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Abstract: Global warming is an environmental problem that cannot be ignored. High temperatures
seriously affect the normal growth and development of plants, and threaten the development of
agriculture and the distribution and survival of species at risk. Plants have evolved complex but
efficient mechanisms for sensing and responding to high temperatures, which involve the activation
of numerous functional proteins, regulatory proteins, and non-coding RNAs. These mechanisms
consist of large regulatory networks that regulate protein and RNA structure and stability, induce Ca2+

and hormone signal transduction, mediate sucrose and water transport, activate antioxidant defense,
and maintain other normal metabolic pathways. This article reviews recent research results on the
molecular mechanisms of plant response to high temperatures, highlighting future directions or
strategies for promoting plant heat tolerance, thereby helping to identify the regulatory mechanisms
of heat stress responses in plants.
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1. Introduction

The ambient air temperature caused by global warming continues to rise, which makes
high-temperature stress ever more serious. High-temperature stress not only restricts the
growth and development of plants, but also reduces the yield of crops, threatens food
security, and endangers human life. Each plant has its own optimum temperature for each
stage of growth and development. The optimum temperature for rice seed germination, for
example, is 28–32 ◦C, whereas the optimum temperature at the heading stage is 25–35 ◦C.
Stress caused by supra-optimal temperature leads to the loss of yield and grain quality [1,2].
Plants have evolved a number of cellular and physiological mechanisms by which to cope
with high-temperature stress. The cell membrane system is central to thermal damage
and resistance. High-temperature stress damages the cell membrane lipids of plants,
causes an increase in membrane permeability, and affects the thermal conductivity of the
membrane stability and osmoregulation, eventually leading to cell death [3,4]. Studies
have pointed out that high-temperature stress significantly inhibits the photosynthetic
rate and respiration [5]. High temperatures disrupt the balance between the production
and scavenging of reactive oxygen species (ROS) in cells, resulting in the accumulation of
oxides such as H2O2 and malondialdehyde (MDA), exposing plants to oxidative damage
during oxidative stress [6,7].

So far, a large amount of published research has described the molecular mecha-
nisms of plant response to high-temperature stress (Figure 1, Tables 1 and 2). Many heat
stress-induced genes have been identified based on microarray and RNA-sequencing
analyses in Arabidopsis (Arabidopsis thaliala) and rice (Oryza sativa), and among various
plant species [8,9]. Their gene products can be divided into three groups. The first group
includes proteins that most probably function in heat stress tolerance, including ubiqui-
tin ligases, RNA helicases, heat shock proteins (Hsps), ion transporters, and aquaporins
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(AQPs) [10–13]. Heat stress causes metabolic alterations affecting protein and RNA stabil-
ity. Hsps, ubiquitin ligases, and RNA helicase play important roles in protein and RNA
metabolism under heat stress. Heat stress affects the expression of membrane channel
proteins (such as AQPs and SUTs) involved in the transport of water, small solutes, and
carbohydrates. The second group is comprised of regulatory proteins, such as receptor-like
protein kinases (RLKs), mitogen-activated protein kinases, calcium-dependent protein
kinases (CDPKs), transcription factors, and so on [7,14,15]. They play important roles in
the regulation of signal transduction, such as heat-responsive gene expression under condi-
tions of heat stress. In addition, heat stress alters membrane fluidity which activates Ca2+

channels, resulting in an influx of Ca2+ [16]. Ca2+ signals are transduced by Ca2+ sensors to
different substrates, activating signal transduction pathways in plants in response to heat
stress [7,15]. Under heat stress, low concentrations of hormones as a signal molecule can
regulate various physiological and biochemical reactions of plants [17]. The third group
includes products such as non-coding RNAs (ncRNAs) that can also regulate heat stress
response, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) [18,19].
MiRNAs and lncRNAs can interact with other molecules (DNA, RNA, and proteins) to
achieve the internal regulatory lncRNA-miRNA-mRNA network and hence improve the
heat tolerance of plants [20,21].
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Figure 1. Gene networks in plant heat stress response. The large regulatory networks involve genes
related to protein and RNA stability and refolding, Ca2+, NO, and hormone signaling, substance
transport, and antioxidant defense. Heat stress alters membrane fluidity which may activate Ca2+

