution
of the sensor, so sensor noise is dominant following the double integration procedure. In
the vertical component the largest motion of the robot is attributed to the high-frequency
ticks, originating from a change in the rotation direction of one of the axes of the robot arm.
These high-frequency ticks are seen in the zoom of the Tz subfigure.

3.2. Influence of Rotations on GNSS Displacement

The influence of rotations on the GNSS data is not only dependent on the length and
offset of the antenna, but also on the distance to the antenna phase center from the point
of rotation. In this case study, the point of rotation is very well known and, therefore, the
vector from the point of rotation to the antenna phase center can be easily and precisely
determined. The vector is, in our case, h = [−7.76 mm 51.69 mm 213.28 mm]. Even
though it is actually quite short, the distortion that is caused in the GNSS data is visible
and has to be corrected. Figure 5 shows the spectral power of the GNSS positions without
any processing, as compared to the rotation-corrected GNSS positions and the RFB. The
zoomed-in subfigure shows that the horizontal amplitudes are diminished and fit better,
although still not perfect, to the RFB. It has not been possible to determine why the GNSS
cannot be fully corrected. This may be due to further factors, apart from the antenna phase
center offset, which are influenced by the rotations, or perhaps a further source, beyond
the rotations, is distorting the data. For motions with a frequency higher than 1 Hz, the
setting of the bandwidth of the loop filter can have a serious impact [34] and distort either
the amplitude or induce a phase error. In our case, the frequency is lower than 1 Hz, hence
the bandwidth of the loop filter should not influence it. The noise amplitude on the z-axis
is very high and, therefore, the rotation correction is negligible.

Figure 5. The figure includes three data sets; ‘raw’ is the measured GNSS data in displacement,
‘corrected’ denotes the back rotated GNSS data in displacement; and, ‘RFB’ is the robot feedback.
The zoomed-in parts are only shown for the horizontal axes, because the vertical axis of GNSS only
shows noise.
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3.3. Kalman Filter Measurement Fusion

Each instrument that is involved in the fusion process has different strengths and
weaknesses. The high noise level of 5 mm in the GNSS vertical positions and the low
sampling rate, leads to extremely poor quality in resolving Tz. The EpiSensor, on the other
hand, has a higher sampling rate and a multiple orders lower noise level and can, therefore,
resolve Tz much better. However, the EpiSensor measures acceleration, which is not stable
after a double integration without filtering, while the GNSS antenna directly measures
displacement and can, therefore, resolve Tx and Ty quite well. Both of the instruments are
influenced by rotations, the EpiSensor more than the GNSS antenna, which we correct by
using the data from the rotational sensor in the IMU. The root mean square error (RMSE)
of the difference between the instruments and the robot feedback (RFB) in comparison to
the RMSE of the difference between the KF results and the RFB indicates that the fusion
results in the combination of the individual strengths.

Figure 6a,b show the spectral analysis of the KF displacement and velocity estimates
for the TLRL experiment, and they demonstrate the good accordance of the KF estimates in
brown with the RFB in black during the main periods. Not only the short periods around
3 s fit satisfactorily, but also the long periods on the horizontal axes are resolved quite well.
Appendix A.4 shows the spectral analysis of the TLRS and TSRS experiments.
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Figure 6. The robot feedback (RFB) is plotted in black and the KF estimate (state) is plotted in brown
for the TLRL experiment. The (a) shows the KF displacement estimate and (b) shows the KF velocity
estimate.

Figure 7 presents an overview of the performance of the individual sensors and
Figure 8 presents the different realisations of the KF; (I) full KF combination, including
the effect of rotation on both GNSS and EpiSensor, (II) only taking account of rotations
on the EpiSensor, ignoring the effect of rotation on the GNSS and (III) excluding rotation
completely. The RMSE of the difference of each instrument to the robot feedback (RFB)
and the difference of the KF estimates to the RFB is shown for both repetitions of all three
experiments: TLRL, TLRS, and TSRS. The errors of the GNSS positions are within the
expected values of 1–8 mm, for the high-rate ultra-short baseline solution. The plotted
GNSS data are not corrected for the rotations occurring, which is visible in the higher
horizontal RMSE of the TLRL experiment, as opposed to the TLRS, which exhibits lower
rotations. The RMSE values for Tz are only an indication of the noise level on the vertical
axis, since the actual motion of the robot on Tz is far beneath this noise level. While
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the GNSS data are unfiltered, the accelerometer data are high-pass filtered at 0.09 Hz
to calculate the RMSE, while it is actually used unfiltered within the KF fusion scheme.
Without this filtering procedure, the double integration would result in an exponential
drift. Unfortunately, this filter also results in high RMSE values for Tx. The long period
motion performed by the robot is filtered out of the acceleration data and results in the
125 mm RMSE. The RMSE of the acceleration in Tz, on the other hand, yields extremely
low values for all of the conducted experiments. The IMU, as plotted in Figure 7c, has
an RMSE lower than 2.1 mm overall, with the exception of Rz of the TLRL experiment,
where the large rotations are performed. Additionally, the Ry axis has slightly worse RMSE
than the Rx, which can be explained by the unsmoothened robot performance. During the
small rotations, the robot is at its limit and cannot always execute these smoothly, as seen
in Figure 9h.

