nature chemistry

Article

https://doi.org/10.1038/s41557-023-01165-6

Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters

In the format provided by the authors and unedited

Supporting Information for "Catalytic Enantioselective Nucleophilic Desymmetrisation of Phosphonate Esters"

Authors: Michele Formica¹, Tatiana Rogova¹, Heyao Shi¹, Naoto Sahara^{1,2}, Branislav Ferko¹, Alistair J. M. Farley¹, Kirsten E. Christensen¹, Fernanda Duarte¹, Ken Yamazaki³* & Darren J. Dixon¹*

Affiliation: ¹Department of Chemistry, University of Oxford, Chemical Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK; ²Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya 464-8603, Japan; ³Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan

Contents

General Information	3
Optimisation:	4
Computational Studies	13
Synthesis of Catalyst B1:	17
Synthesis of Catalyst B12:	19
Synthesis of Catalyst B13:	
Substrate Synthesis:	21
General Procedure I: Synthesis of P(V) desymmetrisation substrates	21
Synthesis of Starting Materials	
General Procedure II: Enantioselective Desymmetrisation of Phosphonate esters	
General Procedure III: Racemic Desymmetrisation of Phosphonate esters	
Products: Leaving Group Variation	41
Products: Phenol Scope	
Products: R group Scope	
General Procedure IV: Second Nucleophilic Displacement	69
Products: Derivatisation	70
NMR Spectra	
HPLC Traces:	
Single Crystal X-Ray Diffraction Data	
Compound 1 (CCDC: 2097043)	
Compound 37 (CCDC: 2097044)	

General Information

Reactions were carried out under a nitrogen atmosphere in oven-dried glassware at room temperature (22 °C) unless stated otherwise. Standard inert atmosphere techniques were used in handling all air and moisture sensitive reagents. Thin-layer chromatography (TLC) was performed using Merck aluminium backed sheets coated with Merck Kieselgel 60 F254 (230-400 mesh) fluorescent treated silica, which were visualised under UV light (λ max= 254 or 365 nm). Flash column chromatography was performed using Merck Kieselgel (230-400 mesh). All ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded using a Bruker 500 MHz and Bruker 400 MHz spectrometers and are quoted in ppm for measurement against a tetramethylsilane (TMS) or residual solvent peak internal standard. Coupling constants (J) are reported in hertz (Hz). Two-dimensional spectroscopy (COSY, HSQC and HMBC) was used to assist in the assignment and the data is not reported. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer deposited as a thin film. Melting points were recorded using a Leica Galen III hot-stage microscope apparatus and are reported uncorrected in degrees Celsius (°C). Low resolution mass spectra were recorded on a Waters LCT premier XE Micromass spectrometer (ESI). High resolution mass spectra (ESI) were recorded on a Bruker MicroTof mass spectrometer. Optical rotations were recorded using a Perkin Elmer 341 polarimeter; $[\alpha]_D$ T values are reported in 10^{-1} deg \cdot cm² g⁻¹; concentrations (c) are quoted in g/100 mL; D refers to the D-line of sodium (589 nm); temperatures (T) are given in degrees Celsius (°C). (+) and (-) compound number prefixes indicate the sign of the optical rotation. The enantiomeric excesses were determined by HPLC analysis on an Agilent 1200 Series instrument employing a chiral stationary phase column specified in the individual experiment and by comparing the samples with the appropriate racemic mixtures. Alternatively, enantiomeric excesses were deteremined using chiral SFC (supercritical fluid chromatography) separations were conducted on a Waters Acquity UPC2 system using Waters Empower Software. Chiralpak© columns (150x3 mm, particle size 3 µm) were used as specified in the text. Solvents used were of HPLC grade (Fischer Scientific, Sigma-Aldrich or Rathburn). Concentration under reduced pressure was performed by rotary evaporation at the appropriate pressure and temperature. Reagents used were obtained from commercial suppliers or purified according to standard procedures. Petroleum ether refers to distilled light petroleum of fraction 30 - 40 °C. Anhydrous toluene, tetrahydrofuran, dichloromethane and diethyl ether were dried by filtration through activated alumina (powder ~150 mesh, pore size 58 Å, basic, Sigma-Aldrich) columns. Dimethyl sulfoxide and dimethylformamide were used as supplied. Deuterated solvents were used as supplied.

Optimisation:

Initial Leaving Group Hit

Scheme S1: Survey of possible leaving groups. ^[a] Conversion determined by ³¹P NMR.

Preliminary Catalyst Screen

Scheme S2: Screening of catalysts. ^[a] Using PhF as solvent.

67% yield, rac

79% yield, 14% ee

65% yield, rac

80% yield, rac

85% yield, rac

43% yield, rac

Scheme S3: Screening of phase transfer catalysts.

Scheme S4: Screening of solvents with BIMP catalyst B1-P(PMP)₃. Ar= 2-NO₂C₆H₄.

Phosphine Screen

Scheme S5: Screening of phosphines to generate the iminophosphorane superbase. Ar= $2-NO_2-C_6H_4$.

Scheme S6: Further optimisation of reaction conditions. Ar= 2-NO₂.C₆H₄.

Scheme S7: Survey of methylated leaving groups (top) and final optimisation of reaction conditions (bottom).

Scheme S9: Further unsuccessful P(V) electrophiles. Ar= 2,4-dimethyl phenol. Ar'= 2-(NO₂),4-(CH₃)-C₆H₃

Computational Studies

General Computational Methods

Calculations were performed using Gaussian 16 A.03.¹ Geometry optimisations of all structures were carried out with the M06-2X meta-generalized gradient approximation (GGA) functional in combination with the def2SVP basis set ("loose" optimisation criteria).^{2,3} The effect of fluorobenzene solvent was evaluated using the SMD implicit solvent model.⁴ Harmonic vibrational frequencies at the same level of theory were calculated to characterize stationary points as either minima or transition state (TS) structures and to calculate the zero-point vibrational energy and thermal corrections. Free energies were evaluated at 25 °C and have been corrected to a standard liquid state of 1 mol/L. In all cases, vibrational entropies were obtained using a quasi-harmonic approximation, treating vibrational modes below 100 cm⁻¹ as free rotors and as rigid rotors above this cut off, as first proposed by Grimme⁵ and implemented in Python.⁶ Single point energies were evaluated at the SMD(fluorobenzene)-M06-2X/def2TZVP level of theory. Molecular graphics were generated with CYLview20 and PyMol.^{7,8} The NCIPLOT4 was used to visualise the non-covalent interactions.^{9,10,11}

¹ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

² Zhao, Y.; Truhlar, D.G. Theor. Chem. Acc., 2008, 120, 215-41.

³ Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.

⁴ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G J. Phys. Chem. B 2009, 113, 6378–6396.

⁵ Grimme, S. Chem. Eur. J. 2012, 18, 9955–9964.

⁶ Funes-Ardoiz, I.; Paton, R. S. GoodVibes v2.0.2 DOI: 10.5281/zenodo.595246.

⁷ CYLview20; Legault, C. Y., Unversité de Sherbrooke: Sherbrooke, **2020** (http://www.cylview.org).

⁸ Schrödinger, L., & DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol.

⁹ Boto, R. A.; Peccati, F.; Laplaza, R.; Quan, C.; Carbone, A.; Piquemal, J.-P.; Maday, Y.; Contreras-García, J. *J. Chem. Theory Comput.* **2020**, *16*, 4150–4158.

¹⁰ Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. **2010**, *132*, 6498–6506.

¹¹ Contreras-Garcia, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D. N.; Yang. W. J. *Chem. Theory Comput.* **2011**, *7*, 625–632.

A structurally simplified version of the BIMP catalyst **B12-P(Ph)**₃, for which enantioselectivity has been measured experimentally, was used to construct the catalytic reaction profile (**Figure S1**). Given that the chiral backbone, the basic iminophosphorane site, and the *N*-substituent on the distal portion of the BIMP structure were essential for achieving the high reactivity and enantioselectivity in the P(V) desymmetrisation step, these components were conserved in BIMP **B12-P(Ph)**₃. In this catalyst, the anthracenyl motif was replaced with a phenyl ring and the phenyl groups instead of tolyl groups were used on the iminophosphorane moiety. The energy differences of the TSs for nucleophilic attack with other structurally simplified BIMP catalysts were also computed. Subsequently these catalysts were synthesised and tested experimentally and the empirical enantioselectivity data were in keeping with the computational trend. The transition states with **B12-P(Ph)**₃ and **B12-P(Me)**₃, respectively.

Figure S1. Comparison of empirical and computed enantioselectivity between different BIMP catalysts.

Figure S2. Nucleophilic attack transition state structures and the NCI surfaces with **B12-P(Me)3**. Bond lengths (Å) of the TS geometries are provided in the insert.

Figure S3. Nucleophilic attack transition state structures and the NCI surfaces with B13-P(Ph)₃. Bond lengths (Å) of the TS geometries are provided in the insert.

Figure S4. Computed Gibbs free energy differences ($\Delta\Delta G^{\ddagger}$ [kcal mol⁻¹]) for the initial nucleophilic attack (**TS1-**(*R*) and **TS1-**(*S*)) with various functionals.

Table S1. Electronic energies (*E* in Hartrees), enthalpies (*H* in Hartrees), quasi-harmonic Gibbs free energies (*qh-G* in Hartrees) and imaginary frequencies (in *i* cm⁻¹) of all stationary points computed at SMD(fluorobenzene)/M06-2X/def2SVP level of theory. Electronic energies (*E*_{high} in Hartrees) computed at the SMD(fluorobenzene)/M06-2X/def2SVP level of theory. 2X/def2TZVP//SMD(fluorobenzene)/M06-2X/def2SVP level of theory.

structure	E	Н	qh-G	E ^{high}	Imag. Freq.
SM	-1747.972783	-1747.593091	-1747.669756	-1749.712772	-
Ar'OH	-385.658047	-385.487591	-385.527586	-386.091299	-
B12-P(Ph) ₃	-2260.150209	-2259.312686	-2259.425415	-2262.406804	-
RC-(<i>R</i>)	-4393.825854	-4392.435166	-4392.620055	-4398.233493	-
RC-(S)	-4393.825460	-4392.434570	-4392.621241	-4398.231444	-
TS1-(<i>R</i>)	-4393.821200	-4392.431933	-4392.614819	-4398.225576	138.9 <i>i</i>
TS1-(S)	-4393.817343	-4392.427350	-4392.610918	-4398.221850	159.8 <i>i</i>
INT-(<i>R</i>)	-4393.835220	-4392.444323	-4392.629936	-4398.242413	-
INT-(S)	-4393.834389	-4392.441790	-4392.625905	-4398.234956	-
TS2-(<i>R</i>)	-4393.834895	-4392.443701	-4392.627096	-4398.237837	24.7 <i>i</i>
TS2-(S)	-4393.828322	-4392.43701	-4392.620330	-4398.231189	118.9 <i>i</i>
Product	-1582.969503	-1582.566677	-1582.642487	-1584.513225	-
ArOH	-550.672070	-550.524721	-550.565989	-551.303478	-
TS1-(<i>R</i>)-PMe ₃	-3819.245953	-3818.028384	-3818.193343	-3823.037672	120.8 <i>i</i>
TS1-(S)-PMe ₃	-3819.239102	-3818.021622	-3818.188288	-3823.033081	57.2 <i>i</i>
TS1-(<i>R</i>)-Me	-4276.029066	-4274.727553	-4274.902791	-4280.302311	145.5 <i>i</i>
TS1-(S)-Me	-4276.027534	-4274.726133	-4274.903455	-4280.299130	156.2 <i>i</i>

Synthesis of Catalyst B1:

(S)-2-(((anthracen-9-ylmethoxy)carbonyl)amino)-3,3-dimethylbutanoic acid (S1)

According to a literature procedure,¹² to a solution of 4-nitrophenylchloroformate (2.2 g, 11 mmol, 1.1 eq) in CH₂Cl₂ (14 mL) at rt was added pyridine (0.90 mL, 11 mmol, 1.1 eq) dropwise. The slurry was cooled to 0 °C and 9-anthracenemethanol (2.08 g, 10 mmol, 1.0 eq) was added portionwise. The reaction mixture was then allowed to warm to rt and stirring maintained overnight. The reaction mixture was diluted with CH_2Cl_2 (40 mL) and washed with 1 M HCl (20 mL), water (20 mL) and brine (20 mL) and dried (MgSO₄). The volatiles were removed *in vacuo* to afford a yellow solid in 60% yield (2.23g) which was used without further purification.

To a stirred solution of L-*tert*-Leucine (0.66 g, 5.0 mmol, 1.0 eq) in 10% aqueous Na₂CO₃ (13 mL) and DMF (10 mL) at 0 °C was slowly added the 4-nitrophenylcarbonate (1.87 g, 5.0 mmol, 1.0 eq) in DMF (15 mL). After stirring for one hour at this temperature, the reaction mixture was allowed to warm to rt overnight, diluted by the addition of H₂O (50 mL) and extracted with Et₂O (3 x 20 mL). The aqueous layer was cooled in an ice bath and acidified to pH 1 by the addition of concentrated HCl and then extracted with EtOAc (3 x 25 mL). The combined organics were washed (brine), dried (MgSO₄) and the volatiles removed *in vacuo*. Purification by flash column chromatography [Petroleum ether to EtOAc] afforded the title compound as a pale-yellow solid in 60% yield (1.08 g).

Mp 153 – 154 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 1.00 (s, 9 H), 4.27 (d, J = 10.0 Hz, 1 H), 5.31 (d, J = 10.0 Hz, 1 H), 6.13 (d, J = 12.5 Hz, 1 H), 6.20 (d, J = 12.5 Hz, 1 H), 7.44 - 7.61 (m, 4 H), 8.01 (d, J = 8.5 Hz, 2 H), 8.37 (d, J = 8.5 Hz, 2 H), 8.49 (s, 1 H); ¹³C **NMR** (100 MHz, CDCl₃) δ ppm 26.6, 34.7, 59.8, 62.4, 124.1, 125.2, 126.4, 126.8, 129.2, 129.3, 131.2, 131.5, 156.6, 176.4. Data was consistent with the literature.

¹² Diosdado, S.; Etxabe, J.; Izquierdo, J.; Landa, A.; Mielgo, A.; Olaizola, I.; López, R.; Palomo, C. *Angew. Chem. Int. Ed.* **2013**, *52*, 11846-11851.

According to a modified literature procedure,¹ to a solution of **S1** (365 mg, 1.0 mmol, 1.0 eq.) in THF (4 mL) at -20 °C were added sequentially isobutyl chloroformate (130 µL, 1.0 mmol, 1.0 eq.) and *N*-methylmorpholine (110 µL, 1.0 mmol, 1.0 eq.) and stirring was maintained for 20 min. To the reaction mixture was added sodium azide (98 mg, 1.5 mmol, 1.5 eq) in H₂O (1.0 mL) and stirring was maintained for 30 min at -20 °C. The organic layer was then separated, the volatiles removed *in vacuo*, dissolved in CH₂Cl₂ (15 mL) and washed with water (10 mL). The organic layer was dried (MgSO₄) and concentrated *in vacuo* to approximately 5 mL. The reaction mixture was heated to reflux for 2 h and then the reaction mixture was cooled to rt and the crude amino azide¹³ (156 mg, 1.00 mmol, 1.00 eq) as a solution in Et₂O (4 mL) was added dropwise. The reaction mixture was stirred at rt overnight and then the volatiles removed *in vacuo*. The crude was triturated in toluene at 100 °C, cooled to rt, filtered and washed with pentane to obtain the title compound as a colourless solid in 40% yield (200 mg).

[*α*] \mathbf{p}^{25} = +20.8 (c = 0.91, CHCl₃); **Mp** 268 – 270 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.67 (s, 1H), 8.39 (d, *J* = 8.8 Hz, 2H), 8.13 (d, *J* = 8.3 Hz, 2H), 7.57 (dt, *J* = 21.4, 7.1 Hz, 4H), 7.36 (d, *J* = 9.2 Hz, 1H), 6.08 (dq, *J* = 34.3, 12.3, 10.8 Hz, 4H), 5.26 (t, *J* = 9.5 Hz, 1H), 3.60 (dt, *J* = 9.7, 4.8 Hz, 1H), 3.43 (dd, *J* = 12.8, 3.6 Hz, 1H), 3.17 (dd, *J* = 12.7, 8.8 Hz, 1H), 0.84 (d, *J* = 5.6 Hz, 18H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 156.9, 155.7, 130.9, 130.5, 128.9, 128.5, 127.4, 126.5, 125.2, 124.2, 64.8, 57.8, 56.7, 51.9, 36.2, 34.3, 26.4, 25.3; **IR** ν_{max}/cm^{-1} : 3658, 3376, 2977, 2887, 2172, 1667, 1385, 1259, 1004; **HRMS** (ESI+): calcd. for C₂₈H₃₆N₆NaO₃ [M+Na]⁺ 527.2741, found 527.2742.

¹³ M. G. Núñez, A. J. M. Farley, D. J. Dixon, J. Am. Chem. Soc. **2013**, 135, 16348–16351.

Synthesis of Catalyst B12:

To a solution of **Cbz-L-(S)**-*tert*-Leucine (265 mg, 1 mmol, 1 eq.) in THF (4 mL) at -20 °C were added sequentially isobutyl chloroformate (130 µL, 1 mmol, 1 eq.) and *N*-methylmorpholine (110 µL, 1 mmol, 1 eq) and stirring was maintained for 20 min. To the reaction mixture was added sodium azide (98.0 mg, 1.5 mmol, 1.5 eq) in H₂O (1 mL) and stirring was maintained for 30 min at -20 °C. The organic layer was then separated, the volatiles removed *in vacuo*, dissolved in CH₂Cl₂ (15 mL) and washed with water (10 mL). The organic layer was dried (MgSO₄) and concentrated *in vacuo* to 5 mL. The reaction mixture was heated to reflux for 2 hr and then the reaction mixture was cooled to room temperature and the crude amino azide (142 mg, 1 mmol, 1.0 eq) as a solution in Et₂O (4 mL) was added dropwise. The reaction mixture was stirred at room temperature for 18 hr and then the volatiles removed *in vacuo*. The crude material was triturated from hot toluene (5 mL), cooled, filtered, and washed with pentane (5 mL) and diethyl ether (5 mL) to obtain **B12** as a white solid in 57% yield (230 mg).

 $[α]_{D}^{25}$ = -11.4 (c = 0.27, DMSO); **Mp** 278 °C (toluene); ¹**H NMR** (400 MHz, DMSO-*d*₆); δ 7.44 (d, *J* = 9.2 Hz, 1H), 7.38 – 7.27 (m, 5H), 6.12 (appt, *J* = 9.6 Hz, 2H), 5.15 (t, *J* = 9.4 Hz, 1H), 5.07 – 4.97 (m, 2H), 3.57 (td, *J* = 9.2, 3.6 Hz, 1H), 3.43 (dd, *J* = 12.7, 3.6 Hz, 1H), 3.17 (dd, *J* = 12.7, 9.0 Hz, 1H), 0.84 (d, *J* = 1.6 Hz, 18H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 156.9, 155.4, 137.2, 128.3, 127.7(2x), 65.1, 64.7, 56.7, 51.9, 36.1, 34.3, 26.4, 25.3; **IR** ν_{max}/cm⁻¹: 3314, 2969, 2095, 1638(C=O), 1550(C=O), 1244, 729, 697; **HRMS** (ESI+): calcd. for C₂₀H₃₃N₆O₃ [M+H]⁺ 405.2609, found 405.2611.