Figure 8a–c show the RMSE between the reference displacement RFB and the Kalman
filter estimate of the displacement state, while Figure 8d–f show the corresponding RMSE
of the velocities. The TLRL displacements exhibit much higher RMSE values, as shown by
the comparison Figure 8a,b, which are caused by the rotation of the vector between the
antenna phase center and the point of rotation. By taking into account that the antenna
phase center is influenced by rotations, we are able to halve the RMSE, thus refining the
estimated motion result. For small rotations, as are present for the experiments with RS in
the name, this effect is negligible, as shown by comparing the TLRS and TSRS experiments
in Figure 8a,b. If we choose to not correct the accelerations for the effect of rotations, only
minor influence is noted on the horizontal axes. It is only the vertical component Tz that
shows significant diminishing in estimation quality when the correction for rotationally
induced gravitational influences is omitted. This shows that our filter heavily relies on the
GNSS measurement for ensuring precision of the horizontal component estimates, but it
relies much more on the acceleration input for the vertical (z-component) estimation. This
is achieved by setting the z-component of the GNSS positions to zero. Similar to a high-pass
filter, this stabilizes the double integration and alleviates drifting, without actually having
to apply a filter to the acceleration records.
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Figure 7. The RMSE values in comparison to the RFB for both repetitions of the three experiments
in Tx, Ty, Tz. The GNSS positions plotted (a) are not corrected for the antenna offset rotation. The
accelerometer data (b) is integrated twice, high-pass filtered at 0.09 Hz and not corrected for rotation
of the instrument. The angular rate data (c) was integrated and high-pass filtered at 0.001 Hz. The
subplots have different scales on the x-axis for better visibility.
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Figure 8. Summary of KF performance in terms of RMSE. (a–f) show the KF estimates of displacement
and velocity. The (a) and (d) show the RMSE when applying the (I) full combination method. (b) and
(e) ignore the rotation of GNSS (II). (c) and (f) assume that no rotational information is available (III).
The subplots have different scales on the x-axis for better visibility.

In contrast, the accelerometer data are essential in the precise estimation of the ve-
locities. Ignoring rotation correction for the GNSS positions that are seen in Figure 8e in
comparison to Figure 8d only slightly worsens the Tx and Ty RMSE for the TLRL experi-
ment, while not affecting the other two experiments at all. The large influence of rotations
on the accelerometer data is seen in Figure 8f, where both, the accelerometer and the GNSS
data are not corrected for the occurring rotations. Tx for the TLRL experiment exhibits a
more than ten times larger RMSE in Figure 8f as compared against Figure 8e, where the
accelerometer data are corrected for rotationally induced influences, but the GNSS is not.
Even for the case of small rotations, as in TLRS, an impact is noted on the estimation results
in Figure 8f, albeit smaller.

While the RMSE values offer a good overview of the instruments’ performance, the
time domain representation of the signals can offer a better indication of the weaknesses
of each instrument, as well as help appraise the precision of the KF estimation. A three
second zoom-in at 300 s of the simulated wind turbine tower with the recorded RFB signal
is presented in Figure 9, which shows the largest amplitude of the signal. For better
comparison, the signals of all three experiments are shown in the same subfigure and
the horizontal axes are demeaned to zero-offset, while the vertical axis is shown with an
offset. Additionally, all three instruments (top) and the estimates of the full Kalman filter
fusion (bottom) are plotted. The GNSS horizontal positions show a good correlation to
the true displacements with only a small overshoot, since they are only slightly affected
by rotations. The TLRL sine wave overshoots by ca. 2.7% and the TLRS overshoots by ca.
1.7%. The z-component, on the other hand, only shows noise and it is not able to record
any motion from the robot. For the EpiSensor data (Figure 9d–f), it is clear that the TLRL
displacement strongly overshoots the true amplitude seen as the solid black line by around
50%. Additionally, for the small rotations an overshoot of ca. 8% is observable for the large
translations (TLRS) and ca. 50% for the small translations (TSRS). The IMU (Figure 9g–i)
only shows minor inconsistencies, which are most likely due to the reduced quality of the
rotational sensor.
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Figure 9. A summary of instrument (top three) and KF (bottom two) performance using time series.
Each row of subfigures shows a 3 s zoom-in at 300 s of the simulated wind turbine tower with the
recorded robot feedback (RFB) in black and additionally an instrument (a–i) or the KF estimated
quantity (j–o) in color. All three experiments TLRL, TLRS and TSRS are shown per subfigure. (a–c)
shows the GNSS data, (d–f) the EpiSensor data, (g–i) the IMU data, (j–l) the KF displacement
estimates, and (m–o) the KF velocity estimates. The data have been high-pass filtered with a corner
frequency of 0.08 Hz. Tz of each experiment was manually shifted for better visibility.