Synthesis of Catalyst B13:

To a solution of **Cbz-L-(S)**-*tert*-Leucine (265 mg, 1 mmol, 1 eq) in THF (4 mL) at -20 °C were added sequentially isobutyl chloroformate (130 µL, 1 mmol, 1 eq) and *N*-methylmorpholine (110 µL, 1 mmol, 1 eq) and stirring was maintained for 20 min. To the reaction mixture was added sodium azide (98.0 mg, 1.5 mmol, 1.5 eq) in H₂O (1 mL) and stirring was maintained for 30 min at -20 °C. The organic layer was then separated, the volatiles removed *in vacuo*, dissolved in CH₂Cl₂ (15 mL) and washed with water (10 mL). The organic layer was dried (MgSO₄) and concentrated *in vacuo* to 5 mL. The reaction mixture was heated to reflux for 2 hr and then the reaction mixture was cooled to room temperature and the crude amino azide (100 mg, 1 mmol, 1.0 eq) as a solution in Et₂O (4 mL) was added dropwise. The reaction mixture was stirred at room temperature for 18 hr and then the volatiles removed *in vacuo*. The crude material was purified by column chromatography (gradient pentane/ethyl acetate) to obtain **B13** as a white foam in 49% yield (178 mg).

 $[a]_{D}^{25} = -25.2$ (c = 1.0, DMSO); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.41 – 7.33 (m, 5H), 6.15 (d, *J* = 7.7 Hz, 1H), 6.01 (d, *J* = 9.4 Hz, 1H), 5.10 (t, *J* = 9.2 Hz, 1H), 5.06 – 4.95 (m, 2H), 3.75 (ddt, *J* = 7.7, 6.7, 5.2 Hz, 1H), 3.35 – 3.29 (m, 2H), 1.04 (d, *J* = 6.7 Hz, 3H), 0.84 (s, 9H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 156.3, 155.4, 137.3, 137.2, 128.3, 127.7, 65.1, 64.7, 55.7, 44.8, 35.8, 25.3, 18.3; **IR** v_{max}/cm^{-1} : 3366, 3034, 2966, 2101, 1693(C=O), 1531(C=O), 1267, 1048, 696; **HRMS** (ESI+): calcd. for C₁₇H₂₇N₆O₃ [M+H]⁺ 363.2139, found 363.2153.

Substrate Synthesis:

General Procedure I: Synthesis of P(V) desymmetrisation substrates

General Procedure IA: Substrate synthesis from phosphoryl dichloride:

$$\begin{array}{ccc} O & Ar-OH (2 eq) & O \\ P & Et_3N (2 eq) & F \\ CI & THF, 0 \ ^\circ C \ to \ rt, 14 \ hrs & O \\ O & OAr \end{array}$$

According to a modified literature procedure.¹⁴ The corresponding phosphonic dichloride (4.00 mmol) and the corresponding nucleophile (8.00 mmol) were dissolved in THF (40 mL) and cooled to 0 °C. Et₃N (800 mg, 8 mmol, 1.10 mL) was added dropwise resulting in the formation of a white precipitate. The reaction mixture was then allowed to warm to rt and stirred for 14 hrs. The reaction mixture was filtered, and the solvent was removed *in vacuo*. The resulting crude was dissolved in CH₂Cl₂ (40 mL) and was washed sequentially with 1M aq. NaOH (15 mL), brine (15 mL), 1M HCl (15 mL) and brine (15 mL). The organic phase was then dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The resulting crude product was purified by FCC as described in the individual experiment and subsequently triturated with pentane to afford the pure phosphonate ester.

General Procedure IB: Substrate synthesis from phosphonic acid:

$$\begin{array}{c} O \\ P \\ P \\ OH \end{array} \xrightarrow{} OH \end{array} \xrightarrow{} \begin{array}{c} \text{oxalyl chloride (4 eq)} \\ \hline DMF (cat) \\ \hline CH_2Cl_2, 50 \ ^\circ\text{C}, 3 \ \text{hrs}} \end{array} \xrightarrow{} \begin{array}{c} O \\ P \\ P \\ CI \end{array} \xrightarrow{} \begin{array}{c} \text{Ar-OH (2 eq)} \\ \hline Et_3N (2 eq) \\ \hline THF, 0 \ ^\circ\text{C to rt, 14 hrs} \end{array} \xrightarrow{} \begin{array}{c} O \\ P \\ OAr \\ OAr \end{array} \xrightarrow{} OAr \\ OAr \end{array}$$

According to a modified literature procedure.¹⁵ The corresponding phosphonic acid (4.00 mmol) was dissolved in CH₂Cl₂ (8 mL) and a catalytic amount of DMF (0.1 mL) was added. The solution was heated to 50 °C and oxalyl chloride (1.36 mL, 16 mmol) was added dropwise over 30 min and the solution was stirred for a further 3 hrs. Volatiles were removed *in vacuo* and the crude phosphoryl dichloride was converted to the desired phosphonic ester following General Procedure IA.

¹⁴ D. J. Jones, E. M. O'Leary, T. P. O'Sullivan, *Tet. Lett.*, **2017**, *58*, 4212-4214.

¹⁵ C.Courtens, M.Risseeuw, G.Caljon, P. Cos, S.Van Calenbergh, ACS Med. Chem. Lett. 2018, 9, 986-989

General Procedure IC: Substrate synthesis from alkyl phosphonate ester:

$$R \xrightarrow{O}_{OR'} \xrightarrow{TMS-Br}_{OR'} \underbrace{TMS-Br}_{OR'} \underbrace{CH_2Cl_2, 0 \ ^\circ C, 2 \ hr}_{then \ H_2O/THF, \ rt, 1 \ hr} R \xrightarrow{O}_{OH} \xrightarrow{O}_{OH} \underbrace{Oxalyl \ chloride}_{OH} \underbrace{Oxalyl \ chloride}_{OH} \underbrace{O}_{OH} \xrightarrow{O}_{OH} \underbrace{O}_{OH} \underbrace{O}_{OH} \underbrace{O}_{OH} \underbrace{O}_{OH} \underbrace{O}_{OH} \xrightarrow{O}_{OH} \underbrace{O}_{OH} \underbrace{O$$

According to a modified literature procedure.³ The corresponding alkyl phosphonate ester (4.00 mmol) was dissolved in CH_2Cl_2 (32.0 mL) and cooled to 0 °C then TMS-Br was added (5.28 mL, 20 mmol) and the solution was stirred for a further 2 hrs. Volatiles were removed *in vacuo* and the crude was stirred in THF (13.6 mL) and H₂O (0.136 mL) for 1 hr. Volatiles were removed *in vacuo* and azeotroped with toluene to remove all traces of water and dried under high vacuum for 12 hrs. The crude phosphonic acid was converted to the desired phosphonate ester following General Procedure IB.

Synthesis of Starting Materials

Bis(4-nitrophenyl) phenylphosphonate (P-LGS1)

Bis(4-nitrophenyl) phenylphosphonate was synthesised following **GP IA**. Phenylphosphonic dichloride (779.9 mg, 4.00 mmol, 567 μ L) was used and 4-nitrophenol (1.11g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (1.15 g, 2.87 mmol, 72% yield).

Mp: 74-76 °C (from pentane); ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.18 (m, 4H), 8.05 – 7.91 (m, 2H), 7.74 – 7.65 (m, 1H), 7.62 – 7.52 (m, 2H), 7.42 – 7.33 (m, 4H); ¹³C **NMR** (101 MHz, CDCl₃) δ 154.9 (d, J = 7.0 Hz), 145.2, 134.5 (d, J = 3.2 Hz), 132.4 (d, J = 10.8 Hz), 129.3 (d, J = 16.2 Hz), 125.9, 124.0, 121.3 (d, J = 4.9 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 12.72; **IR** (film) ν_{max}/cm^{-1} : 3082, 1614, 1590, 1520, 1488, 1345, 1200, 1161, 1131, 917, 857, 748, 690; **HRMS** (ESI+): calcd. for C₁₈H₁₃O₇N₂NaP 423.0352 [M+Na]⁺, found 423.0352.

Bis(2-nitrophenyl) phenylphosphonate (P-LG1)

Bis(2-nitrophenyl) phenylphosphonate was synthesised following **GP IA**. Phenylphosphonic dichloride (779.9 mg, 4.00 mmol, 567 μ L) was used and 2-nitrophenol (1.11 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Pale yellow solid (1.11 g, 2.78 mmol, 70% yield).

Mp: 57-58 °C (from pentane); ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 8.05 (m, 2H), 7.94 (dt, J = 8.4, 1.2 Hz, 2H), 7.71 – 7.65 (m, 1H), 7.61 – 7.48 (m, 6H), 7.33 – 7.27 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.1 (d, J = 7.6 Hz), 141.6, 134.5 (d, J = 1.4 Hz), 134.4 (d, J = 3.3 Hz), 132.7 (d, J = 11.3 Hz), 129.1 (d, J = 16.7 Hz), 126.1, 125.8 (d, J = 1.2 Hz), 124.8 (d, J = 196.5 Hz), 123.3 (d, J = 3.2 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 13.90; **IR** (film) $v_{\text{max}}/\text{cm}^{-1}$: 1602, 1526, 1480, 1349, 1264, 1213, 1130, 1089, 919, 846, 779, 746; **HRMS** (ESI+): calcd. for C₁₈H₁₄O₇N₂P 401.0553 [M+H]⁺, found 401.0525.

Bis(5-methyl-2-nitrophenyl) phenylphosphonate (P-LG2)

Bis(5-methyl-2-nitrophenyl) phenylphosphonate was synthesised following **GP IA**. Phenylphosphonic dichloride (779.9 mg, 4.00 mmol, 567 μ L) was used and 5-methyl-2nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (1.30 g, 3.06 mmol, 76% yield).

Mp: 76-77 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 – 8.04 (m, 2H), 7.87 (dd, J = 8.4, 0.9 Hz, 2H), 7.72 – 7.63 (m, 1H), 7.61 – 7.52 (m, 2H), 7.31 (td, J = 1.7, 0.8 Hz, 2H), 7.08 (ddt, J = 8.4, 1.7, 0.8 Hz, 2H), 2.37 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.5, 143.1 (d, J = 7.9 Hz), 139.2, 134.3 (d, J = 3.3 Hz), 132.8 (d, J = 11.3 Hz), 129.0 (d, J = 16.7 Hz), 126.4, 126.1, 125.0 (d, J = 196.6 Hz), 123.6 (d, J = 3.3 Hz), 21.7; ³¹**P NMR** (162 MHz, CDCl₃) δ 13.57; **IR** (film) v_{max}/cm^{-1} : 1591, 1521, 1491, 1345, 1265, 1242, 1171, 1129, 1086, 853, 828, 752, 731, 711; **HRMS**: calcd. for C₂₀H₁₈O₇N₂P 429.0846 [M+H]⁺, found 429.0840.

Bis(4-methyl-2-nitrophenyl) phenylphosphonate (P-LG3)

Bis(4-methyl-2-nitrophenyl) phenylphosphonate was synthesised following **GP IA**. Phenylphosphonic dichloride (779.9 mg, 4.00 mmol, 567 μ L) was used and 4-methyl-2nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (1.29 g, 3.02 mmol, 76% yield).

Mp: 126-128 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 – 7.98 (m, 2H), 7.72 (dd, J = 2.0, 1.0 Hz, 2H), 7.68 – 7.62 (m, 1H), 7.58 – 7.50 (m, 2H), 7.37 (dd, J = 8.4, 1.5 Hz, 2H), 7.34 – 7.28 (m, 2H), 2.36 (d, J = 0.9 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 141.1 (d, J = 6.2 Hz), 140.8 (d, J = 7.8 Hz), 136.2 (d, J = 1.4 Hz), 135.1 (d, J = 1.6 Hz), 134.2 (d, J = 3.4 Hz), 132.7 (d, J = 11.2 Hz), 129.0 (d, J = 16.6 Hz), 126.1, 124.9 (d, J = 196.0 Hz), 123.0 (d, J = 3.2 Hz), 20.7; ³¹**P NMR** (162 MHz, CDCl₃) δ 13.98; **IR** (film) ν_{max} /cm⁻¹: 1531, 1496, 1351, 1232, 1205, 1130, 1086, 936, 901, 808; **HRMS** (ESI+): calcd. for C₂₀H₁₈O₇N₂P 429.0846 [M+H]⁺, found 429.0838.

Bis(2-methyl-6-nitrophenyl) phenylphosphonate (P1)

Bis(5-methyl-2-nitrophenyl) phenylphosphonate was synthesised following **GP IA**. Phenylphosphonic dichloride (780.0 mg, 4.00 mmol, 567 μ L) was used and 6-methyl-2nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (1.17 g, 2.73 mmol, 68% yield).

Mp: 168-169 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 7.95 (m, 2H), 7.68 (dd, J = 8.1, 1.7 Hz, 2H), 7.41 (ddt, J = 7.6, 1.6, 0.8 Hz, 2H), 7.19 (td, J = 7.9, 1.2 Hz, 2H), 7.07 – 6.98 (m, 2H), 2.18 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.6, 140.9 (d, J = 9.9 Hz), 136.0 (d, J = 1.8 Hz), 134.2 (d, J = 3.7 Hz), 134.2 (d, J = 3.3 Hz), 132.9 (d, J = 11.1 Hz), 129.0 (d, J = 16.4 Hz), 125.7 (d, J = 195.9 Hz), 125.6 (d, J = 1.8 Hz), 123.4 (d, J = 1.7 Hz), 17.2; ³¹**P NMR** (162 MHz, CDCl₃) δ 13.01; **IR** (film) ν_{max}/cm^{-1} : 1532, 1471, 1357, 1275, 1213,1178, 1152, 1130, 1092, 933, 803; 751, 694; **HRMS** (ESI+) calcd. for C₂₀H₁₈O₇N₂P 429.0846 [M+H]⁺, found 429.0842.

Bis(2-methyl-6-nitrophenyl) (4-methoxyphenyl)phosphonate (P2)

Bis(2-methyl-6-nitrophenyl) (4-methoxyphenyl)phosphonate was synthesised following **GP IA**. 4-methoxyphenyl phosphonic dichloride (900 mg, 4.00 mmol, 635 μ L) was used and 5-methyl-2-nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 6:4. Colourless solid (1.33 g, 2.90 mmol, 72% yield).

Mp: 127-128 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 7.95 (m, 2H), 7.68 (dd, J = 8.1, 1.7 Hz, 2H), 7.41 (ddt, J = 7.6, 1.6, 0.8 Hz, 2H), 7.19 (td, J = 7.9, 1.2 Hz, 2H), 7.07 – 6.98 (m, 2H), 3.89 (s, 3H), 2.18 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 164.3 (d, J = 3.6 Hz), 143.7 (d, J = 3.2 Hz), 141.0 (d, J = 9.9 Hz), 135.9 (d, J = 1.8 Hz), 135.1 (d, J = 13.0 Hz), 134.3 (d, J = 3.8 Hz), 125.4 (d, J = 1.9 Hz), 123.3 (d, J = 1.7 Hz), 116.5 (d, J = 204.5 Hz), 114.5 (d, J = 17.8 Hz), 55.6, 17.2; ³¹**P NMR** (162 MHz, CDCl₃) δ 14.12; **IR** (film) v_{max} /cm⁻¹:1598, 1531, 1471, 1357, 1260, 1213, 1179, 1157, 1129, 1092, 906, 804, 756; **HRMS** (ESI+) calcd. for C₂₁H₂₀N₂O₈P 459.0952 [M+H]⁺, found 459.0945.

Bis(2-methyl-6-nitrophenyl) methylphosphonate (P3)

Bis(2-methyl-6-nitrophenyl) methylphosphonate was synthesised following **GP IA**. methylphosphonic dichloride (532 mg, 4.00 mmol, 362 μ L) was used and 5-methyl-2-nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (520.0 mg, 1.42 mmol, 35% yield).

Mp: 136-138 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.1, 1.7 Hz, 2H), 7.50 (ddt, J = 7.7, 1.7, 0.8 Hz, 2H), 7.24 (td, J = 7.9, 1.2 Hz, 2H), 2.40 (d, J = 0.9 Hz, 6H), 1.98 (d, J = 18.0 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.0, 141.2 (d, J = 9.8 Hz), 136.3 (d, J = 1.8 Hz), 134.0 (d, J = 3.5 Hz), 125.5 (d, J = 1.8 Hz), 123.6 (d, J = 1.6 Hz), 17.2, 13.1 (d, J = 143.8 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 26.75; **IR** (film) v_{max} /cm⁻¹: 1598, 1531, 1471, 1357, 1314, 1269, 1214, 1180, 1158, 1093, 925, 803, 752; **HRMS** (ESI+) calcd. for C₁₅H₁₆N₂O₇P 367.0690 [M+H]⁺, found 367.0702.

Bis(2-methyl-6-nitrophenyl) ethylphosphonate (P4)

Bis(2-methyl-6-nitrophenyl) ethylphosphonate was synthesised following **GP IA**. ethylphosphonic dichloride (588 mg, 4.00 mmol, 427 μ L) was used and 5-methyl-2nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (1.08 g, 2.84 mmol, 71% yield).

Mp: 126-127 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (dd, J = 8.2, 1.7 Hz, 2H), 7.45 (ddt, J = 7.6, 1.7, 0.8 Hz, 2H), 7.20 (td, J = 7.9, 1.2 Hz, 2H), 2.35 (d, J = 0.9 Hz, 6H), 2.21 (dq, J = 18.4, 7.6 Hz, 2H), 1.39 (dt, J = 22.4, 7.6 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.3, 141.1 (d, J = 10.5 Hz), 136.1 (d, J = 1.6 Hz), 134.0 (d, J = 3.6 Hz), 125.4 (d, J = 1.8 Hz), 123.5 (d, J = 1.5 Hz), 21.0 (d, J = 140.1 Hz), 17.1, 6.7 (d, J = 7.6 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 29.73; **IR** (film) v_{max}/cm^{-1} : 2981, 1532, 1472, 1356, 1266, 1213, 1179, 924, 909, 804, 773, 747; **HRMS** (ESI+) calcd. for C₁₆H₁₈N₂O₇P 381.0846 [M+H]⁺, found 381.0838.

bis(2-methyl-6-nitrophenyl) isopropylphosphonate (P5)

P5 was synthesized following **GP IA**. Isopropylphosphonic dichloride (643 mg, 4.00 mmol, 501 μ L) was used and 5-methyl-2-nitrophenol (1.22 g, 8.00 mmol) was used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (741 mg, 1.88 mmol, 47% yield).

Mp 138 °C (pentane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (dd, J = 8.1, 1.7 Hz, 2H), 7.44 (ddt, J = 7.7, 1.7, 0.8 Hz, 2H), 7.19 (td, J = 7.9, 1.1 Hz, 2H), 2.42 – 2.35 (m, 1H), 2.34 – 2.33 (m, 6H), 1.42 (dd, J = 20.8, 7.1 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.6, 141.2 (d, J = 11.2 Hz), 135.9 (d, J = 1.6 Hz), 133.8 (d, J = 3.6 Hz), 125.3 (d, J = 1.7 Hz), 123.3 (d, J = 1.5 Hz), 28.2 (d, J = 138.1 Hz), 17.2, 16.4 (d, J = 5.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 31.54; **IR** v_{max} /cm⁻¹: 3318, 2970, 2095, 1640, 1532, 1355, 1262, 1179, 1092, 934, 906, 756, 696; **HRMS** (ESI+) calcd. for C₁₇H₂₀N₂O₇P 395.1003 [M+H]⁺, found 395.1008.

Bis(2-methyl-6-nitrophenyl) hexylphosphonate (P6)

Bis(2-methyl-6-nitrophenyl) hexylphosphonate was synthesised following **GP IA**. Hexylphosphonic dichloride (812.0 mg, 4.00 mmol, 685 μ L) was used and 5-methyl-2nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (955 mg, 2.19 mmol, 55% yield).

Mp: 80-81 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (dd, J = 8.1, 1.7 Hz, 2H), 7.45 (ddt, J = 7.7, 1.7, 0.8 Hz, 2H), 7.20 (td, J = 7.9, 1.1 Hz, 2H), 2.34 (s, 6H), 2.25 – 2.11 (m, 2H), 1.87 – 1.72 (m, 2H), 1.46 (p, J = 7.2 Hz, 2H), 1.36 – 1.27 (m, 4H), 0.92 – 0.85 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.3 (d, J = 3.4 Hz), 141.1 (d, J = 10.5 Hz), 136.0 (d, J = 1.9 Hz), 133.9 (d, J = 3.6 Hz), 125.4 (d, J = 1.8 Hz), 123.4 (d, J = 1.5 Hz), 31.3 (d, J = 1.4 Hz), 30.4 (d, J = 18.4 Hz), 27.7 (d, J = 137.0 Hz), 22.5, 22.4 (d, J = 6.1 Hz), 17.1, 14.1; ³¹**P NMR** (162 MHz, CDCl₃) δ 28.68; **IR** (film) v_{max}/cm^{-1} : 2926, 1532, 1470, 1356, 1275, 1214, 1179, 1093, 1092, 906, 802, 752; **HRMS** (ESI+) calcd. for C₂₀H₂₆N₂O₇P 437.1472 [M+H]⁺, found 437.1461.

Bis(2-methyl-6-nitrophenyl) (cyclopropylmethyl)phosphonate (P7)

Bis(2-methyl-6-nitrophenyl) (cyclopropylmethyl)phosphonate was synthesised following **GP IC**. Diethyl (cyclopropylmethyl)phosphonate (754 μ L, 4.00 mmol) was used and 5-methyl-2-nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 2:1. Colourless solid (339 mg, 0.835 mmol, 21% yield).

Mp: 95-97 °C; ¹**H NMR** (400 MHz, CDCl₃) 7.64 (dd, J = 8.2, 1.7 Hz, 2H), 7.39 (ddt, J = 7.6, 1.7, 0.7 Hz, 2H), 7.13 (td, J = 7.9, 1.1 Hz, 2H), 2.29 (d, J = 0.9 Hz, 6H), 2.08 (dd, J = 17.5, 7.0 Hz, 2H), 2.06 (d, J = 7.1 Hz, 1H), 0.68 – 0.53 (m, 2H), 0.39 – 0.22 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.2, 141.0 (d, J = 10.4 Hz), 135.9, 133.9 (d, J = 3.4 Hz), 125.2, 123.3, 32.6 (d, J = 136.9 Hz), 17.1, 5.7 (d, J = 10.4 Hz), 4.2 (d, J = 5.9 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 26.54; **IR** (film) υ_{max} /cm⁻¹: 1533, 1471, 1357, 1281, 1213, 1179, 1158,1092, 924, 803; **HRMS** (ESI+) calcd. for C₁₈H₁₉N₂NaO₇P 429.0828 [M+Na]⁺, found 429.0820.

Bis(2-methyl-6-nitrophenyl) benzylphosphonate (P8)

Bis(2-methyl-6-nitrophenyl) benzylphosphonate was synthesised following **GP IB**. Benzylphosphonic acid (441 mg, 2.56 mmol) was used and 5-methyl-2-nitrophenol (784 mg, 5.12 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 1:1. Colourless solid (144 mg, 0.320 mmol, 13% yield).

Mp: 125-126 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.2, 1.7 Hz, 2H), 7.41 (dddd, J = 7.4, 4.7, 2.1, 1.1 Hz, 4H), 7.33 – 7.25 (m, 3H), 7.20 (td, J = 7.9, 1.1 Hz, 2H), 3.68 (s, 1H), 3.62 (s, 1H), 2.21 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.1, 141.2 (d, J = 10.7 Hz), 136.1 (d, J = 1.6 Hz), 134.0 (d, J = 3.5 Hz), 130.2 (d, J = 7.7 Hz), 129.5 (d, J = 9.9 Hz), 128.8 (d, J = 3.2 Hz), 127.6 (d, J = 3.9 Hz), 125.5 (d, J = 1.6 Hz), 123.4 (d, J = 1.5 Hz), 35.1 (d, J = 136.7 Hz), 17.0; ³¹**P NMR** (162 MHz, CDCl₃) δ 21.20; **IR** (film) ν_{max}/cm^{-1} : 1532, 1356, 1277, 1213, 1158, 926; **HRMS** (ESI+) calcd. for C₂₁H₁₉N₂NaO₇P 465.0828 [M+Na]⁺, found 465.0822.

Bis(2-methyl-6-nitrophenyl) (2-methylbenzyl)phosphonate (P9)

Bis(2-methyl-6-nitrophenyl) (2-methylbenzyl)phosphonate was synthesised following **GP IB**. 2-methylbenzyl phosphonic acid (745.0 mg, 4.00 mmol) was used and 5-methyl-2nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (1.17 g, 2.56 mmol, 64% yield).

Mp: 126-127 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.2, 1.7 Hz, 2H), 7.45 – 7.38 (m, 2H), 7.23 – 7.17 (m, 4H), 7.17 – 7.11 (m, 1H), 3.63 (d, J = 22.1 Hz, 2H), 2.45 (d, J = 1.9 Hz, 3H), 2.16 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.2, 141.1 (d, J = 10.9 Hz), 137.6 (d, J = 8.1 Hz), 136.2 (d, J = 1.7 Hz), 134.1 (d, J = 3.6 Hz), 131.1 (d, J = 6.1 Hz), 130.8 (d, J = 3.5 Hz), 128.2 (d, J = 10.3 Hz), 127.8 (d, J = 4.1 Hz), 126.3 (d, J = 3.8 Hz), 125.5 (d, J = 1.7 Hz), 123.4 (d, J = 1.5 Hz), 32.3 (d, J = 136.9 Hz), 20.1, 16.9; ³¹**P NMR** (162 MHz, CDCl₃) δ 21.72; **IR** (film) ν_{max}/cm^{-1} : 1531, 1470, 1356, 1277, 1213, 1179, 1158, 1092, 924, 803, 750; **HRMS** (ESI+) calcd. for C₂₂H₂₂N₂O₇P 457.1159 [M+H]⁺, found 457.1162.

Bis(2-methyl-6-nitrophenyl) (2-(trifluoromethyl)benzyl)phosphonate was synthesised following **GP IC**. diethyl (2-(trifluoromethyl)benzyl)phosphonate (1.18 g, 4.00 mmol, 0.971 mL) was used and 5-methyl-2-nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (1.00 g, 1.97 mmol, 49% yield).

Mp: 114-115 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (dd, J = 8.2, 1.7 Hz, 2H), 7.66 – 7.59 (m, 2H), 7.57 – 7.51 (m, 1H), 7.48 – 7.37 (m, 3H), 7.21 (td, J = 7.9, 1.1 Hz, 2H), 3.72 (d, J = 22.3 Hz, 2H), 2.20 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.0, 141.1 (d, J = 10.7 Hz), 136.3 (d, J = 1.8 Hz), 133.9 (d, J = 3.6 Hz), 133.7 (d, J = 7.2 Hz), 131.9 – 130.6 (m), 130.8 (d, J = 9.6 Hz), 129.3 (d, J = 3.1 Hz), 126.8 (dd, J = 7.9, 3.9 Hz), 125.7 (d, J = 1.7 Hz), 124.6 (t, J = 3.8 Hz), 124.0 (d, J = 272.5 Hz), 123.5 (d, J = 1.3 Hz), 34.9 (d, J = 137.7 Hz), 17.0; ¹⁹**F NMR** (377 MHz, CDCl3) δ -62.66; ³¹**P NMR** (162 MHz, CDCl₃) δ 19.83; **IR** (film) ν_{max}/cm^{-1} : 2981, 1532, 1356, 1330, 1278, 1226, 1213, 1159, 1125, 1092, 1075, 926, 887, 803, 766, 751, 702; **HRMS** (ESI+) calcd. for C₂₂H₁₉F₃N₂O₇P 511.0876 [M+H]⁺, found 511.0872.
Bis(2-methyl-6-nitrophenyl) thiophen-3-ylphosphonate (P11)

Bis(2-methyl-6-nitrophenyl) thiophen-3-ylphosphonate was synthesised following **GP IC**. Diethyl (thiophen-3-yl)phosphonate¹⁶ (848 mg, 3.28 mmol) was used and 5-methyl-2nitrophenol (918 mg, 6.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 1:1. Colourless solid (845 mg, 1.94 mmol, 44% yield).

Mp: 178-179 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (ddd, J = 8.9, 2.9, 1.2 Hz, 1H), 7.67 – 7.53 (m, 3H), 7.46 (ddd, J = 5.1, 4.0, 2.9 Hz, 1H), 7.37 (ddt, J = 7.6, 1.7, 0.8 Hz, 2H), 7.14 (td, J = 7.9, 1.3 Hz, 2H), 2.14 (s, 6H). ; ¹³**C NMR** (101 MHz, CDCl₃) δ 143.41 (d, J = 2.8 Hz), 140.8 (d, J = 9.6 Hz), 138.9 (d, J = 20.7 Hz), 135.9, 134.1 (d, J = 3.4 Hz), 129.7 (d, J = 18.4 Hz), 127.9 (d, J = 21.8 Hz), 126.2 (d, J = 209 Hz), 125.5, 123.3 (d, J = 1.3 Hz), 16.9; ³¹**P NMR** (162 MHz, CDCl₃) δ 6.09; **IR** (film) v_{max} /cm⁻¹: 1532, 1357, 1276, 1178, 1090, 943,924, 770; **HRMS** (ESI+) calcd. for C₁₈H₁₆N₂O₇PS 435.0416 [M+H]⁺, found 435.010.

¹⁶ M. Lilley, B. Mambwe, R. F. W. Jackson, R. Muimo Chem. Comm., 2014, 50, 9343-9345.

Bis(2-methyl-6-nitrophenyl) ((methylthio)methyl)phosphonate was synthesised following **GP IC**. diethyl ((methylthio)methyl)phosphonate (792 mg, 4.00 mmol, 0.701 mL) was used and 5-methyl-2-nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 7:3. Colourless solid (627 mg, 1.52 mmol, 38% yield).

Mp: 122-123 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (dd, J = 8.1, 1.7 Hz, 2H), 7.48 (ddt, J = 7.7, 1.7, 0.8 Hz, 2H), 7.21 (td, J = 7.9, 1.1 Hz, 2H), 3.21 (d, J = 12.0 Hz, 2H), 2.43 – 2.37 (m, 6H), 2.31 (d, J = 1.5 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 142.7, 141.6 (d, J = 10.9 Hz), 136.3 (d, J = 1.6 Hz), 134.0 (d, J = 3.7 Hz), 125.5 (d, J = 1.6 Hz), 123.6 (d, J = 1.5 Hz), 29.1 (d, J = 150.6 Hz), 17.6 (d, J = 1.5 Hz), 17.2; ³¹**P NMR** (162 MHz, CDCl₃) δ 17.81; **IR** (film) υ_{max}/cm^{-1} : 1530, 1470, 1354, 1277, 1213, 1178, 1158, 1092, 926, 804, 749; **HRMS** (ESI+) calcd. for C₁₆H₁₈N₂O₇PS 413.0567 [M+H]⁺, found 413.0581.

Bis(2-methyl-6-nitrophenyl) ((benzyloxy)methyl)phosphonate (P13)

Bis(2-methyl-6-nitrophenyl) ((benzyloxy)methyl)phosphonate was synthesised following **GP IC**. Diethyl ((benzyloxy)methyl)phosphonate¹⁷ (848 mg, 3.28 mmol) was used and 5-methyl-2-nitrophenol (918 mg, 6.00 mmol) used as nucleophile. FCC Pentane:EtOAc 9:1 to 1:1. Colourless solid (325 mg, 0.687 mmol, 21% yield).

Mp: 119-120 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (dd, J = 8.1, 1.7 Hz, 2H), 7.46 (ddt, J = 7.7, 1.7, 0.8 Hz, 2H), 7.38 – 7.27 (m, 3H), 7.25 – 7.15 (m, 4H), 4.64 (s, 2H), 4.25 (d, J = 7.0 Hz, 2H), 2.41 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 142.6, 141.2 (d, J = 10.4 Hz), 136.3, 134.0 (d, J = 3.3 Hz), 128.4, 128.2, 128.1, 125.4, 123.4, 75.2 (d, J = 11.3 Hz), 64.9 (d, J = 167.7 Hz), 15.4; ³¹**P NMR** (162 MHz, CDCl₃) δ 21.72; **IR** (film) v_{max} /cm⁻¹: 1532, 1461, 1354, 1321, 1244, 1213, 1093, 926, 743; **HRMS** (ESI+) calcd. for C₂₂H₂₂N₂O₈P 473.114 [M+H]⁺, found 473.1108.

¹⁷ Wei et al. J. Med. Chem. **2017**, 60, 8580-8590.

P14 was synthesized following **GP IC**. Diethyl (((tertbutyldiphenylsilyl)oxy)methyl)phosphonate (1.62, 4.00 mmol) was used and 5-methyl-2nitrophenol (1.22 g, 8.00 mmol) used as nucleophile. FCC Pentane:EtOAc 100:0 to 4:1. Pale yellow solid (426 mg, 0.686 mmol, 17% yield).

Mp 146-150 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.0, 1.7 Hz, 2H), 7.70 – 7.64 (m, 4H), 7.50 – 7.36 (m, 8H), 7.25 – 7.18 (m, 2H), 4.40 (d, J = 7.7 Hz, 2H), 2.49 – 2.41 (m, 6H), 0.97 (s, 9H).; ¹³**C NMR** (101 MHz, CDCl₃) δ 142.8 (d, J = 3.3 Hz), 141.4 (d, J = 10.5 Hz), 136.2, 135.8, 134.1 (d, J = 3.8 Hz), 131.8, 130.3, 128.1, 125.4, 123.6, 60.4 (d, J = 174.7 Hz), 26.7, 19.3, 17.2.; ³¹**P NMR** (162 MHz, CDCl₃) δ 16.14.; **IR** (film) v_{max}/cm^{-1} : 2981, 2888, 1610, 1587, 1536, 1462, 1428, 1382, 1355, 1264, 1212, 1177, 1157, 1114, 1092, 940, 804, 771, 744, 703, 611. **HRMS** (ESI+): calcd. for C₃₁H₃₃N₂O₈PSiNa 643.1636 [M+Na]⁺, found 643.1633.

General Procedure II: Enantioselective Desymmetrisation of Phosphonate esters

To the corresponding organoazide (0.015 mmol) and tris-*para*-tolylphosphine (0.015 mmol) under argon atmosphere was added THF (0.40 mL) and the reaction mixture was stirred for 24 h at room temperature. The formation of the organocatalysts was monitored by TLC. Upon completion volatiles were removed under a stream of N_2 yielding the expected iminiphosphorane which was used without further purification.

To the corresponding phosphonate (0.10 mmol) and BIMP catalyst (0.015 mmol) under argon atmosphere was added PhF (0.40 mL) and phenol (0.11 mmol, 1.1 equivalents) then the reaction was stirred at room temperature for 24 h. The reaction mixture was loaded directly onto silica gel and purified by flash column chromatography as specified in the individual experiment to afford pure desymmetrised phosphonate ester. The two enantiomers were separated by chiral HPLC using conditions specified in the individual experiment.

General Procedure III: Racemic Desymmetrisation of Phosphonate esters

To the corresponding phosphonate (0.10 mmol) and 2-tert-Butylimino-2-diethylamino-1,3dimethylperhydro-1,3,2-diazaphosphorine (BEMP) (4.5 μ L, 0.015 mmol) under argon was added THF (0.40 mL) and the corresponding phenol (0.11 mmol) and the reaction was stirred at 22 °C for 24 h. Volatiles were removed under a stream of N₂ and the crude product was purified by flash column chromatography as specified in the individual experiment to afford the racemic desymmetrised phosphonate ester product. The two enantiomers were separated by chiral HPLC using conditions specified in the individual experiment.

Products: Leaving Group Variation

2,4-Dimethylphenyl (4-nitrophenyl) (R)-phenylphosphonate (LGS1)

LGS1 was synthesised following **GP II**. **P-LGS1** (40.0 mg, 0.10 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B2** (P(PMP)₃ derived) (8.25 mg, 0.01 mmol) as catalyst in THF (0.2 mL). Pentane:EtOAc 7:3. Colourless oil (15.4mg, 0.041 mmol, 41% yield, 0% e.e.).

HPLC Conditions: CHIRALPAK IB, hexane/isopropanol = 90/10, 1 mL/min, λ = 220 nm, t (major) = 11.76 min, t (minor) = 12.78 min

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 – 8.13 (m, 2H), 8.01 – 7.94 (m, 2H), 7.69 – 7.61 (m, 1H), 7.54 (ddd, J = 8.7, 6.9, 4.8 Hz, 2H), 7.35 – 7.30 (m, 2H), 7.13 (dd, J = 8.3, 1.5 Hz, 1H), 7.00 (t, J = 1.6 Hz, 1H), 6.92 (dd, J = 8.3, 2.3 Hz, 1H), 2.27 (s, 3H), 2.22 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 155.5 (d, J = 7.1 Hz), 146.6 (d, J = 8.6 Hz), 144.8, 135.2 (d, J = 1.6 Hz), 133.8 (d, J = 3.2 Hz), 132.3, 132.3 (d, J = 10.6 Hz), 129.1, 129.0, 127.7, 126.5 (d, J = 193.8 Hz), 125.7, 121.3 (d, J = 4.8 Hz), 120.2 (d, J = 2.8 Hz), 20.8, 16.6; ³¹**P NMR** (162 MHz, CDCl₃) δ 12.03; **IR** (film) ν_{max}/cm^{-1} : 2923, 1591, 1521 (NO₂), 1491, 1346 (NO₂), 1251, 1223 (P=O), 1193, 1130, 1115, 953, 918, 749; **HRMS** (ESI+): calcd. for C₂₀H₁₉O₅NP 384.09954 [M+H]⁺, found 384.09943.

LG1 was synthesised following **GP II**. **P-LG1** (40.0 mg, 0.10 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** (P(Ph)₃ derived) (7.8 mg, 0.01 mmol) as catalyst in PhF (0.40 mL) at 0 °C. Pentane:EtOAc 7:3. Colourless oil (15.7 mg, 0.041 mmol, 41% yield, 86% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, $\lambda = 240$ nm, t (major) = 19.87 min, t (minor) = 24.11 min

[*α*] \mathbf{p}^{25} = +20.9 (c = 0.56, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (ddt, *J* = 14.3, 6.9, 1.4 Hz, 2H), 7.90 (dt, *J* = 8.2, 1.2 Hz, 1H), 7.65 (tt, *J* = 7.4, 1.5 Hz, 2H), 7.57 – 7.48 (m, 3H), 7.31 – 7.22 (m, 1H), 7.10 (dd, *J* = 8.2, 1.5 Hz, 1H), 6.97 (d, *J* = 2.2 Hz, 1H), 6.89 (dd, *J* = 8.3, 2.2 Hz, 1H), 2.25 (s, 3H), 2.16 (s, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 146.7 (d, *J* = 8.5 Hz), 143.6 (d, *J* = 7.2 Hz), 135.1 (d, *J* = 1.6 Hz), 134.4, 133.8 (d, *J* = 3.3 Hz), 132.6 (d, *J* = 10.8 Hz), 132.6, 129.3, 128.9 (d, *J* = 16.1 Hz), 128.2 (d, *J* = 220.6 Hz), 127.6 (d, *J* = 1.6 Hz), 125.8, 125.3, 125.2, 123.5 (d, *J* = 3.1 Hz), 120.2 (d, *J* = 2.7 Hz), 20.8, 16.5; ³¹P NMR (162 MHz, CDCl₃) δ 12.88; **IR** (film) ν_{max}/cm^{-1} : 2924, 1663, 1531 (NO₂), 1495, 1352 (NO₂), 1276, 1231, 1194 (P=O), 1131, 1117, 951, 921, 750, 694; **HRMS** (ESI+): calcd. for C₂₀H₁₉O₅NP 384.09954 [M+H]⁺, found 384.09949.

LG2 was synthesised following **GP II**. **P-LG2** (42.6 mg, 0.10 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** (P(Ph)₃ derived) (7.8 mg, 0.01 mmol) as catalyst in PhF (0.40 mL) at 0 °C. Pentane:EtOAc 7:3. Colourless oil (14.7 mg, 0.034 mmol, 34% yield, 67% e.e.).