Figure 9j–l indicate the KF displacement estimates. The sine waves are very smooth
in Tx and in Ty, but, nonetheless, coincide well with the RFB. The large overshoot of the
EpiSensor and the minor overshoot of the GNSS positions have been filtered out, leaving a
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relative accurate representation of the RFB. Some GNSS noise is still present and we have
not been able to completely correct for it. Figure 9l shows the vertical component, where
Tz follows the RFB, primarily following on the EpiSensor data. A comparison of the state
velocities to the RFB in Figure 9m–o, proves that the KF estimates are able to reproduce the
correct amplitudes and frequencies. Nonetheless, the KF velocity estimates are noisy in
comparison to the displacements.

The TLRL experiment was shown as a full RFB time series in Figure 3, and it is now
shown again overlayed with the full KF state estimates in Figure 10. The Figure additionally
shows the RMSE of the difference between the two plotted time series, which is the same
as that plotted in Figure 8. While there is still some residual motion that cannot be resolved
by our filter, the overall fit is quite promising. Appendix A.4 shows the full KF estimate
time series of the TLRS and TSRS experiments.
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Figure 10. The figure illustrates the time series of the KF estimates for the TLRL experiment in yellow
plotted against the robot feedback (RFB) in black. The top three subfigures show the KF displacement
estimates versus the RFB. The lower three subfigures show the KF estimated velocities versus the
numerically differentiated RFB velocities. In the top right corner of each axis, the RMSE between the
RFB and KF state estimates is shown.

4. Discussion and Conclusions

This work introduces and experimentally verifies a structural monitoring solution
that incorporates six-component (6C) motion, with the significant advantage of fusing
rotational information alongside translation and acceleration. Translation is provided using
a GNSS sensor. It is generally assumed that GNSS antennas are not, or are only negligibly,
influenced by rotations. However, the rotations that are performed in our experiments,
which could occur in the case of slender buildings or be induced by earthquake shaking,
will visibly distort the GNSS positions. We show that it is possible to correct the GNSS data
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with a KF-based fusion scheme and that a significant improvement is achieved, delivering
a high potential for 6C structural monitoring.

Moreover, in comparison to an accelerometer, GNSS has a limited precision on the
order of 2 mm on the horizontal and 5 mm on the vertical axis. Hence, motion amplitudes
need to lie above this noise level, in order to be observed by the GNSS receiver. The loss of
quality in our TSRS experiment (see Figure A5 in Appendix) in comparison to the TLRS
experiment (see Figure A4 in Appendix) is due to the lower signal to noise ratio in the
GNSS positions. This becomes evident when the translations become smaller and can no
longer be precisely recorded with GNSS. While, in this study, we set the vertical high-noise
GNSS positions to zero, forcing the KF to exploit the acceleration data, it is not a generally
applicable solution. For applications of a KF to any setting, where the displacement
amplitudes fall below the resolution of the GNSS, the equations of this KF would have to
be reorganized to more heavily depend on the accelerations, as a more reliable information
source, since these are more precise for high-frequency and low-amplitude motion. This
type of approach would be required for general seismic monitoring applications, where
displacements that are sufficiently large to be recorded by GNSS are only seen in the near
field of large earthquakes. Additionally, depending on the application, instruments of very
different qualities have to be considered. For general seismic monitoring, where 6C motions
from both weak and strong ground shaking need to be recovered, high dynamic range,
very broadband and highly sensitive rotational, accelerometric, and GNSS sensors are
required. On the other hand, in the case of monitoring known structures, where rotations
and accelerations are known to be of larger amplitude, cheaper instruments with lower
resolution and dynamic range, such as the IMU used in this study, can be appropriate.