SFC Conditions: CHIRALPAK ID, 1500 psi, 30 °C, flow: 1.5 mL/min, from 1% to 30% MeOH in 5 mins, $\lambda = 220$ nm, t (minor) = 3.99 min, t (major) = 4.14 min

[*α*] $_{D}^{25}$ = +28.8 (c = 0.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.01 (m, 2H), 7.83 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.67 – 7.58 (m, 1H), 7.52 (tdd, *J* = 8.3, 4.9, 0.8 Hz, 2H), 7.42 (td, *J* = 1.7, 0.9 Hz, 1H), 7.09 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.04 (ddt, *J* = 8.3, 1.7, 0.8 Hz, 1H), 6.97 – 6.93 (m, 1H), 6.88 (dd, *J* = 8.2, 2.3 Hz, 1H), 2.37 (s, 3H), 2.24 (d, *J* = 0.9 Hz, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7 (d, *J* = 8.4 Hz), 146.4, 143.5 (d, *J* = 7.6 Hz), 139.2, 135.0 (d, *J* = 1.6 Hz), 133.7 (d, *J* = 3.2 Hz), 132.7, 132.5, 132.2, 129.3 (d, *J* = 5.4 Hz), 128.9, 128.8, 127.5 (d, *J* = 1.7 Hz), 126.2 (d, *J* = 195.2 Hz), 123.9 (d, *J* = 3.0 Hz), 120.2 (d, *J* = 2.8 Hz), 21.7, 20.8, 16.5.³¹P NMR (162 MHz, CDCl₃) δ 12.80; **IR** (film) ν_{max}/cm^{-1} : 1596, 1524, 1497, 1348, 1263, 1198, 1131, 1118, 592; **HRMS** (ESI+): calcd. for C₂₁H₂₁NO₅P 398.1152 [M+H]⁺, found 398.1148.

LG3 was synthesised following GP II. P-LG3 (42.6 mg, 0.10 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP B1 (P(Ph)₃ derived) (7.8 mg, 0.01 mmol) as catalyst in PhF (0.40 mL) at 0 °C. Pentane:EtOAc 7:3. Colourless oil (24.2 mg, 0.061 mmol, 61% yield, 89% e.e.).

HPLC Conditions: CHIRALPAK AS-H, hexane/isopropanol = gradient 98/2 to 70/30 over 40 min, 1 mL/min, $\lambda = 220$ nm, t (major) = 17.79 min, t (minor) = 16.50 min

[**α**] \mathbf{p}^{25} = +26.0 (c = 0.66, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 8.08 – 7.98 (m, 2H), 7.69 (dt, *J* = 2.1, 0.9 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.55 – 7.47 (m, 3H), 7.31 (ddd, *J* = 8.5, 2.3, 0.8 Hz, 1H), 7.09 (dd, *J* = 8.2, 1.5 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.88 (dd, *J* = 8.3, 2.3 Hz, 1H), 2.36 (d, *J* = 0.9 Hz, 3H), 2.24 (d, *J* = 1.0 Hz, 3H), 2.15 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 146.7 (d, *J* = 8.4 Hz), 141.3 (d, *J* = 7.2 Hz), 135.7, 135.0, 133.7 (d, *J* = 3.2 Hz), 132.6, 132.5, 132.2, 129.3 (d, *J* = 5.6 Hz), 128.9, 128.8, 127.6 (d, *J* = 1.6 Hz), 126.2 (d, *J* = 194.5 Hz), 125.9, 123.2 (d, *J* = 3.1 Hz), 120.2 (d, *J* = 2.8 Hz), 20.8, 20.7, 16.5.³¹**P** NMR (162 MHz, CDCl₃) δ 12.91; **IR** (film) ν_{max} /cm⁻¹: 2924, 1534, 1496, 1353, 1276, 1240, 1194, 1131, 1118, 937, 899 **HRMS** (ESI+): calcd. for C₂₁H₂₁NO₅P 398.1152 [M+H]⁺, found 398.1145.

1 was synthesised following **GP II**. **P1** (42.6 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (33.0 mg, 0.084 mmol, 84% yield, 91% e.e.).

3 mmol scale: **P1** (1.28 g, 3 mmol) with BIMP **B1** - P(*p*-tol)₃ (351 mg, 0.45 mmol) in PhF (12.0 mL). Colourless solid (1.05 g, 2.64 mmol, 88% yield, 92% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, $\lambda = 220$ nm, t (major) = 17.17 min, t (minor) = 28.28 min

Mp: 62 °C; $[α]_{D}^{25} = -15.9$ (c = 1.00, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 8.07 – 7.98 (m, 2H), 7.71 (dd, J = 8.1, 1.7 Hz, 1H), 7.68 – 7.61 (m, 1H), 7.56 – 7.50 (m, 2H), 7.47 (ddt, J = 7.7, 1.6, 0.8 Hz, 1H), 7.22 (td, J = 7.9, 1.3 Hz, 1H), 6.93 – 6.85 (m, 2H), 6.79 (dd, J = 8.4, 2.2 Hz, 1H), 2.44 (d, J = 0.9 Hz, 3H), 2.22 – 2.18 (m, 3H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.8 (d, J = 7.2 Hz), 143.8, 141.0 (d, J = 10.1 Hz), 136.0 (d, J = 1.9 Hz), 134.8 (d, J = 1.5 Hz), 134.6 (d, J = 3.3 Hz), 133.6 (d, J = 3.3 Hz), 132.6 (d, J = 10.8 Hz), 132.2, 129.1 (d, J = 5.6 Hz), 128.8 (d, J = 16.2 Hz), 127.4 (d, J = 1.6 Hz), 126.6 (d, J = 194.3 Hz), 125.4 (d, J = 1.9 Hz), 123.3 (d, J = 1.8 Hz), 119.9 (d, J = 2.7 Hz), 20.7, 17.5, 16.4.³¹P NMR (162 MHz, CDCl₃) δ 13.30; **IR** (film) $ν_{max}/cm^{-1}$: 1533, 1497, 1356, 1272, 1220, 1197, 1181, 1130, 1117, 910, 803, 768, 749, 694; **HRMS** (ESI+): calcd. for C₂₁H₂₁NO₅P 398.1152 [M+H]⁺, found 398.1140.

Products: Phenol Scope

2-Benzylphenyl (2-methyl-6-nitrophenyl) (*R*)-phenylphosphonate (2)

2 was synthesised following **GP II**. **P1** (42.6 mg, 0.10 mmol) was used as phosphonate, 2benzylphenol (20.1 mg, 0.11 mmol) used as nucleophile and BIMP **B1**- $P(p-tol)_3$ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (37.5 mg, 0.080 mmol, 80% yield, 88% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 22.55 min, t (minor) = 19.94 min.

[α]**b**²⁵ = -10.9 (c = 0.67, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.84 (m, 2H), 7.69 (dd, J = 8.2, 1.7 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.50 – 7.40 (m, 3H), 7.25 – 7.16 (m, 4H), 7.15 – 7.10 (m, 1H), 7.08 – 6.98 (m, 5H), 3.93 – 3.85 (m, 2H), 2.34 (d, J = 1.0 Hz, 3H);¹³**C NMR** (101 MHz, CDCl₃) δ 148.7 (d, J = 7.1 Hz), 143.6, 141.0 (d, J = 9.9 Hz), 139.8, 136.0 (d, J = 2.0 Hz), 134.5 (d, J = 3.4 Hz), 133.6 (d, J = 3.2 Hz), 132.4 (d, J = 11.0 Hz), 132.1 (d, J = 6.1 Hz), 131.4, 129.1, 128.8 (d, J = 16.3 Hz), 128.5, 127.6, 126.3 (d, J = 194.7 Hz), 126.2, 125.4 (d, J = 1.9 Hz), 125.4, 123.4 (d, J = 1.7 Hz), 120.2 (d, J = 2.8 Hz), 35.7, 17.4; ³¹**P NMR** (162 MHz, CDCl₃) δ 13.24; **IR** (film) $ν_{max}/cm^{-1}$: 1534, 1490, 1452, 1357, 1273, 1215, 1171, 1130, 1093, 926, 751; **HRMS** (ESI+): calcd. for C₂₆H₂₃NO₅P 460.1308 [M+H]⁺, found 460.1314.

2-Allylphenyl (2-methyl-6-nitrophenyl) (R)-phenylphosphonate (3)

3 was synthesised following **GP II**. **P1** (42.6 mg, 0.10 mmol) was used as phosphonate, 2allylphenol (14.6 mg, 14.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1**- P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (29.8 mg, 0.071 mmol, 71% yield, 86% e.e.).

SFC Conditions: CHIRALPAK IC, 1500 psi, 30 °C, flow : 1.5 mL/min, from 1% to 30% MeOH in 5 mins, $\lambda = 220$ nm, t (major) = 4.03 min, t (minor) = 4.16 min

[α] p²⁵ = -8.4 (c = 0.63, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.98 (m, 2H), 7.72 (dd, J = 8.1, 1.7 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.58 – 7.50 (m, 2H), 7.47 (ddt, J = 7.7, 1.6, 0.8 Hz, 1H), 7.23 (td, J = 7.9, 1.3 Hz, 1H), 7.17 – 7.10 (m, 1H), 7.08 – 7.02 (m, 3H), 5.79 (ddt, J = 16.7, 10.1, 6.5 Hz, 1H), 4.99 (dq, J = 10.1, 1.5 Hz, 1H,), 4.93 (dq, J = 17.0, 1.7 Hz, 1H), 3.27 (dt, J = 6.5, 1.6 Hz, 2H), 2.42 (d, J = 0.9 Hz, 3H);¹³C NMR (101 MHz, CDCl₃) δ 148.5 (d, J = 7.4 Hz), 143.7, 141.1 (d, J = 10.1 Hz), 136.1 (d, J = 1.9 Hz), 135.9, 134.6 (d, J = 3.5 Hz), 133.7 (d, J = 3.3 Hz), 132.5 (d, J = 10.9 Hz), 131.3 (d, J = 6.0 Hz), 130.7, 128.9 (d, J = 16.3 Hz), 127.5, 126.5 (d, J = 182.9 Hz), 125.5 (d, J = 1.8 Hz), 125.4, 123.4 (d, J = 1.7 Hz), 120.4 (d, J = 2.7 Hz), 116.4, 34.0, 17.5; ³¹P NMR (162 MHz, CDCl₃) δ 13.16; IR (film) $ν_{max}/cm^{-1}$: 1535, 1489, 1357, 1272, 1212, 1170, 1130, 925, 750; HRMS (ESI+): calcd. for C₂₂H₂₁NO₅P 410.1152 [M+H]⁺, found 410.1144.

4 was synthesised following **GP II**. **P1** (42.6 mg, 0.10 mmol) was used as phosphonate, 2ethylphenol (13.4 mg, 13.0 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (29.9 mg, 0.070 mmol, 70% yield, 91% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 13.02 min, t (minor) = 13.88 min.

 $[a]p^{25} = -5.9$ (c = 0.72, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 7.98 (m, 2H), 7.73 (dt, J = 8.3, 1.1 Hz, 1H), 7.66 (tdd, J = 6.9, 2.9, 1.4 Hz, 1H), 7.59 – 7.52 (m, 2H), 7.48 (ddt, J = 7.6, 1.6, 0.8 Hz, 1H), 7.23 (td, J = 7.9, 1.3 Hz, 1H), 7.18 – 7.13 (m, 1H), 7.08 – 6.98 (m, 3H), 2.50 (qd, J = 7.5, 2.0 Hz, 2H), 2.43 (d, J = 0.9 Hz, 3H), 1.06 (t, J = 7.6 Hz, 3H);¹³C NMR (101 MHz, CDCl₃) δ 148.5 (d, J = 7.3 Hz), 143.8, 141.1 (d, J = 10.0 Hz), 136.1 (d, J = 1.9 Hz), 135.2 (d, J = 5.8 Hz), 134.6 (d, J = 3.5 Hz), 133.7 (d, J = 3.2 Hz), 132.6, 132.5, 129.8, 128.9 (d, J = 16.3 Hz), 127.0 (d, J = 1.4 Hz), 126.5 (d, J = 195.0 Hz), 125.4 (d, J = 1.8 Hz), 123.4 (d, J = 1.7 Hz), 120.3 (d, J = 2.7 Hz), 23.1, 17.5, 14.2; ³¹P NMR (162 MHz, CDCl₃) δ 13.08; **IR** (film) v_{max}/cm^{-1} : 1534, 1490, 1357, 1273, 1213, 1179, 1159, 1130, 1117, 925, 751; HRMS (ESI+): calcd. for C₂₁H₂₁NO₅P 398.1152 [M+H]⁺, found 398.1140.

5 was synthesised following **GP II**. **P1** (42.6 mg, 0.10 mmol) was used as phosphonate, 2, methylphenol (11.9 mg, 0.11 mmol) used as nucleophile and BIMP **B1**- $P(p-tol)_3$ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (31.4 mg, 0.082 mmol, 82% yield, 82% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm, t (major) = 11.03 min, t (minor) = 14.71 min.

[*α*] \mathbf{p}^{25} = -3.3 (c = 0.58, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) 8.08 – 8.00 (m, 2H), 7.72 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.69 – 7.60 (m, 1H), 7.58 – 7.51 (m, 2H), 7.48 (ddt, *J* = 7.6, 1.7, 0.8 Hz, 1H), 7.23 (td, *J* = 7.9, 1.3 Hz, 1H), 7.13 – 7.08 (m, 1H), 7.04 – 6.96 (m, 3H), 2.44 (s, 3H), 2.11 (s, 3H);¹³**C** NMR (101 MHz, CDCl₃) δ 149.0 (d, *J* = 7.2 Hz), 143.9, 141.0 (d, *J* = 10.3 Hz), 136.0 (d, *J* = 2.0 Hz), 134.6 (d, *J* = 3.5 Hz), 133.7 (d, *J* = 3.2 Hz), 132.6 (d, *J* = 10.9 Hz), 131.6, 129.6 (d, *J* = 5.6 Hz), 128.9, 127.0 (d, *J* = 1.5 Hz), 126.5 (d, *J* = 194.7 Hz), 125.5 (d, *J* = 1.9 Hz), 125.3, 123.4 (d, *J* = 1.8 Hz), 120.2 (d, *J* = 2.7 Hz), 17.5, 16.5; ³¹**P** NMR (162 MHz, CDCl₃) δ 13.18; **IR** (film) ν_{max} /cm⁻¹:1534, 1492, 1357, 1272, 1218, 1172, 1130, 1111, 926, 865, 750; **HRMS** (ESI+): calcd. for C₂₀H₁₉NO₅P 384.0995 [M+H]⁺, found 384.0983.

6 was synthesised following **GP II**. **P2** (45.8 mg, 0.10 mmol) was used as phosphonate, 2-(((tert-butyldimethylsilyl)oxy)methyl)phenol¹⁸ (28.0 mg, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless Oil (53.4 mg, 0.098 mmol, 98% yield, 91% e.e.).

HPLC Conditions: CHIRALPAK IA, hexane/isopropanol = 90/10, 1 mL/min, λ = 220 nm, t (major) = 8.63 min, t (minor) = 9.40 min.

 $[a]p^{25} = -7.2$ (c = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.89 (m, 2H), 7.72 (dd, J = 8.1, 1.7 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.23 (td, J = 7.9, 1.3 Hz, 1H), 7.11 (tt, J = 7.4, 1.1 Hz, 1H), 7.07 – 6.99 (m, 3H), 6.97 (dt, J = 8.0, 1.3 Hz, 1H), 4.69 (d, J = 14.6 Hz, 1H), 4.51 (d, J = 14.6 Hz, 1H), 3.87 (s, 3H), 2.46 (d, J = 1.0 Hz, 3H), 0.92 (s, 9H), 0.05 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0 (d, J = 3.6 Hz), 146.8 (d, J = 6.9 Hz), 143.9, 141.0 (d, J = 10.2 Hz), 136.0 (d, J = 1.9 Hz), 134.8, 134.6, 133.1 (d, J = 5.6 Hz), 127.6, 127.3, 125.5 (d, J = 1.9 Hz), 125.3, 123.3 (d, J = 1.8 Hz), 119.7 (d, J = 2.8 Hz), 117.1 (d, J = 202.5 Hz), 114.5 (d, J = 17.4 Hz), 59.8, 55.6, 26.1, 18.5, 17.6, -5.3, -5.3; ³¹P NMR (162 MHz CDCl₃) δ 14.26; IR (film) v_{max}/cm^{-1} : 2929, 2856, 1599, 1535, 1456, 1357, 1257, 1213, 1173, 1129, 1077, 921, 835, 805, 764, 736; HRMS (ESI+): calcd. for C₂₇H₃₄NO₇PSi 544.1915 [M+H]⁺, found 544.1913.

¹⁸ T. Yoshimura; K. Tomohara; T. Kawabata J. Am. Chem. Soc. **2013**, 135, 7102–7105.

2,3-Dimethylphenyl (2-methyl-6-nitrophenyl) (R)-phenylphosphonate (7)

7 was synthesised following **GP II**. **P1** (42.6 mg, 0.10 mmol) was used as phosphonate, 2,3dimethylphenol (13.4 mg, 0.11 mmol) used as nucleophile and BIMP **B1** - $P(p-tol)_3$ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (36.8 mg, 0.093 mmol, 93% yield, 88% e.e.).

HPLC Conditions: CHIRALPAK IA, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 11.98 min, t (minor) = 13.86 min.

[*α*] \mathbf{p}^{25} = -8.4 (c = 0.77, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 – 7.96 (m, 2H), 7.72 (dd, J = 8.2, 1.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.58 – 7.50 (m, 2H), 7.48 (ddt, J = 7.6, 1.6, 0.7 Hz, 1H), 7.23 (td, J = 7.9, 1.3 Hz, 1H), 6.94 – 6.79 (m, 3H), 2.44 (d, J = 0.9 Hz, 3H), 2.21 (s, 3H), 2.01 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 148.8 (d, J = 7.2 Hz), 143.8, 141.1 (d, J = 10.2 Hz), 138.9, 136.0 (d, J = 2.0 Hz), 134.6 (d, J = 3.3 Hz), 133.6 (d, J = 3.2 Hz), 128.9, 128.7, 128.1 (d, J = 5.8 Hz), 126.8, 126.5 (d, J = 194.5 Hz), 126.1 (d, J = 1.5 Hz), 125.4 (d, J = 1.9 Hz), 123.3 (d, J = 1.8 Hz), 117.8 (d, J = 2.7 Hz), 20.3, 17.5, 12.5; ³¹**P NMR** (162 MHz, CDCl₃) δ 13.14; **IR** (film) ν_{max} /cm⁻¹: 1534, 1469, 1357, 1274, 1232, 1218, 1182, 1131, 1064, 926, 804, 750; **HRMS** (ESI+): calcd. for C₂₁H₂₁NO₅P 398.1152 [M+H]⁺, found 398.1143.

8 was synthesised following **GP II**. **P1** (43.4 mg, 0.100 mmol) was used as phosphonate, 4chloro-2-cyclohexylphenol (23.0 mg, 0.11 mmol) used as nucleophile and BIMP **B1**- P(ptol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (29.8 mg, 0.061 mmol, 61% yield, 75% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 90/10, 1 mL/min, λ = 220 nm, t (major) = 10.61 min, t (minor) = 12.47 min.

[a]p²⁵ = -1.57 (c = 0.38, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.90 (m, 2H), 7.69 – 7.54 (m, 2H), 7.53 – 7.39 (m, 3H), 7.23 – 7.14 (m, 1H), 7.05 (dd, *J* = 2.5, 1.0 Hz, 1H), 6.92 – 6.79 (m, 2H), 2.59 – 2.47 (m, 1H), 2.39 (s, 3H), 1.76 – 1.65 (m, 3H), 1.63 – 1.54 (m, 2H), 1.37 – 0.85 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 145.9 (d, *J* = 7.4 Hz), 143.7 (d, *J* = 3.1 Hz), 140.9 (d, *J* = 5.8 Hz), 140.67 (d, *J* = 10.4 Hz), 135.9, 134.5 (d, *J* = 3.3 Hz), 133.7 (d, *J* = 3.2 Hz), 132.4 (d, *J* = 11.0 Hz), 130.8, 128.8 (d, *J* = 16.1 Hz), 127.7, 126.45, 125.9 (d, *J* = 195 Hz), 125.5, 123.3, 121.8 (d, *J* = 2.5 Hz), 36.9, 33.3 (d, *J* = 8.4 Hz), 26.6, 26.0, 17.4; ³¹P NMR (162 MHz, CDCl₃) δ 13.23; **IR** (film) v_{max} /cm⁻¹: 2927, 2159, 1535, 1481, 1357, 1277, 1213, 1167, 1130, 1105, 928; **HRMS** (ESI+): calcd. for C₂₅H₂₆ClNO₅P 486.1237 [M+H]⁺, found 486.1231.

methyl-6-nitrophenyl) (R)-phenylphosphonate (9)

9 was synthesised following GP II. P1 (43.4 mg, 0.100 mmol) was used as phosphonate, totarol (31.5 mg, 0.11 mmol) used as nucleophile and BIMP **B1**- P(p-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (35.4 mg, 0.063 mmol, 63% yield, 97:3 dr).

 $[\alpha]_{D}^{25} = -20.2$ (c = 0.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (ddt, J = 14.4, 6.9, 1.4 Hz, 2H), 7.68 (dd, J = 8.1, 1.7 Hz, 1H), 7.62 (dq, J = 6.9, 1.7 Hz, 1H), 7.55 – 7.51 (m, 2H), 7.45 (s, 1H), 7.19 (td, J = 7.9, 1.2 Hz, 1H), 6.92 (d, J = 4.4 Hz, 2H), 3.29 (dq, J = 14.7, 7.4, 6.0 Hz, 1H), 2.93 (ddd, J = 17.2, 6.6, 1.7 Hz, 1H), 2.73 (ddd, J = 17.7, 11.2, 7.8 Hz, 1H), 2.34 (d, J = 3.4 Hz, 3H), 2.19 - 2.09 (m, 1H), 1.88 (dd, J = 13.4, 7.7 Hz, 1H), 1.77 - 1.52 (m, 3H),1.44 (dtd, J = 13.2, 3.3, 1.3 Hz, 1H), 1.36 – 1.19 (m, 4H), 1.17 (d, J = 7.1 Hz, 3H), 1.13 (s, 3H), 0.92 (s, 3H), 0.90 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 143.6, 141.4 (d, J = 9.1Hz), 136.0 (d, J = 1.8 Hz), 135.1, 134.5 (d, J = 3.3 Hz), 133.4 (d, J = 3.3 Hz), 132.5, 132.4, 128.8, 128.7, 127.1 (d, J = 195.1 Hz), 125.2, 123.4 (d, J = 1.5 Hz), 123.3, 117.7 (d, J = 2.9 Hz), 53.6, 49.4, 41.6, 39.4, 38.1, 33.4, 33.3, 28.9, 25.1, 20.7, 20.7, 19.5, 19.4, 17.6; ³¹P NMR (162 MHz, CDCl₃) δ 12.51; **IR** (film) υ_{max}/cm⁻¹:2927, 1536, 1471, 1440, 1357, 1275, 1219, 1197, 1179, 1129, 982, 923, 804, 766, 740, 644; HRMS (ESI+): calcd. for C₃₃H₄₁NO₅P 562.2717 [M+H]⁺, found 562.2715.

2-Isopropyl-5-methylphenyl (2-methyl-6-nitrophenyl) (*R*)-(4-methoxyphenyl)phosphonate (10)

10 was synthesised following **GP II**. **P2** (45.8 mg, 0.10 mmol) was used as phosphonate, 2isopropyl-5-methylphenol (16.52 mg, 0.11 mmol) used as nucleophile and BIMP **B1**- P(p-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (29.0 mg, 0.064 mmol, 64% yield, 96% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 9.75 min, t (minor) = 11.28 min.

[*α*] \mathbf{p}^{25} = -31.9 (c = 0.48, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 2H), 7.70 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.47 (ddt, *J* = 7.7, 1.7, 0.8 Hz, 1H), 7.21 (td, *J* = 7.9, 1.3 Hz, 1H), 7.09 – 7.05 (m, 1H), 7.04 – 6.98 (m, 2H), 6.88 (t, *J* = 3.5 Hz, 2H), 3.88 (s, 3H), 3.05 (p, *J* = 6.9 Hz, 1H), 2.44 (d, *J* = 1.0 Hz, 3H), 2.17 (s, 3H), 1.05 (dd, *J* = 49.8, 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (d, *J* = 3.6 Hz), 147.6 (d, *J* = 7.3 Hz), 143.9, 141.3 (d, *J* = 10.2 Hz), 136.7, 136.5 (d, *J* = 5.9 Hz), 135.9 (d, *J* = 2.0 Hz), 134.7 (d, *J* = 2.0 Hz), 134.6, 126.6, 126.2, 125.3 (d, *J* = 1.7 Hz), 123.3 (d, *J* = 1.7 Hz), 120.8 (d, *J* = 2.6 Hz), 117.5 (d, *J* = 203.2 Hz), 114.4 (d, *J* = 17.3 Hz), 55.6, 26.4, 23.3, 23.2, 21.0, 17.6; ³¹P NMR (162 MHz, CDCl₃) δ 13.88; **IR** (film) ν_{max}/cm^{-1} : 2965, 1599, 1535, 1506, 1357, 1259, 1219, 1181, 1130, 1087, 924, 911; **HRMS** (ESI+): calcd. for C₂₄H₂₇NO₆P 456.1571 [M+H]⁺, found 456.1562.

5-Isopropyl-2-methylphenyl (2-methyl-6-nitrophenyl) (*R*)- (4-methoxyphenyl)phosphonate (11)

11 was synthesised following **GP II**. **P2** (45.8 mg, 0.10 mmol) was used as phosphonate, 5isopropyl-2-methylphenol (16.9 μ L, 0.11 mmol) used as nucleophile and BIMP **B1**- P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (22.7 mg, 0.05 mmol, 50% yield, 70% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 9.40 min, t (minor) = 10.67 min.

[*α*] \mathbf{p}^{25} = -14.7(c = 0.21, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 8.01 – 7.91 (m, 2H), 7.70 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.47 (ddt, *J* = 7.7, 1.6, 0.7 Hz, 1H), 7.21 (td, *J* = 7.9, 1.3 Hz, 1H), 7.02 (m, 3H), 6.91 – 6.83 (m, 2H), 3.88 (s, 3H), 2.72 (p, *J* = 6.9 Hz, 1H), 2.44 (d, *J* = 1.0 Hz, 3H), 2.09 (s, 3H), 1.09 (dd, *J* = 6.9, 1.3 Hz, 6H); ¹³**C** NMR (101 MHz, CDCl₃) δ 163.7 (d, *J* = 3.5 Hz), 148.9 (d, *J* = 7.2 Hz), 148.1, 141.1 (d, *J* = 10.2 Hz), 135.8 (d, *J* = 1.9 Hz), 134.6, 134.5, 131.1, 126.5 (d, *J* = 5.8 Hz), 125.1 (d, *J* = 2.0 Hz), 123.2 (d, *J* = 1.7 Hz), 123.0, 118.2 (d, *J* = 2.9 Hz), 117.4 (d, *J* = 203.0 Hz), 114.3, 114.2, 55.4, 33.5, 23.8, 23.7, 17.4, 16.0; ³¹**P** NMR (162 MHz, CDCl₃) δ 14.18; **IR** (film) ν_{max}/cm^{-1} :1599, 1532, 1506, 1358, 1259, 1131, 924; **HRMS** (ESI+): calcd. for C₂₄H₂₇NO₆P 456.1571 [M+H]⁺, found 456.1565.

Products: R group Scope

2,4-Dimethylphenyl (2-methyl-6-nitrophenyl) (R)- (4-methoxyphenyl)phosphonate (12)

12 was synthesised following **GP II**. **P2** (45.8 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (29.4 mg, 0.069 mmol, 69% yield, 97% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30, 1 mL/min, λ = 220 nm, t (major) = 11.73 min, t (minor) = 21.94 min.

[*α*] p^{25} = -15.5 (c = 0.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.90 (m, 2H), 7.73 – 7.68 (m, 1H), 7.47 (ddt, *J* = 7.7, 1.6, 0.7 Hz, 1H), 7.22 (td, *J* = 7.9, 1.3 Hz, 1H), 7.02 (ddd, *J* = 8.7, 4.2, 2.3 Hz, 2H), 6.92 – 6.85 (m, 2H), 6.79 (dd, *J* = 8.4, 2.3 Hz, 1H), 3.88 (s, 3H), 2.45 (d, *J* = 0.9 Hz, 3H), 2.24 – 2.14 (m, 3H), 2.05 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 163.9 (d, *J* = 3.5 Hz), 146.9 (d, *J* = 7.0 Hz), 144.0, 141.2 (d, *J* = 10.0 Hz), 136.0 (d, *J* = 2.0 Hz), 134.7 (d, *J* = 12.3 Hz), 134.7 (d, *J* = 3.3 Hz), 132.1, 129.2 (d, *J* = 5.6 Hz), 127.4 (d, *J* = 1.5 Hz), 125.3 (d, *J* = 1.9 Hz), 123.3, 123.3 (d, *J* = 1.8 Hz), 117.5 (d, *J* = 202.5 Hz), 114.4 (d, *J* = 17.2 Hz), 125.4, 55.5, 20.7, 17.6, 16.4; ³¹P NMR (162 MHz, CDCl₃) δ 14.32; IR (film) v_{max}/cm^{-1} :1599, 1534, 1404, 1358, 1259, 1181, 1130, 923, 908, 765; HRMS (ESI+): calcd. for C₂₂H₂₃NO₆P 428.1258 [M+H]⁺, found 428.1255.

13 was synthesised following **GP II**. **P3** (36.6 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (23.7 mg, 0.071 mmol, 71% yield, 84% e.e.).

HPLC Conditions: CHIRALPAK AS-H, hexane/isopropanol = 90/10, 1 mL/min, λ = 220 nm, t (major) = 8.93 min, t (minor) = 11.15 min.

[α] \mathbf{p}^{25} = -55.0 (c = 0.76, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 1H), 7.47 (ddt, *J* = 7.7, 1.7, 0.8 Hz, 1H), 7.21 (td, *J* = 7.9, 1.3 Hz, 1H), 7.05 – 6.98 (m, 2H), 6.89 (dd, *J* = 8.3, 2.3 Hz, 1H), 2.41 (d, *J* = 0.9 Hz, 3H), 2.26 (d, *J* = 0.9 Hz, 3H), 2.20 (s, 3H), 1.90 (d, *J* = 17.8 Hz, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 146.8 (d, *J* = 7.6 Hz), 143.1, 141.6 (d, *J* = 10.3 Hz), 136.3 (d, *J* = 1.9 Hz), 135.0, 134.3 (d, *J* = 3.2 Hz), 132.3, 128.9 (d, *J* = 5.7 Hz), 127.7 (d, *J* = 1.5 Hz), 125.3 (d, *J* = 1.9 Hz), 123.5 (d, *J* = 1.6 Hz), 119.8 (d, *J* = 2.5 Hz), 20.8, 17.4, 16.4, 12.3 (d, *J* = 144.2 Hz);³¹**P** NMR (162 MHz, CDCl₃) δ 26.08; **IR** (film) ν_{max}/cm^{-1} : 1535, 1356, 1268, 1223, 1199, 1183, 1119, 920; **HRMS** (ESI+): calcd. for C₁₆H₁₉NO₅P 336.0995 [M+H]⁺, found 336.0991.

14 was synthesised following GP II. P4 (38.0 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP B1 - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (22.4mg, 0.063 mmol, 63% yield, 93% e.e.).

HPLC Conditions: CHIRALPAK AS-H, hexane/isopropanol =90/10, 1 mL/min, λ = 220 nm, t (major) = 6.75 min, t (minor) = 7.39 min.

[α] \mathbf{p}^{25} = -69.2 (c = 0.52, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.44 (ddt, *J* = 7.8, 1.7, 0.8 Hz, 1H), 7.20 (td, *J* = 7.9, 1.2 Hz, 1H), 7.01 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.84 (dd, *J* = 8.3, 2.3 Hz, 1H), 2.38 (s, 3H), 2.27 – 2.22 (m, 4H), 2.21 – 2.13 (m, 4H), 1.37 (dt, *J* = 21.8, 7.7 Hz, 3H);¹³**C** NMR (101 MHz, CDCl₃) δ 147.0 (d, *J* = 8.1 Hz), 143.5, 141.3 (d, *J* = 10.7 Hz), 136.1 (d, *J* = 1.9 Hz), 134.7, 134.4 (d, *J* = 3.2 Hz), 132.2, 128.6 (d, *J* = 6.0 Hz), 127.6, 125.2 (d, *J* = 1.9 Hz), 123.4 (d, *J* = 1.6 Hz), 119.5 (d, *J* = 2.4 Hz), 20.7, 20.1 (d, *J* = 141.3 Hz), 17.3, 16.4, 6.8 (d, *J* = 7.6 Hz);³¹**P** NMR (162 MHz, CDCl₃) δ 29.03; **IR** (film) ν_{max}/cm^{-1} : 1535, 1357, 1183, 924, 909, 775; **HRMS** (ESI+): calcd. for C₁₇H₂₁NO₅P 350.1152 [M+H]⁺, found 350.1151.

15 was synthesised following **GP II**. **P5** (39.4 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Yellow oil (2.5 mg, 0.007 mmol, 7% yield, 54% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 11.11 min, t (minor) = 12.95 min

¹**H NMR** (600 MHz, CDCl₃) δ 7.71 – 7.67 (m, 1H), 7.45 – 7.40 (m, 1H), 7.22 – 7.16 (m, 1H), 6.97 – 6.92 (m, 2H), 6.78 (dd, J = 8.5, 2.3 Hz, 1H), 2.48 – 2.39 (m, 1H), 2.38 (s, 3H), 2.22 (s, 3H), 2.16 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H), 1.42 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 147.5 (d, J = 8.8 Hz), 143.8 (d, J = 3.7 Hz), 141.0 (d, J = 11.7 Hz), 135.9 (d, J = 2.0 Hz), 134.4 (d, J = 3.2 Hz), 134.3, 132.1, 128.3 (d, J = 6.4 Hz), 127.5, 125.2 (d, J = 1.7 Hz), 123.3 (d, J = 1.4 Hz), 119.2 (d, J = 2.2 Hz), 27.4 (d, J = 140.5 Hz), 20.7, 17.2, 16.4, 16.4 (d, J = 5.2 Hz), 16.4 (d, J = 5.4 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 30.72.; **IR** (film) υ_{max}/cm^{-1} : 2980, 1606, 1585, 1498, 1471, 1357, 1296, 1249, 1222, 1198, 1182, 1156, 1120, 1092, 1045, 948, 910, 803, 765, 743, 706, 669; **HRMS** (ESI+): calcd. for C₁₈H₂₃NO₅P 364.1308 [M+H]⁺, found 364.1308.

16 was synthesised following **GP II**. **P6** (43.6 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (24.2 mg, 0.06 mmol, 60% yield, 94% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 12.43 min, t (minor) = 15.35 min.

[*α*]**p**²⁵ = -51.5 (c = 0.79, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.1, 1.7 Hz, 1H), 7.44 (ddt, J = 7.6, 1.6, 0.7 Hz, 1H), 7.19 (td, J = 7.9, 1.2 Hz, 1H), 7.00 (dd, J = 8.3, 1.2 Hz, 1H), 6.97 – 6.94 (m, 1H), 6.84 (dd, J = 8.3, 2.3 Hz, 1H), 2.38 (s, 3H), 2.25 – 2.23 (m, 3H), 2.21 – 2.10 (m, 5H), 1.80 (dddd, J = 15.2, 11.6, 7.7, 5.9 Hz, 2H), 1.45 (p, J = 7.3 Hz, 2H), 1.31 (ddt, J = 7.2, 5.0, 2.7 Hz, 4H), 0.93 – 0.85 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.1 (d, J = 8.2 Hz), 143.4, 141.4 (d, J = 10.9 Hz), 136.1 (d, J = 2.0 Hz), 134.6, 134.4 (d, J = 3.2 Hz), 132.2, 128.6 (d, J = 6.1 Hz), 127.6, 125.2 (d, J = 1.9 Hz), 123.4 (d, J = 1.6 Hz), 119.5 (d, J = 2.4 Hz), 31.3 (d, J = 1.3 Hz), 30.3 (d, J = 18.2 Hz), 26.8 (d, J = 138.5 Hz), 22.5, 22.4, 20.7, 17.3, 16.4, 14.1; ³¹P NMR (162 MHz, CDCl₃) δ 28.03; IR (film) $ν_{max}/cm^{-1}$: 2928, 1536, 1356, 1199, 1120, 948, 924, 909, 804, 760; HRMS (ESI+): calcd. for C₂₁H₂₉NO₅P 406.1778 [M+H]⁺, found 406.1776.

17 was synthesised following **GP II**. **P7** (40.6 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (17.1 mg, 0.046 mmol, 46% yield, 88% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, $\lambda = 220$ nm, t (major) = 13.06 min, t (minor) = 14.53 min.

[*α*] \mathbf{p}^{25} = -76.2 (c = 0.34, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.20 (td, *J* = 7.9, 1.2 Hz, 1H), 7.06 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.99 – 6.94 (m, 1H), 6.84 (dd, *J* = 8.4, 2.3 Hz, 1H), 2.39 (s, 3H), 2.24 (s, 3H), 2.18 (s, 4H), 2.20 – 2.11 (m, 1H), 1.19 – 1.04 (m, 1H), 0.72 – 0.59 (m, 2H), 0.40 – 0.26 (m, 2H).;¹³C NMR (101 MHz, CDCl₃) δ 147.1 (d, *J* = 8.0 Hz), 143.5 – 142.8 (m), 141.3 (d, *J* = 11.2 Hz), 136.0, 134.4, 134.2 (d, *J* = 3.2 Hz), 132.0, 128.4 (d, *J* = 6.6 Hz), 127.4, 125.0, 123.3, 119.2 (d, *J* = 2.9 Hz), 31.8 (d, *J* = 138.9 Hz), 20.6, 17.2, 16.3, 5.6 (dd, *J* = 10.4, 3.0 Hz), 4.3 (d, *J* = 5.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 26.12; **IR** (film) ν_{max}/cm^{-1} :1535, 1498, 1356, 1279, 1222, 1199, 1182, 1119, 923, 799, 762; **HRMS** (ESI+): calcd. for C₁₉H₂₃NO₅P 376.1314 [M+H]⁺, found 376.1308.

18 was synthesised following **GP II**. **P8** (44.2 mg, 0.100 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (30.1 mg, 0.073 mmol, 73% yield, 82% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30, 1 mL/min, λ = 220 nm, t (minor) = 12.86 min, t (major) = 15.61 min.

[α] $\mathbf{p}^{25} = -84.8$ (c = 0.21, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.1, 1.7 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.40 – 7.23 (m, 5H), 7.20 (td, J = 7.9, 1.2 Hz, 1H), 6.96 – 6.87 (m, 2H), 6.79 (dd, J = 8.3, 2.3 Hz, 1H), 3.72 – 3.54 (m, 2H), 2.23 (s, 3H), 2.21 (s, 3H), 1.93 (s, 3H).;¹³C NMR (101 MHz, CDCl₃) δ 147.0 (d, J = 8.4 Hz), 143.1, 141.4 (d, J = 11.0 Hz), 136.1 (d, J = 1.8 Hz), 134.5, 134.2 (d, J = 3.4 Hz), 132.0, 130.2 (d, J = 7.2 Hz), 130.1 (d, J =10.1 Hz), 128.6 (d, J = 3.2 Hz), 128.6, 127.3, 127.3, 125.1 (d, J = 1.5 Hz), 123.4 (d, J = 1.3Hz), 119.0 (d, J = 2.4 Hz), 34.1 (d, J = 137.7 Hz), 20.6, 17.0, 16.0;³¹P NMR (162 MHz, CDCl₃) δ 21.15; **IR** (film) ν_{max}/cm^{-1} :2160, 1534, 1356, 1276, 1221, 923; **HRMS** (ESI+): calcd. for C₂₂H₂₂NNaO₅P 434.1133 [M+Na]⁺, found 434.1127.