In our simulation of the ambient excitation on a wind turbine, the spectral analysis
presented in Figure 4 shows that the rotations evidently distort the acceleration data, and
that this effect can be corrected with the incorporation of recorded rotations. After applying
the rotation correction, the acceleration reflects the true amplitude of the motion below 10 s
period. With the motions simulated in this test, above a 10 s period, the acceleration data
are not accurate; for this reason, we depend on GNSS positions, which can observe these
longer periods very well. The exploitation of these period-dependent characteristics in our
KF formulation yields very broadband results of sufficient precision. This investigation has
offered significant insights into the performance of different instruments, mainly because
the comparison to the feedback system of the motion generator could be performed.
A real quality assessment was possible and, more specifically, it has shown how these
measurements are influenced by rotations and how the KF estimation performs during
these experiments. The devised KF formulation will allow for us to perform more complex
experiments including motions featuring a broader frequency range, i.e., actual data that are
obtained from the monitoring of different engineered structures, such as stiffer buildings,
or more slender and flexible bridges.
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Appendix A

Appendix A.1. Instrument Specifications

Table A1. Specification.

Instrument Weight Units Sensitivity Clip

RFB 60 kg m and ° 10−6 m and 10−5 ° 1 m and 10–360°
EpiSensor 1.5 kg m/s/s 10−7 m/s/s 4 g

IMU 0.6 kg °/s 0.8°/h/
√

Hz ± 490°/s
GNSS 0.5 kg m 0.004 m -

Appendix A.2. Input Motion

Table A2 shows the periods that were used to make up the wind turbine motion
performed by the robot. Translation in x or y: Tx, Ty. Rotation around x or y: Rx, Ry. The
motion on the x-axis (Tx) is designed to be coupled with the rotation around the y-axis
(Ry). The same was done for Ty and Rx. These amplitudes are valid for experiment TLRL.
The amplitude adjustments for TLRS and TSRS are visualized in Table 1 in the main part of
the article.

Table A2. The figure shows the periods that were used to make up the wind turbine motion
performed by the robot.

Tx Ry Ty Rx
Period [s] Amp. [mm] Amp. [mrad] Period [s] Amp. [mm] Amp. [mrad]

213.710 145.98 −25.48 207.650 18.19 3.17
543.210 −68.24 11.91 675.610 −7.89 −1.38
132.670 74.98 −13.09 130.090 11.83 2.06

2.999 34.68 −6.05 3.128 20.00 3.49
3.090 32.72 −5.71 3.097 14.87 2.60
2.448 27.17 −4.74 3.063 4.90 0.86
3.022 20.74 −3.62
2.948 −34.44 6.01

Appendix A.3. Time Corrections

One of the most significant difficulties when using different instruments for a com-
bined motion solution, is timing (synchronization). While the GNSS unit and the accelerom-
eter rely on GPS time, which is precise to the 10–20 ns level, the robot and IMU were using
computer time, updated by an online NTP server. As a result, the robot timing had to be
adjusted with a time drift and shift according to the correlation with the GNSS data. The
values can be seen in Figure A1. Additionally, the IMU start time is only precise to a full
second and therefore had to be shifted in time as well. Finally, the EpiSensor experiments
7–12 were shifted to the IMU experiments 1–6, using the GNSS recording as a base. The
experiment 9 seen in Figure A1 shows a low time drift and was therefore used as the
ground truth for all TLRS experiments. Before using the data sets in the Kalman filter,
we did a last adjustment; all data sets were interpolated to start at the same time stamp,
without changing their sampling rate.
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Figure A1. The figure shows the time shift and drift applied to the RFB and IMU data sets. The
experiments 3,4,5,10,11,12 do not have linear time shifts, therefore the corrections still do not allow a
good comparison. TLRL: 1,2,7,8; TLRS: 3,4,9,10; TSRS: 5,6,11,12.

Table A3. Instrument information.

Instrument Time Shift Time Drift Sampling Rate

RFB Yes Yes 250 Hz
EpiSensor No No 250 Hz

IMU Yes No 250 Hz
GNSS No No 100 Hz

Appendix A.4. Additional Results

The spectral analysis and the time series of the KF estimates of experiments TLRS and
TSRS in comparison to the robot feedback are shown in the following Figures; spectral
analysis TLRS see Figure A2a,b, time series TLRS see Figure A4, spectral analysis TSRS see
Figure A3a,b and time series TSRS see Figure A5.
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(b) Spectral analysis of KF velocity estimate, TLRS
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Figure A2. The robot feedback (RFB) is plotted in black and the KF estimate (state) is plotted in
brown for the TLRS experiment. The (a) shows the KF displacement estimate and (b) shows the KF
velocity estimate.
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(b) Spectral analysis of KF velocity estimate, TSRS
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Figure A3. The robot feedback (RFB) is plotted in black and the KF estimate (state) is plotted in
brown for the TSRS experiment. The (a) shows the KF displacement estimate and (b) shows the KF
velocity estimate.
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Figure A4. Time series of the full Kalman filter combination for experiment TLRS visualizing KF
displacement and velocity estimates and the robot feedback (RFB).
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Figure A5. Time series of the full Kalman filter combination for experiment TSRS visualizing KF
displacement and velocity estimates and the robot feedback (RFB).
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