19 was synthesised following **GP II**. **P9** (45.6 mg, 0.10 mmol) was used as phosphonate, 2,4dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (17.7 mg, 0.042 mmol, 42% yield, 86% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, $\lambda = 220$ nm, t (major) = 15.19 min, t (minor) = 22.72 min.

 $[\alpha]p^{25} = -42.3$ (c = 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 8.1, 1.7 Hz, 1H), 7.44 – 7.35 (m, 2H), 7.22 – 7.10 (m, 4H), 6.91 – 6.88 (m, 1H), 6.82 (dd, J = 8.3, 1.2 Hz, 1H), 6.75 (dd, J = 8.4, 2.3 Hz, 1H), 3.66 (d, J = 22.3 Hz, 2H), 2.41 (d, J = 1.9 Hz, 3H), 2.22 – 2.20 (m, 3H), 2.20 – 2.17 (m, 3H), 1.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.1 (d, J = 9.0 Hz), 143.3 (d, J = 3.7 Hz), 141.4 (d, J = 11.4 Hz), 137.6 (d, J = 7.7 Hz), 136.2 (d, J = 1.8 Hz), 134.6, 134.4 (d, J = 3.2 Hz), 132.1, 131.1 (d, J = 6.0 Hz), 130.8 (d, J = 3.6 Hz), 128.8 (d, J = 10.1 Hz), 128.7 (d, J = 6.4 Hz), 127.7 (d, J = 4.1 Hz), 127.5, 126.3 (d, J = 3.8 Hz), 125.2 (d, J = 1.8 Hz), 123.5 (d, J = 1.6 Hz), 119.2 (d, J = 2.5 Hz), 31.6 (d, J = 138.5 Hz), 20.7, 20.1, 17.0, 16.1; ³¹P NMR (162 MHz, CDCl₃) δ 21.57; **IR** (film) ν_{max} /cm⁻¹: 1535, 1497, 1356, 1275, 1223, 1198, 951, 912; **HRMS** (ESI+): calcd. for C₂₃H₂₅NO₅P 426.1465 [M+H]⁺, found 426.1461.

2,4-Dimethylphenyl (2-methyl-6-nitrophenyl) (*R*)- (2-(trifluoromethyl)benzyl)phosphonate (20)

20 was synthesised following **GP II**. **P10** (51.0 mg, 0.10 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (20.6 mg, 0.043 mmol, 43% yield, 78% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm, t (major) = 14.84 min, t (minor) = 12.87 min.

 $[α]p^{25} = -61.0$ (c = 0.66, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.2, 1.7 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.48 – 7.39 (m, 2H), 7.21 (td, J = 7.9, 1.2 Hz, 1H), 6.99 (dd, J = 8.3, 1.2 Hz, 1H), 6.91 (dd, J = 2.2, 1.1 Hz, 1H), 6.81 (dd, J = 8.3, 2.3 Hz, 1H), 3.78 – 3.62 (m, 2H), 2.23 (s, 3H), 2.21 (s, 3H), 1.91 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 146.9 (d, J = 8.4 Hz), 143.0 (d, J = 3.7 Hz), 141.4 (d, J = 10.9 Hz), 136.4 (d, J = 1.8 Hz), 134.9, 134.2 (d, J = 3.2 Hz), 133.7 (d, J = 6.7 Hz), 132.3, 131.5 (d, J = 9.9 Hz), 131.1 (dd, J = 32.6, 3.1 Hz), 129.3 (d, J = 3.2 Hz), 128.6 (d, J = 6.8 Hz), 127.6, 127.0 – 126.6 (m), 125.4 (d, J = 1.8 Hz), 124.4 (t, J = 3.8 Hz), 124.0 (q, J = 272.4 Hz), 123.6 (d, J = 1.8 Hz), 118.9 (d, J = 2.6 Hz), 34.0 (d, J = 138.1 Hz), 20.7, 17.0, 16.1; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.74; ³¹P NMR (162 MHz, CDCl₃) δ 19.65; **IR** (film) $ν_{max}/cm^{-1}$: 1536, 1356, 1331, 1122, 952, 915; **HRMS** (ESI+): calcd. for C₂₃H₂₁F₃NO₅P 480.1181 [M+H]⁺, found 480.1178.

21 was synthesised following **GP II**. **P11** (43.4 mg, 0.100 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (30.3 mg, 0.075 mmol, 75% yield, 92% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30 1 mL/min, λ = 220 nm, t (major) = 10.70 min, t (minor) = 15.49 min.

[*α*] $\mathbf{p}^{25} = -1.9$ (c = 0.62, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (ddd, J = 8.7, 2.9, 1.2Hz, 1H), 7.71 (dd, J = 8.1, 1.7 Hz, 1H), 7.55 (ddd, J = 5.1, 4.0, 1.2 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.22 (td, J = 7.9, 1.3 Hz, 1H), 6.95 – 6.85 (m, 2H), 6.82 (dd, J = 8.4, 2.2 Hz, 1H), 2.44 (s, 3H), 2.22 (s, 3H), 2.06 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 146.7 (d, J = 7.4 Hz), 143.8, 141.0 (d, J = 9.8 Hz), 137.9 (d, J = 19.9 Hz), 136.1 (d, J = 2.0 Hz), 134.9 (d, J = 1.6Hz), 134.6 (d, J = 3.5 Hz), 132.2, 129.4, 129.1 (d, J = 5.6 Hz), 127.7 (d, J = 21.2 Hz), 127.5, 127.3 (d, J = 205.4 Hz), 125.5 (d, J = 2.0 Hz), 123.3 (d, J = 1.8 Hz), 120.0 (d, J = 2.6 Hz), 20.8, 17.5, 16.4; ³¹**P** NMR (162 MHz, CDCl₃) δ 6.71; **IR** (film) ν_{max} /cm⁻¹:1534, 1496, 1356, 1272, 1221, 1196, 1181, 117, 1090, 931, 913, 801, 764, 736, 631; **HRMS** (ESI+): calcd. for C₁₉H₁₉NO₅PS 404.0722 [M+H]⁺, found 404.0715.

22 was synthesised following **GP II**. **P12** (41.2 mg, 0.10 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (29.2 mg, 0.077 mmol, 77% yield, 92% e.e.).

SFC Conditions: CHIRALPAK ID, 1500 psi, 30 °C, flow : 1.5 mL/min, from 1% to 30% MeOH in 5 mins, $\lambda = 220$ nm, t (minor) = 3.91 min, t (major) = 4.22 min

[*α*] $_{D}^{25}$ = -41.0 (c = 0.73, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.73 (m, 1H), 7.46 (ddt, *J* = 7.7, 1.8, 0.8 Hz, 1H), 7.21 (td, *J* = 7.9, 1.2 Hz, 1H), 7.10 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.99 – 6.95 (m, 1H), 6.90 – 6.84 (m, 1H), 3.14 (d, *J* = 12.3 Hz, 2H), 2.39 (d, *J* = 0.9 Hz, 3H), 2.33 (d, *J* = 1.5 Hz, 3H), 2.25 (d, *J* = 0.9 Hz, 3H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.1 (d, *J* = 8.6 Hz), 143.0, 141.6 (d, *J* = 10.9 Hz), 136.4 (d, *J* = 1.9 Hz), 134.9, 134.3 (d, *J* = 3.3 Hz), 132.2, 128.8 (d, *J* = 6.1 Hz), 127.6, 125.4 (d, *J* = 1.8 Hz), 123.6 (d, *J* = 1.5 Hz), 119.5 (d, *J* = 2.4 Hz), 28.2 (d, *J* = 150.4 Hz), 20.8, 17.6 (d, *J* = 2.2 Hz), 17.3, 16.5; ³¹P NMR (162 MHz, CDCl₃) δ 18.97; **IR** (film) ν_{max}/cm^{-1} : 1534, 1497, 1355, 1274, 1222, 1199, 1181, 1116, 951, 928, 912; **HRMS** (ESI+): C₁₇H₂₁NO₅PS 382.0873 [M+H]⁺, found 382.0881.

23 was synthesised following **GP II**. **P13** (47.2 mg, 0.100 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Colourless oil (31.8 mg, 0.072 mmol, 72% yield, 83% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm, t (major) = 25.09 min, t (minor) = 35.82 min.

[α] \mathbf{p}^{25} = -21.9 (c = 1.20, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.42 – 7.34 (m, 1H), 7.31 – 7.07 (m, 6H), 7.03 (d, *J* = 8.3 Hz, 1H), 6.89 (s, 1H), 6.79 (dd, *J* = 8.3, 2.1 Hz, 1H), 4.63 – 4.52 (m, 2H), 4.17 – 3.99 (m, 2H), 2.35 (s, 3H), 2.19 (s, 3H), 2.08 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) 146.7 (d, *J* = 8.0 Hz), 142.9, 141.3 (d, *J* = 10.5 Hz), 136.5, 136.2, 134.9, 134.2 (d, *J* = 3.2 Hz), 132.1, 129.0 (d, *J* = 5.6 Hz), 128.4, 128.1, 128.1, 127.4, 125.3, 123.5, 119.7 (d, *J* = 2.4 Hz), 75.2 (d, *J* = 12.7 Hz), 63.8 (d, *J* = 166.2 Hz), 20.7, 17.3, 16.2; ³¹**P** NMR (162 MHz, CDCl₃) δ 16.26; **IR** (film) ν_{max}/cm^{-1} :1535, 1497, 1355, 1264, 1197, 1117, 928, 804, 753; **HRMS** (ESI+): calcd. for C₂₃H₂₄NNaO₆P 464.1239 [M+Na]⁺, found 464.1231.

butyldiphenylsilyl)oxy)methyl)phosphonate (24)

24 was synthesised following **GP II**. **P14** (62.1 mg, 0.10 mmol) was used as phosphonate, 2,4-dimethylphenol (12.4 μ L, 0.11 mmol) used as nucleophile and BIMP **B1** - P(*p*-tol)₃ (11.7 mg, 0.015 mmol) as catalyst in PhF (0.40 mL) at 23 °C. Pentane:EtOAc 7:3. Yellow oil (13.0 mg, 0.022 mmol, 22% yield, 86% e.e.).

HPLC Conditions: CHIRALPAK IA, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 9.32 min, t (minor) = 15.98 min

[*α*] \mathbf{p}^{25} = +4.0 (c = 0.35, CHCl₃) ¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.72 – 7.59 (m, 4H), 7.49 – 7.41 (m, 3H), 7.41 – 7.34 (m, 4H), 7.21 (ddd, *J* = 8.5, 7.7, 1.2 Hz, 1H), 7.16 – 7.10 (m, 1H), 6.98 (d, *J* = 1.9 Hz, 1H), 6.90 – 6.83 (m, 1H), 4.39 – 4.25 (m, 2H), 2.46 – 2.41 (m, 3H), 2.27 (s, 3H), 2.19 (s, 3H), 1.04 (s, 9H).; ¹³C NMR (151 MHz, CDCl₃) δ 147.1 (d, *J* = 8.1 Hz), 143.2 (d, *J* = 3.7 Hz), 141.3 (d, *J* = 10.9 Hz), 136.2, 135.82(d, *J* = 10.6 Hz), 134.8 (d, *J* = 27.5 Hz), 134.3 (d, *J* = 3.3 Hz), 132.2, 132.0 (d, *J* = 4.9 Hz), 131.7, 130.2 (d, *J* = 5.5 Hz), 128.9 (d, *J* = 6.0 Hz), 128.0, 127.5 (d, *J* = 4.3 Hz), 125.3, 123.6, 119.7 (d, *J* = 2.5 Hz), 59.1 (d, *J* = 173.1 Hz), 26.7, 20.8, 19.4, 17.3, 16.4.; ³¹P NMR (162 MHz, CDCl₃) δ 17.32.; **IR** (film) ν_{max} /cm⁻¹:2981, 2889, 1537, 1472, 1382, 1252, 1152, 1115, 954, 821, 742, 703; **HRMS** (ESI+): calcd. for C₃₄H₃₅NO₆PSi 612.1966 [M+H]⁺, found 612.1942.

General Procedure IV: Second Nucleophilic Displacement

To a solution of nucleophile in THF was added *t*-BuMgCl under argon at 0 °C. After 20 min, phosphonate was added, and the reaction mixture was stirred at rt for the time specified in the individual experiment. The resulting mixture was loaded directly onto silica gel and purified by flash column chromatography as specified in the individual experiment to afford pure product. The two enantiomers were separated by chiral HPLC using conditions specified in the individual experiment.

Products: Derivatisation

Benzyl (2,4-dimethylphenyl) (R)-phenylphosphonate (25)

25 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, benzyl alcohol (16.0 μ L, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 75.0 μ L, 0.150 mmol) as base in THF (0.500 mL) at 23 °C for 2 h. Pentane:EtOAc 7:3. Colourless oil (24.2 mg, 0.063 mmol, 63% yield, 92% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30, 1 mL/min, λ = 220 nm, t (major) = 11.04 min, t (minor) = 17.81 min.

[α]**p**²⁵ = -8.0 (c = 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.77 (m, 2H), 7.56 - 7.46 (m, 1H), 7.49 - 7.35 (m, 2H), 7.35 - 7.18 (m, 2H), 7.05 (dd, *J* = 8.3, 1.4 Hz, 1H), 6.92 - 6.86 (m, 1H), 6.82 (dd, *J* = 8.3, 2.2 Hz, 1H), 5.19 - 5.04 (m, 2H), 2.20 (s, 3H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.9 (d, *J* = 8.0 Hz), 136.0 (d, *J* = 7.1 Hz), 134.3, 132.7 (d, *J* = 3.1 Hz), 131.9 (d, *J* = 10.3 Hz), 131.9, 129.1 (d, *J* = 5.3 Hz), 128.6, 128.5, 128.34 (d, *J* = 8.9 Hz), 128.0 (d, *J* = 192 Hz), 127.9, 120.2 (d, *J* = 2.5 Hz), 68.1 (d, *J* = 5.6 Hz), 20.7, 16.5; ³¹P NMR (162 MHz, CDCl₃) δ 15.76; **IR** (film) $ν_{max}/cm^{-1}$:1497, 1439, 1256, 1201, 1130, 1009, 947, 907; **HRMS** (ESI+): calcd. for C₂₁H₂₁NaO₃P 375.1126 [M+Na]⁺, found 375.1121.

((2R,3S,5R)-5-(2-Amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3-((*tert*butyldimethylsilyl)oxy)tetrahydrofuran-2-yl)methyl (2,4-dimethylphenyl) (*R*)phenylphosphonate (**26**)

26 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 3'-OTBS -deoxyguanosine¹⁹ (57.2 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 150 μ L, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 16 h. CH₂Cl₂:MeOH 9:1. Colourless oil (45.0 mg, 0.072 mmol, 72% yield, >95:5 dr).

[*α*] \mathbf{p}^{25} = +34.9 (c = 0.45, DMSO); ¹**H** NMR (500 MHz, DMSO-*d*₆) δ 10.66 (s, 1H), 7.83 (s, 1H), 7.79 (ddd, *J* = 13.6, 8.1, 1.4 Hz, 2H), 7.68 (td, *J* = 7.4, 1.4 Hz, 1H), 7.55 (td, *J* = 7.6, 4.4 Hz, 2H), 7.01 (d, *J* = 2.1 Hz, 1H), 6.99 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.87 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.48 (s, 2H), 6.12 (dd, *J* = 7.6, 6.3 Hz, 1H), 4.52 (dt, *J* = 6.1, 3.2 Hz, 1H), 4.29 (ddd, *J* = 11.6, 6.9, 4.9 Hz, 1H), 4.17 (ddd, *J* = 11.5, 6.7, 5.4 Hz, 1H), 3.98 (td, *J* = 5.1, 2.9 Hz, 1H), 2.63 (ddd, *J* = 13.4, 7.7, 5.9 Hz, 1H), 2.23 (ddd, *J* = 13.5, 6.4, 3.5 Hz, 1H), 2.19 (s, 3H), 2.11 (s, 3H), 0.84 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 156.7, 153.7, 150.9, 146.4 (d, *J* = 7.6 Hz), 135.2 134.0, 133.3 (d, *J* = 3.1 Hz), 131.9, 131.5 (d, *J* = 10.2 Hz), 128.9 (d, *J* = 15.2 Hz), 128.6 (d, *J* = 5.3 Hz), 127.3, 127.0 (d, *J* = 189.6 Hz), 119.6 (d, *J* = 2.7 Hz), 116.7, 84.9 (d, *J* = 7.2 Hz), 82.5, 72.1, 65.5 (d, *J* = 5.7 Hz), 38.8, 25.6, 20.2, 17.6, 16.1, -4.9, -5.1; ³¹P NMR (202 MHz, DMSO-*d*₆) δ 15.57; **IR** (film) ν_{max}/cm^{-1} : 2863, 1592, 1498, 1423, 1267, 1213, 1128, 1112, 1058, 1022, 962, 913, 848, 744; **HRMS** (ESI+): calcd. for C₃₀H₄₁N₅O₆PSi 626.2558 [M+H]⁺, found 626.2551.

¹⁹ E. Defrancq; N.Pelloux; A. Leterme; M-F. Lhomme; J. Lhomme J. Org. Chem. **1991**, 56, 4817-4819.
((2R,3S,5R)-5-(4-Amino-2-oxopyrimidin-1(2H)-yl)-3-((tertbutyldimethylsilyl)oxy)tetrahydrofuran-2-yl)methyl (2,4-dimethylphenyl) (R)phenylphosphonate (**27**)

27 was synthesised following GP IV. 1 (39.7 mg, 0.10 mmol, 92% e.e.) was used as phosphonate, 3'-OTBS –deoxycytidine²⁰ (68.3 mg, 0.20 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 200 μ L, 0.40 mmol) as base in THF (0.50 mL) at 23 °C for 48 h. CH₂Cl₂:MeOH 95:5. Colourless oil (28.1 mg, 0.048 mmol, 48% yield, >95:5 dr).

[α] \mathbf{p}^{25} = +57.0 (c = 0.45, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (ddt, *J* = 13.8, 6.9, 1.4 Hz, 2H), 7.64 – 7.57 (m, 1H), 7.54 – 7.46 (m, 3H), 7.08 (dd, *J* = 8.3, 1.4 Hz, 1H), 6.96 – 6.94 (m, 1H), 6.86 (dd, *J* = 8.2, 2.3 Hz, 1H), 6.20 (t, *J* = 6.3 Hz, 1H), 5.58 (d, *J* = 7.5 Hz, 1H), 4.42 – 4.19 (m, 2H), 4.02 (dd, *J* = 3.8, 1.9 Hz, 1H), 2.34 (ddd, *J* = 13.5, 6.2, 4.1 Hz, 1H), 2.23 (s, 3H), 2.20 (s, 3H), 1.91 (dt, *J* = 13.3, 6.5 Hz, 1H), 0.84 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 165.4, 155.6, 146.8 (d, *J* = 7.5 Hz), 140.7, 134.8, 133.4 (d, *J* = 3.1 Hz), 132.2, 131.9(d, *J* = 10.1 Hz), 129.0 (d, *J* = 15.7 Hz), 129.0 (d, *J* = 5.7 Hz), 127.6, 127.3 (d, *J* = 191.8 Hz), 120.0 (d, *J* = 2.5 Hz), 94.6, 86.4, 85.4 (d, *J* = 7.9 Hz), 71.5, 65.3, 41.8, 25.8, 20.8, 18.0, 16.7, -4.6, -4.9; ³¹**P** NMR (162 MHz, CDCl₃) δ 15.97 (major), 15.91 (minor); **IR** (film) ν_{max}/cm^{-1} : 2928, 1648, 1496, 1251, 1200, 1118, 1024, 948, 909, 935, 781, 696; **HRMS** (ESI+): calcd. for C₂₉H₄₁N₃O₆PSi 586.2497 [M+H]⁺, found 586.2491.

²⁰ X-F. Zhu; H. J. Williams; A.I Scott J. Chem. Soc. Perkin 1 2000, 2305-2306.

((2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-3-((tert-butyldimethylsilyl)oxy)tetrahydrofuran-2yl)methyl (2,4-dimethylphenyl) (R)-phenylphosphonate (28)

28 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 3'-OTBS -deoxyadenosine²¹ (54.8 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 150 μ L, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 16 h. CH₂Cl₂:MeOH 95:5. Colourless oil (29.2 mg, 0.048 mmol, 49% yield, >95:5 dr).

[α] \mathbf{p}^{25} = -14.9 (c = 0.18, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.38 (s, 1H), 8.22 – 8.12 (m, 2H), 7.95 (s, 1H), 7.80 (s, 1H), 7.58 – 7.52 (m, 1H), 7.50 – 7.43 (m, 2H), 7.21 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.97 (d, *J* = 2.0 Hz, 1H), 6.84 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.23 (dd, *J* = 9.6, 5.4 Hz, 1H), 6.00 (s, 1H), 4.66 (d, *J* = 4.8 Hz, 1H), 3.98 – 3.87 (m, 1H), 3.76 – 3.66 (m, 2H), 2.92 (ddd, *J* = 13.0, 9.6, 5.0 Hz, 1H), 2.35 (s, 3H), 2.24 (s, 3H), 2.22 (s, 1H), 2.17 (dd, *J* = 13.0, 5.5 Hz, 1H), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1, 151.6, 149.5, 146.8 (d, *J* = 8.6 Hz), 142.3, 134.6, 132.9 (d, *J* = 3.0 Hz), 132.6 (d, *J* = 11.0 Hz), 132.3, 129.5 (d, *J* = 5.8 Hz), 129.3 (d, *J* = 182.3 Hz), 128.4 (d, *J* = 15.8 Hz), 127.5, 120.0 (d, *J* = 3.3 Hz), 90.6, 88.1, 74.2, 63.5, 58.6, 41.5, 25.9, 20.8, 18.2, 16.9, -4.6, -4.6; ³¹P NMR (202 MHz, CDCl₃) δ 12.79; **IR** (film) ν_{max} /cm⁻¹: 2927, 2856, 1606, 1584, 1462, 1439, 1252, 1220, 1123, 1101, 1063, 1025, 950, 909, 835, 734; **HRMS** (ESI+): calcd. for C₃₀H₄₁N₅O₅PSi 610.2609 [M+H]⁺, found 610.2608.

²¹ R. V. Somu; D. J. Wilson; E. M. Bennett; H. I. Boshoff; L. Celia; B. J. Beck; C. E. Barry, III; C. C. Aldrich *J. Med. Chem.* **2006**, 49, 26, 7623–7635.

((2*R*,3*S*,5*R*)-3-((*tert*-Butyldimethylsilyl)oxy)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl (2,4-dimethylphenyl) (*R*)-phenylphosphonate (**29**)

29 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 3'-OTBS- thymidine²² (53.5 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 150 μ L, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 48 h. CH₂Cl₂:MeOH 95:5. Colourless oil (42.0 mg, 0.07 mmol, 70% yield, >95:5 dr).

[**α**]**p**²⁵ = +23.4 (c = 0.86, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.88 (ddt, J = 13.8, 6.9, 1.4 Hz, 2H), 7.66 – 7.60 (m, 1H), 7.53 – 7.47 (m, 2H), 7.34 (q, J = 1.2 Hz, 1H), 7.07 (dd, J = 8.3, 1.5 Hz, 1H), 6.99 – 6.92 (m, 1H), 6.86 (dd, J = 8.3, 2.3 Hz, 1H), 6.30 (dd, J = 7.9, 5.8 Hz, 1H), 4.42 (dt, J = 5.9, 2.8 Hz, 1H), 4.34 – 4.30 (m, 3H), 4.06 (td, J = 3.0, 2.0 Hz, 1H), 2.28 – 2.15 (m, 7H), 1.94 (ddd, J = 13.7, 7.9, 6.2 Hz, 1H), 1.72 (d, J = 1.2 Hz, 3H), 0.86 (s, 9H), 0.05 (s, 2H), 0.04 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 150.4, 146.8 (d, J = 7.5 Hz), 135.3, 134.8, 133.4 (d, J = 3.1 Hz), 132.2, 131.9 (d, J = 10.4 Hz), 129.0, 128.9, 127.6, 127.2 (d, J = 190.9 Hz), 119.9 (d, J = 2.5 Hz), 111.3, 85.7 (d, J = 7.8 Hz), 85.1, 72.1, 65.6 (d, J = 5.6 Hz), 41.0, 25.7, 20.8, 18.0, 16.7, 12.4, -4.6, -4.8; ³¹P NMR (162 MHz, CDCl₃) δ 16.04; **IR** (film) ν_{max} /cm⁻¹: 2928, 2856, 1688, 1498, 1470, 1440, 1251, 1149, 1131, 1117, 1086, 1033, 950, 910, 834, 780, 754, 696; **HRMS** (ESI+): calcd. for C₃₀H₄₂N₂O₇PSi 601.2493 [M+H]⁺, found 601.2490.

²² X-F. Zhu; H. J. Williams; A.I Scott J. Chem. Soc. Perkin 1 2000, 2305-2306.

((2*R*,5*R*)-3-((tert-butyldimethylsilyl)oxy)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-4fluoro-4-methyltetrahydrofuran-2-yl)methyl (2,4-dimethylphenyl) (*R*)-phenylphosphonate (**30**)

30 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 3'-OTBS-2'-deoxy-2'- α -fluoro-2'- β -C-methyluridine²³ (56.2 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 150 µL, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 2 h. CH₂Cl₂:MeOH 19:1. Pale yellow oil (22.1 mg, 0.035 mmol, 35% yield, 94:6 dr).

[**α**] \mathbf{p}^{25} = +73.7° (c = 1.0, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 7.95 – 7.81 (m, 2H), 7.70 – 7.61 (m, 1H), 7.58 – 7.51 (m, 2H), 7.43 (d, *J* = 8.2 Hz, 1H), 7.03 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.00 – 6.95 (m, 1H), 6.85 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.16 (d, *J* = 18.8 Hz, 1H), 5.18 (d, *J* = 8.2 Hz, 1H), 4.70 (ddd, *J* = 11.9, 5.5, 2.0 Hz, 1H), 4.31 (ddd, *J* = 11.8, 3.7, 2.0 Hz, 1H), 4.14 (ddt, *J* = 8.3, 3.4, 1.7 Hz, 1H), 3.94 (dd, *J* = 21.2, 9.1 Hz, 1H), 2.24 (s, 3H), 2.20 (s, 3H), 1.31 (d, *J* = 21.0 Hz, 3H), 0.91 (s, 8H), 0.14 (s, 3H), 0.14 (s, 3H).; ¹³C NMR (151 MHz, CDCl₃) δ 162.6, 150.1, 146.6 (d, *J* = 7.1 Hz), 138.7, 134.8, 133.5 (d, *J* = 3.1 Hz), 132.2, 132.0 (d, *J* = 10.3 Hz), 129.0 (d, *J* = 15.4 Hz), 128.7 (d, *J* = 5.5 Hz), 127.5, 126.8 (d, *J* = 190.0 Hz), 119.7 (d, *J* = 2.7 Hz), 102.5, 99.3 (d, *J* = 186.9 Hz), 89.3 (d, *J* = 40.8 Hz), 79.7 (d, *J* = 8.5 Hz), 72.4 (d, *J* = 17.3 Hz), 62.7 (d, *J* = 5.3 Hz), 25.6, 20.6, 18.0, 17.1 (d, *J* = 25.8 Hz), 16.6, -4.2, -4.4.; ³¹P NMR (162 MHz, CDCl₃) δ 15.92, 15.86.; ¹⁹F NMR (377 MHz, CDCl₃) δ - 161.36. **IR** (film) ν_{max} /cm⁻¹:2929, 2858, 1697, 1498, 1455, 1380, 1264, 1199, 1157, 1131, 1118, 1098, 1036, 950, 910, 859, 839, 779, 733, 695, 622; **HRMS** (ESI+): calcd. for C₃₀H₄₁N₂O₇PFSi 619.2399 [M+H]⁺, found 619.2399.

²³ U. Pradere; F. Amblard; S. J. Coats; R. F. Schinazi Org. Lett. 2012, 14, 17, 4426-4429.

2,4-Dimethylphenyl (((3aR,4R,6R,6aR)-6-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl) (*R*)-phenylphosphonate (**31**)

31 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 2',3'-isopropylideneuridine²⁴ (31.0 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 150 μ L, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 2 h. CH₂Cl₂:Acetone 10:1 to 5:1. Colourless oil (37.7 mg, 0.071 mmol, 71% yield, >95:5 dr).

 $[α]p^{25} = +4.5$ (c = 1.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.87 (dd, J = 13.8, 6.8 Hz, 2H), 7.65 – 7.55 (m, 1H), 7.54 – 7.44 (m, 2H), 7.23 (d, J = 8.1 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 6.95 (s, 1H), 6.87 (d, J = 8.3 Hz, 1H), 5.78 (d, J = 2.8 Hz, 1H), 5.51 (d, J = 8.1 Hz, 1H), 4.79 (dd, J = 6.5, 2.3 Hz, 1H), 4.67 (dd, J = 6.5, 2.8 Hz, 1H), 4.37 (m, 3H), 2.23 (s, 3H), 2.19 (s, 3H), 1.55 (s, 3H), 1.32 (s, 3H).;¹³C NMR (101 MHz, CDCl₃) 163.3, 150.0, 146.7 (d, J = 7.9 Hz), 140.9, 134.7, 133.3 (d, J = 3.1 Hz), 132.1, 131.9 (d, J = 10.3 Hz), 128.8 (d, J = 5.7 Hz), 128.8 (d, J = 15.5 Hz), 127.5, 127.0 (d, J = 192 Hz), 119.8 (d, J = 2.7 Hz), 114.6, 102.5, 93.0, 84.9 (d, J = 7.2 Hz), 84.4, 80.5, 65.9 (d, J = 4.6 Hz), 27.1, 25.2, 20.7, 16.6; ³¹P NMR (162 MHz, CDCl₃) δ 16.09 (minor), 15.94 (major); IR (film) $ν_{max}$ /cm⁻¹:2897, 1693, 1498, 1456, 1381, 1253, 1201, 1118, 1068, 949, 909, 754, 696; HRMS (ESI+): calcd. for C₂₆H₃₀N₂O₈P 529.1740 [M+H]⁺, found 529.1733.

²⁴ A. E. Ragab; S. Grüschow; D. R. Tromans; R. J. M. Goss J. Am. Chem. Soc. **2011**, 133, 39, 15288–15291.

((3aR,4R,6R,6aR)-6-(6-Amino-9H-purin-9-yl)-2,2-dimethyltetrahydrofuro[3,4d][1,3]dioxol-4-yl)methyl (2,4-dimethylphenyl) (*R*)-phenylphosphonate (**32**)

32 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 2',3'-isopropylideneadenosine²⁵ (45.0 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 150 μ L, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 16 h. CH₂Cl₂:MeOH 95:5. Colourless oil (26.4 mg, 0.048 mmol, 48% yield, >95:5 dr).

 $[a]_{p^{25}} = -53.6 (c = 1.00, CHCl_3); {}^{1}H NMR (500 MHz, CDCl_3) \delta 8.41 (d, <math>J = 12.3 Hz, 2H$), 8.18 - 8.06 (m, 3H), 7.58 - 7.49 (m, 1H), 7.46 (dtd, J = 8.8, 4.5, 2.6 Hz, 2H), 7.19 (dd, J =8.4, 1.4 Hz, 1H), 7.00 - 6.86 (m, 1H), 6.81 (dd, J = 8.3, 2.3 Hz, 1H), 5.90 (d, J = 4.4 Hz, 1H), 5.85 - 5.72 (m, 1H), 5.09 (dd, J = 5.9, 4.4 Hz, 1H), 5.04 (dd, J = 5.8, 1.3 Hz, 1H), 4.51 (q, J =1.7 Hz, 1H), 3.90 (dt, J = 12.6, 2.0 Hz, 1H), 3.75 (ddd, J = 12.4, 10.0, 2.1 Hz, 1H), 2.34 (s, 3H), 2.22 (s, 3H), 1.63 (s, 3H), 1.36 (s, 3H); ${}^{13}C NMR (126 MHz, CDCl_3) \delta 152.0, 151.8146.8$ (d, J = 8.8 Hz), 142.5, 134.5, 132.8 (d, J = 3.1 Hz), 132.5 (d, J = 11.0 Hz), 129.5 (d, J = 6.1 Hz), 129.4 (d, J = 183.2 Hz), 128.4 (d, J = 15.7 Hz), 127.5, 119.9 (d, J = 3.3 Hz), 114.2, 94.1, 83.7, 81.8, 63.3, 27.7, 25.4, 20.8, 16.9; ${}^{31}P NMR (162 MHz, CDCl_3) \delta 12.93$; **IR** (film) v_{max}/cm^{-1} : 2924, 1606, 1586, 1498, 1461, 1440, 1383, 1203, 1154, 1118, 1082, 1036, 951, 911, 706, 694, 695; **HRMS** (ESI+): calcd. for C₂₇H₃₀N₅O₆P 552.2006 [M+H]⁺, found 552.2007.

²⁵ F. Ishikawa; H. Kakeya *Bioorganic and Medicinal Chemistry Letters*, **2014**, 24, 865-869.

(3aR, 5R, 6S, 6aR) - 5 - ((R) - 2, 2 - Dimethyl - 1, 3 - dioxolan - 4 - yl) - 2, 2 - dimethyl tetrahydrofuro [2, 3 - 2,

<u>d</u>[1,3]dioxol-6-yl (2,4-dimethylphenyl) phenylphosphonate (**33**)

33 was synthesised following **GP IV**. 1 (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, diacetone D-glucose (39.0 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 75.0 μ L, 0.150 mmol) as base in THF (0.500 mL) at 23 °C for 24 h. Pentane:EtOAc 7:3. Colourless oil (48.9 mg, 0.096 mmol, 96% yield, >95:5 dr).

[α] \mathbf{p}^{25} = - 50.8 (c = 0.43, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃)δ 7.97 - 7.82 (m, 2H), 7.57 - 7.45 (m, 1H), 7.47 - 7.35 (m, 2H), 7.10 (dd, *J* = 8.2, 1.5 Hz, 1H), 6.93 (t, *J* = 1.5 Hz, 1H), 6.87 (dd, *J* = 8.3, 2.2 Hz, 1H), 5.62 (d, *J* = 3.5 Hz, 1H), 4.77 (dd, *J* = 7.3, 2.6 Hz, 1H), 4.32 (d, *J* = 3.5 Hz, 1H), 1, 4.08 - 3.97 (m, 2H), 3.94 (dd, *J* = 8.5, 5.9 Hz, 1H), 3.83 (dd, *J* = 8.5, 5.3 Hz, 1H), 2.20 (s, 3H), 2.17 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H), 1.12 (s, 3H), 1.08 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 146.5 (d, *J* = 8.7 Hz), 134.9 (d, *J* = 1.3 Hz), 133.0 (d, *J* = 3.2 Hz), 132.2 (d, *J* = 10.3 Hz), 132.0, 129.5 (d, *J* = 5.0 Hz), 128.4 (d, *J* = 15.6 Hz), 127.4, 127.0 (d, *J* = 193.92 Hz), 120.8 (d, *J* = 2.9 Hz), 112.2, 109.2, 105.1, 83.6, 80.7 (d, *J* = 8.5 Hz), 78.9 (d, *J* = 5.0 Hz), 77.2, 72.1, 67.43, 26.7, 26.6, 26.0, 25.0, 20.6, 16.5; ³¹P NMR (162 MHz, CDCl₃) δ 16.54 (major), 14.36 (minor); **IR** (film) ν_{max}/cm^{-1} :1498, 1440, 1373, 1262, 1201, 1164, 1131, 1075, 1021, 949, 904, 842, 751, 695; **HRMS** (ESI+): calcd. for C₂₆H₃₃NaO₈P 527.1811 [M+Na]⁺, found 527.1803.

(2R,3S,5R)-2-(((*tert*-Butyldimethylsilyl)oxy)methyl)-5-(5-methyl-2,4-dioxo-3,4dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl (2,4-dimethylphenyl) (*R*)phenylphosphonate (**34**)

34 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 5'-OTBS-thymidine²⁶ (53.5 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 150 μ L, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 16 h. CH₂Cl₂:MeOH 95:5. Colourless oil (42.6 mg, 0.071 mmol, 71% yield, >95:5 dr).

[*α*] \mathbf{p}^{25} = -5.3 (c = 0.95, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.90 (ddt, *J* = 13.9, 6.9, 1.4 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.54 – 7.47 (m, 2H), 7.45 (d, *J* = 1.4 Hz, 1H), 7.13 (dd, *J* = 8.2, 1.5 Hz, 1H), 6.97 (d, *J* = 2.4 Hz, 1H), 6.90 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.37 (dd, *J* = 9.1, 5.2 Hz, 1H), 5.19 – 5.02 (m, 1H), 4.14 (q, *J* = 1.9 Hz, 1H), 3.80 (dd, *J* = 11.5, 2.0 Hz, 1H), 3.69 (dd, *J* = 11.5, 2.2 Hz, 1H), 2.49 – 2.35 (m, 1H), 2.25 (s, 3H), 2.22 (s, 3H), 2.02 (dddd, *J* = 13.7, 9.2, 5.8, 1.5 Hz, 1H), 1.89 (d, *J* = 1.3 Hz, 3H), 0.87 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 150.6, 146.5 (d, *J* = 8.4 Hz), 135.0, 134.8, 133.2 (d, *J* = 3.1 Hz), 132.2, 131.9 (d, *J* = 10.3 Hz), 129.3 (d, *J* = 5.3 Hz), 128.8 (d, *J* = 15.6 Hz), 127.6 (d, *J* = 192.6 Hz), 127.5 (d, *J* = 1.7 Hz), 120.4 (d, *J* = 2.7 Hz), 111.3, 86.3 (d, *J* = 3.6 Hz), 84.6, 77.6 (d, *J* = 5.5 Hz), 63.2, 39.7, 39.6, 26.0, 20.7, 18.4, 16.6, 12.6, -5.4, -5.4; ³¹P NMR (162 MHz, CDCl₃) δ 15.93; **IR** (film) ν_{max}/cm^{-1} : 2929, 1687, 1497, 1496, 1262, 1198, 1130, 1071, 1009, 974, 950, 908, 832, 781, 733, 697, 625; **HRMS** (ESI+): calcd. for C₃₀H₄₂N₂O₇PSi 601.2493 [M+H]⁺, found 601.2488.

²⁶ J. Wu; R. M. Bär; L. Guo; A. Noble; V. K. Aggarwal Angew. Chem. Int. Ed 2019, 58, 18830-18834.

35 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, 1-propanethiol (28.0 μ L, 0.300 mmol) used as nucleophile and DBU (45.0 μ L, 0.300 mmol) as base in THF (0.500 mL) at 23 °C for 2 h. Pentane:EtOAc 8:2. Colourless oil (19.2 mg, 0.06 mmol, 60% yield, 90% e.e.).

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 95/5, 1 mL/min, λ = 220 nm, t (major) = 23.18 min, t (minor) = 25.89 min.

[α] \mathbf{p}^{25} = - 41.8 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 7.98 - 7.86 (m, 2H), 7.56 - 7.46 (m, 1H), 7.50 - 7.37 (m, 2H), 7.23 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.97 - 6.91 (m, 1H), 6.91 - 6.82 (m, 1H), 2.69 (dtd, *J* = 12.5, 7.2, 5.2 Hz, 2H), 2.21 (s, 3H), 2.20 (s, 3H), 1.47 (h, *J* = 7.4 Hz, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.1 (d, *J* = 10.1 Hz), 134.6, 133.0 (d, *J* = 153 Hz), 132.7 (d, *J* = 3.2 Hz), 132.3, 132.0, 131.3 (d, *J* = 10.7 Hz), 129.2 (d, *J* = 5.5 Hz), 128.6 (d, *J* = 15.0 Hz), 127.4, 120.7 (d, *J* = 3.3 Hz), 32.6 (d, *J* = 2.5 Hz), 24.1 (d, *J* = 5.3 Hz), 20.7, 16.8, 13.1; ³¹P NMR (162 MHz, CDCl₃) δ 42.82; **IR** (film) ν_{max}/cm^{-1} :1495, 1438, 1280, 1195, 1149, 1114, 941, 895, 816, 720, 694; **HRMS** (ESI+): calcd. for C₁₇H₂₂O₂PS 321.1078 [M+H]⁺, found 321.1073.

36 was synthesised following **GP IV**. **1** (39.7 mg, 0.100 mmol, 92% e.e.) was used as phosphonate, *tert*-butyl benzylcarbamate (42.6 mg, 0.150 mmol) used as nucleophile and *t*-BuMgCl (2 *M* in Et₂O, 75 μ L, 0.15 mmol) as base in THF (0.500 mL) at 23 °C for 2 h. Pentane:EtOAc 8:2. Colourless oil (36.9 mg, 0.084 mmol, 84% yield, 93% e.e.).

HPLC Conditions: CHIRALPAK OD-H, hexane/isopropanol = 99/1, 1 mL/min, λ = 220 nm, t (major) = 23.61, t (minor) = 31.84 min.

[α] \mathbf{p}^{25} = - 47.1 (c = 1.0, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 7.72 - 7.60 (m, 2H), 7.49 - 7.39 (m, 1H), 7.39 - 7.28 (m, 4H), 7.23 - 7.13 (m, 3H), 6.96 - 6.88 (m, 2H), 6.77 (dd, J = 8.3, 2.2 Hz, 1H), 4.89 - 4.74 (m, 2H), 2.20 (s, 3H) 2.17 (s, 3H), 1.11 (s, 9H); ¹³**C** NMR (101 MHz, CDCl₃) δ 153.5 (d, J = 6.4 Hz), 146.5 (d, J = 8.8 Hz), 138.6, 134.4, 132.1, 132.0, 131.2 (d, J = 10.6 Hz), 131.0 (d, J = 193 Hz), 129.4 (d, J = 5.5 Hz), 128.9, 128.22, 128.17 (d, J = 15.9 Hz), 127.4, 127.3, 120.1 (d, J = 3.2 Hz), 83.0, 48.5 (d, J = 2.1 Hz), 27.8, 20.7, 16.7; ³¹**P** NMR (162 MHz, CDCl₃) δ 16.08; **IR** (film) ν_{max}/cm^{-1} :1717, 1497, 1439, 1368, 1292, 1249, 1199, 1157, 1125, 1092, 1062, 945, 906, 853, 814, 739, 695; **HRMS** (ESI+): calcd. for C₂₆H₃₀NNaO₄P 474.1810 [M+Na]⁺, found 474.1805.

6 (55.6 mg, 0.10 mmol, 91% e.e.) was dissolved in CH₂Cl₂ (900 μ L) and TFA (38.3 μ L, 57.0 mg, 0.5 mmol) was added dropwise and the reaction was stirred at 23 °C for 10 min. The solution was passed through a short plug of NaHCO₃ and MgSO₄ and evaporated to dryness. The crude deprotected compound was dissolved in THF (1 mL) and cooled to 0 °C after which *t*-BuMgCl (2 *M* in Et₂O, 75 μ L, 0.15 mmol) was added dropwise and the reaction was stirred at 23 °C for 20 min. Upon completion by TLC the reaction solution was loaded directly onto silica gel for silica gel chromatography. Pentane:EtOAc 1:1. Colourless oil (18.5 mg, 0.067 mmol, 67% yield, 84% e.e.).

HPLC Conditions: CHIRALPAK IA, hexane/isopropanol = 80/20, 1 mL/min, $\lambda = 220$ nm, t (major) = 17.54 min, t (minor) = 20.01 min.

[α] $b^{25} = -17.5$ (c = 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 - 7.52 (m, 2H), 7.26 (tdd, J = 8.1, 4.3, 1.9 Hz, 1H), 7.12 - 7.02 (m, 2H), 7.02 - 6.96 (m, 1H), 6.92 - 6.82 (m, 2H), 5.48 (ddd, J = 13.8, 9.3, 1.0 Hz, 1H), 5.08 (dd, J = 18.7, 13.8 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (d, J = 3.6 Hz), 150.7 (d, J = 7.6 Hz), 134.3, 134.1, 130.1, 125.8, 122.9 (d, J = 8.7 Hz), 118.8 (d, J = 7.2 Hz), 117.5 (d, J = 202.3 Hz), 114.4 (d, J = 17.1 Hz), 66.4 (d, J = 6.8 Hz), 55.5; ³¹P NMR (162 MHz, CDCl₃) δ 14.01; **IR** (film) $ν_{max}/cm^{-1}$: 2933, 1598, 1505, 1488, 1459, 1253, 1191, 1130, 1106, 1015, 1987, 911, 826, 797, 758, 729; **HRMS** (ESI+): calcd. for C₁₄H₁₃O₄P 277.0624 [M+H]⁺, found 277.0624.

NMR Spectra

Compound B1

¹H NMR (400 MHz, DMSO-*d*₆):

¹³C NMR (101 MHz, DMSO-*d*₆):

Compound B12

¹H NMR (400 MHz, DMSO-*d*₆):

¹³C NMR (101 MHz, DMSO-*d*₆):

Compound B13

¹H NMR (400 MHz, DMSO-*d*₆):

¹³C NMR (101 MHz, DMSO-*d*₆):

Compound P-LGS1

¹H NMR (400 MHz, CDCl₃):

Compound P-LG1

¹H NMR (400 MHz, CDCl₃):

Compound P-LG2

Compound P-LG3

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

Compound P8

Compound P9

¹H NMR (400 MHz, CDCl₃):

Compound P10

¹⁹F NMR (377 MHz, CDCl₃)::

Compound P11

Compound P12

¹H NMR (400 MHz, CDCl₃):

Compound P13

Compound P14

Compound LGS1

Compound LG1

¹H NMR (400 MHz, CDCl₃):

Compound LG2

¹H NMR (400 MHz, CDCl₃):

Compound LG3

¹H NMR (400 MHz, CDCl₃):

Compound 1

¹H NMR (400 MHz, CDCl₃):

Compound 2

¹H NMR (400 MHz, CDCl₃):

Compound 3

Compound 4

¹H NMR (400 MHz, CDCl₃):

Compound 5

¹H NMR (400 MHz, CDCl₃):

Compound 6

Compound 7

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

³¹P NMR (162 MHz, CDCl₃) (enantioenriched):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹⁹F NMR (377 MHz, CDCl₃):

³¹P NMR (162 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

Compound 26

¹H NMR (500 MHz, DMSO-*d*₆):

³¹P NMR (202 MHz, DMSO-*d*₆):

Compound 27

¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (377 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) (using rac-1 as SM):

¹³C NMR (101 MHz, CDCl₃) (enantioenriched):

¹H NMR (500 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃) (using *rac*-1 as SM):

¹³C NMR (101 MHz, CDCl₃) (enantioenriched):

³¹P NMR (162 MHz, CDCl₃) (enantioenriched):

¹H NMR (400 MHz, CDCl₃):

¹H NMR (400 MHz, CDCl₃):

HPLC Traces:

Compound LGS1

HPLC Conditions: CHIRALPAK IB, hexane/isopropanol = 90/10, 1 mL/min, λ = 220 nm

Racemic

Реак	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	010
1	11.745 VV	0.2612	9642.29980	553.73511	50.9983
2	12.784 VV	0.2804	9264.81152	494.91238	49.0017

Compound LG1

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 240 nm

Racemic

Totals	:	6.02314e4	1829.02771
TOCATO	•	0.0201404	1022.02111

Enantioenriched

Compound LG2

SFC Conditions: CHIRALPAK ID, 1500 psi, 30 °C, flow : 1.5 mL/min, from 1% to 30% MeOH in 5 mins, $\lambda = 220$ nm, t (minor) = 3.99 min, t (major) = 4.14 min

Racemic

Enantioenriched

Compound LG3

HPLC Conditions: CHIRALPAK AS-H, hexane/isopropanol = gradient 98/2 to 70/30 over 40 min, 1 mL/min, λ = 220 nm

Racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	16.189	VV	0.4116	8045.51904	295.51743	49.7753
2	17.628	VB	0.4593	8118.15918	253.69937	50.2247

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	20
1	16.502	BV	0.3910	522.44519	19.72477	5.8219
2	17.788	VB	0.5330	8451.36621	248.35152	94.1781

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm

Racemic

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	17.167	BB	0.4168	2.18939e4	796.24591	96.0612
2	28.276	BB	0.6968	897.72900	19.80774	3.9388

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm

Racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	19.903	BB	0.4958	2028.71521	61.99711	50.7259
2	22.563	BB	0.5536	1970.65430	54.52973	49.2741

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	olo	
1	19.938	BV	0.4892	744.75775	23.15643	5.8621	
2	22.549	VB	0.5672	1.19598e4	323.55609	94.1379	

SFC Conditions: CHIRALPAK IC, 1500 psi, 30 °C, flow : 1.5 mL/min, from 1% to 30% MeOH in 5 mins, $\lambda = 220$ nm, t (major) = 4.03 min, t (minor) = 4.16 min

Enantioenriched

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, λ = 220 nm

Racemic

Pea	k	RetTime	Туре	Width	Area	Height	Area
#		[min]		[min]	[mAU*s]	[mAU]	%
	-						
	1	13.009	VV	0.3050	9601.35059	480.67285	49.6219
	2	13.884	VB	0.3265	9747.65234	453.97797	50.3781

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	13.024	BV	0.3083	2.27408e4	1132.22363	95.3855
2	13.885	VB	0.3315	1100.15039	49.45401	4.6145

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm

Racemic

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	olo	
1	11.065	BB	0.2604	3155.31763	183.65144	49.5629	
2	14.751	BB	0.3558	3210.96851	136.84337	50.4371	

Enantioenriched

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
I						
1	11.031	BB	0.2627	1.97179e4	1146.07458	92.6404
2	14.718	BB	0.3510	1566.44568	67.94541	7.3596

Racemic

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
		-				
1	8.650	BV	0.2030	1471.63525	109.32714	49.8199
2	9.402	VB	0.2208	1482.27271	101.25576	50.1801

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.631	BV	0.2057	1483.18665	108.37539	95.5839
2	9.398	VB	0.2304	68.52556	4.38302	4.4161

HPLC Conditions: CHIRALPAK IA, hexane/isopropanol = 85/15, 1 mL/min, λ = 220 nm

Racemic

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 90/10, 1 mL/min, λ = 220 nm

Racemic

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, λ = 220 nm

#	[min]		[min]	[mAU*s]	[mAU]	010
I						
1	9.804	BB	0.2428	2084.09766	130.13499	50.1572
2	11.312	BB	0.2891	2071.03394	109.30006	49.8428

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.745	BB	0.2449	2.00372e4	1237.26550	98.0044
2	11.277	BV	0.2899	408.01013	21.45067	1.9956

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm

Racemic

						-
1	9.402	BB	0.2322	4240.64258	277.5808	7 84.7654
2	10.672	BB	0.2651	762.15485	43.3443	0 15.2346

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30, 1 mL/min, λ = 220 nm

Racemic

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	17.724	BB	0.5416	7842.09229	215.98657	98.4761
2	21.940	BB	0.5821	121.35773	3.20276	1.5239

HPLC Conditions: CHIRALPAK AS-H, hexane/isopropanol = 90/10, 1 mL/min, λ = 220 nm

Racemic

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	8.933	VV	0.3042	1.60199e4	797.94836	91.9739
2	11.148	BB	0.4262	1397.98279	50.00701	8.0261

HPLC Conditions: CHIRALPAK AS-H, hexane/isopropanol =90/10, 1 mL/min, λ = 220 nm

Racemic

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
I						I
1	6.746	VV	0.2179	1.35665e4	942.75897	96.4896
2	7.388	VB	0.2427	493.56995	30.19668	3.5104

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm, t (major) = 11.11 min, t (minor) = 12.95 min

Racemic

1 11.107 736.1 43.5 0.2576 50.098	o y malody
2 12 052 722 2 20 0 0 2017 10 002	0.73
2 12.353 733.2 36.6 0.3017 49.902	0.743

	#	Time	Area	Height	Width	Area%	Symmetry
ſ	1	11.055	528.8	32	0.2509	23.032	0.749
	2	12.86	1767.2	88.3	0.3035	76.968	0.737

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 220$ nm

Racemic

0.3706 9731.44141 401.72116 50.0360

Enantioenriched

2 14.956 BB

геак	Retiime	rype	WIGCH	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
						I
1	12.426	BB	0.3049	5352.95215	268.15628	97.1945
2	15.353	BB	0.3802	154.51390	6.25500	2.8055

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm

Racemic

rear	Recitie	TAbe	WIGCH	ALCA	nergiic	ALCa	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	13.060	VV	0.2838	1.55022e4	822.68829	93.7807	
2	14.528	VB	0.3181	1028.06995	48.73454	6.2193	

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30, 1 mL/min, λ = 220 nm

Racemic

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm

Racemic

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	15.051	BB	0.3835	4163.83008	166.64192	49.9869
2	22.466	BB	0.5836	4166.00635	109.55894	50.0131

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	15.189	BB	0.3876	331.40750	13.08106	7.1116
2	22.720	BB	0.5966	4328.71484	111.58073	92.8884

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm

Racemic

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	12.873	BB	0.3075	1119.27466	54.98465	11.3094
2	14.844	BB	0.4011	8777.58789	322.89600	88.6906

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30 1 mL/min, λ = 220 nm

Racemic

2

15.486 BB

4.77062

3.9922

0.3846 118.80994

SFC Conditions: CHIRALPAK ID, 1500 psi, 30 °C, flow : 1.5 mL/min, from 1% to 30% MeOH in 5 mins, $\lambda = 220$ nm, t (minor) = 3.91 min, t (major) = 4.22 min

Racemic

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 80/20, 1 mL/min, λ = 220 nm

Racemic

HPLC Conditions: CHIRALPAK IA, hexane/isopropanol = 85/15, 1 mL/min, λ = 220 nm, t (major) = 9.32 min, t (minor) = 15.98 min

Racemic

1 0.010 1045.0 110.4			
1 3.316 1845.6 112.4	0.2475	92.915	0.636
2 15.981 140.7 3.9	0.5258	7.085	0.692

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 70/30, 1 mL/min, λ = 220 nm

Racemic

Enantioenriched

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	11.043	BB	0.2754	1.37025e4	756.26678	95.7056
2	17.813	BB	0.4619	614.84375	20.27009	4.2944
Total	ls :			1.43174e4	776.53688	

HPLC Conditions: CHIRALPAK AD-H, hexane/isopropanol = 95/5, 1 mL/min, λ = 220 nm

Racemic

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
						I
1	23.263	BB	0.5196	5724.74658	167.14967	50.0092
2	26.001	BB	0.5788	5722.63330	150.77969	49.9908

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	23.182	BB	0.5189	1.02620e4	300.09662	94.6119
2	25.892	BB	0.5763	584.41821	15.48411	5.3881

HPLC Conditions: CHIRALPAK OD-H, hexane/isopropanol = 99/1, 1 mL/min, λ = 220 nm

Racemic

HPLC Conditions: CHIRALPAK IA, hexane/isopropanol = 80/20, 1 mL/min, $\lambda = 220$ nm

Racemic

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	17.201	BB	0.4588	3965.88916	128.23767	49.9892
2	19.420	BB	0.5082	3967.59766	115.09001	50.0108

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	17.548	BB	0.4975	5380.30664	159.52045	91.9845
2	20.013	BB	0.5693	468.83838	12.39367	8.0155

Single Crystal X-Ray Diffraction Data

Low temperature ²⁷ single crystal X-ray diffraction data were collected using a Rigaku Oxford Diffraction SuperNova diffractometer. Raw frame data were reduced using CrysAlisPro and the structures were solved using 'Superflip'²⁸ before refinement with CRYSTALS²⁹ as per the SI (CIF). Full refinement details are given in the Supporting Information (CIF); Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 2097043-44) and can be obtained via www. ccdc.cam.ac.uk/data_request/cif.

Compound 1 (CCDC: 2097043)

²⁷ Cosier J.; Glazer, A. M. J. Appl. Cryst., 1986, 19, 105-107.

²⁸ Palatinus, L.; Chapuis, G. J. Appl. Cryst., **2007**, 40, 786-790.

²⁹ (a) Parois P.; Cooper, R. I.; Thompson, A. L. Chem. Cent. J., **2015**, *9*, 30. (b) Cooper, R. I.; Thompson, A.

L.; Watkin, D. J. J. Appl. Cryst. 2010, 43, 1100-1107.

Table S2. Crystal data and structure refinement for 1.

Identification code	1 - 7381		
Empirical formula	C21 H20 N O5 P		
Formula weight	weight 397.37		
Temperature	150 K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P 2 ₁		
Unit cell dimensions	a = 7.85800(10) Å	$\alpha = 90^{\circ}$.	
	b = 10.65460(10) Å	β= 102.0500(14)°.	
	c = 12.0478(2) Å	$\gamma = 90^{\circ}.$	
Volume	986.46(2) Å ³		
Z	2		
Density (calculated)	1.338 Mg/m ³		
Absorption coefficient	1.515 mm ⁻¹		
F(000)	416		
Crystal size	0.10 x 0.05 x 0.02 mm ³		
Theta range for data collection	3.752 to 76.371°.		
Index ranges	-9<=h<=9, -13<=k<=13, -15<=l<=14		
Reflections collected	21118		
Independent reflections	tions $4101 [R(int) = 0.042]$		
Completeness to theta = 76.371°	99.7 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.97 and 0.86		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4101 / 1 / 254		
Goodness-of-fit on F ²	1.0009		
Final R indices [I>2sigma(I)]	R1 = 0.0257, wR2 = 0.0668		
R indices (all data) $R1 = 0.0263, wR2 = 0.0674$			
Absolute structure parameter 0.000(7)			
Largest diff. peak and hole	0.05 and -0.05 e.Å ⁻³		

Compound 37 (CCDC: 2097044)

Table S3. Crystal data and structure refinement for	or 37.			
Identification code 37 - 7379				
Empirical formula	irical formula C14 H13 O4 P			
Formula weight	276.23			
Temperature	150 K			
Wavelength	1.54184 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 15.0390(3) Å	α= 90°.		
	b = 5.80870(10) Å	β=115.683(2)°.		
	c = 15.9467(3) Å	$\gamma = 90^{\circ}.$		
Volume	1255.43(5) Å ³			
Z	4			
Density (calculated)	1.461 Mg/m ³			
Absorption coefficient	2.027 mm ⁻¹			
F(000)	575.997			
Crystal size	0.23 x 0.20 x 0.19 mm ³			
Theta range for data collection	3.261 to 75.971°.			
Index ranges	-18<=h<=18, -7<=k<=7, -17<=	=1<=20		
Reflections collected	17317			
Independent reflections	5177 [R(int) = 0.024]			
Completeness to theta = 75.971°	99.5 %			
Absorption correction	Semi-empirical from equivalen	ts		
Max. and min. transmission	0.68 and 0.64			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	5171 / 1 / 344			
Goodness-of-fit on F ²	ness-of-fit on F^2 1.0165			
Final R indices [I>2sigma(I)]	Final R indices [I>2sigma(I)] $R1 = 0.0284, wR2 = 0.0781$			
R indices (all data)	R1 = 0.0288, wR2 = 0.0785			
Absolute structure parameter	0			
Largest diff. peak and hole	0.23 and -0.24 e.Å ⁻³			