channels resulting in an influx of Ca2+. Ca2+ signals are transduced by CaM (calmodulin) and CDPK
(calcium-dependent protein kinase), activating signal transduction pathways in plants in response to
heat stress. NO regulates the accumulation of HSPs (heat shock proteins) through AtCaM3. LlWRKY39
interacts with LlCaM3 in a Ca2+-dependent manner through the CaM-binding domain, and it promotes
the expression of LlMBF1c. Under heat stress, HsfA2s are activated by AtPPRT1, OsHIRP1, ERF, and
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miR156. The expression of HsfA2 is activated to upregulate or fine-tune the expression of DREB2
(dehydration response element binding protein 2) and HSPs. As the main functional proteins induced
by heat stress, HSPs and ROS (reactive oxygen species) constitute a complex regulatory network
with CDPK, HsfA2, and some antioxidant enzymes. Both OsHIRP1 and OsDHSRP1 are degraded
by the Ub/26S proteasome system to participate in the HSR (heat stress response) process. Under
heat stress, TOGR1 expression is enhanced in the nucleolus, which helps the rRNA precursor to
effectively fold. TOGR1, CDPK, and TCONS_00260893 protect chlorophyll synthesis under heat
stress. AQPs (aquaporins) and SUTs (sucrose transporters) play important roles in maintaining the
normal transport of water and sucrose under heat stress. In addition, some hormone-related genes
are upregulated to promote hormone synthesis, such as MYB, EIN3, LOX2, AOC, OPR3, JMT, and
WRKY39. Arrows denote the positive while red bars stand for negative interaction.

Table 1. Upregulated genes involved in plant heat stress response.

Plant Gene Protein Function Reference

Arabidopsis thaliala

AtPUB48 Ubiquitin E3 ligase Protein stability and refolding [22]

AtCNGC2, AtCNGC6 CNGC (cyclic nucleotide
gated ion channel) Ca2+ signal transduction [23–27]

WRKY39 WRKY39 Salicylic acid (SA) signal
regulation [28]

miR156 / Protein stability and refolding [18]

Rice (Oryza sativa)

OsHSP18.0 HSP (heat shock protein) Protein stability and refolding [29]

OsHIRP1 Heat-induced RING
finger protein 1 Protein stability and refolding [10]

OsDHSRP1
Drought, Heat and

Salt-induced RING finger
protein 1

Protein stability and refolding [30]

eIF4A1 DEAD-box RNA helicase RNA stability and refolding [31]

TOGR1 DEAD-box RNA helicase RNA stability and refolding [11]

CNGC14, CNGC16 CNGC Ca2+ signal transduction [32]

Apple (Malus domestica) MdATG18 Autophagy-related
proteins Photosynthesis [33]

Cabbage (Brassica rapa) BrRH22 DEAD-box RNA helicase RNA stability and refolding [34]

Camellia azalea CaAPX APX (ascorbate
peroxidase) Antioxidant defense [35]

Grape
(Vitis vinifera) HSFA6B HSF Protein stability and refolding [36]

Jujube
(Ziziphus jujuba Mill.)

HSP17, HSP18, HSP21,
HSP 22, HSP 23, HSP26,
HSP70, HSP83, HSP90,

HSF30, and HSC-2

HSP Protein stability and refolding [37]

Lentil (L. culinaris) AtCDPK4 AtCDPK11
CDPK

(Calcium-dependent
protein kinase)

Ca2+ signal transduction [38]

Lily (Lilium spp.) LlWRKY39 WRKY39 Ca2+ signal transduction [15]

Maize (Zea mays L.)
ZmHsf01 HSF Protein stability and refolding [39]

ZmCDPK7 CDPK Ca2+ signal transduction [7]

Pepper (Capsicum
annuum L.) CaHsfA1d HSF (heat shock factor) Protein stability and refolding [40]
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Table 1. Cont.

Plant Gene Protein Function Reference

poplar (Populus simonii) TCONS_00202587,
TCONS_00260893 / Antioxidant defense [19]

Rhazya stricta Pip2-1, pip1-2, tip21 AQP Substance transport [41]

Sorghum (Sorghum
bicolor) SbHCI1 Heat- and cold-induced

RING finger protein 1 Protein stability and refolding [42]

Wheat (Triticum
aestivum)

TaFBA1 Ubiquitin E3 ligase Protein stability and refolding [43]

TaMYB80 MYB Abscisic acid (ABA) signal
regulation [44]

Tomato
(Solanum lycopersicum)

HsfB1 HSF Protein stability and refolding [45]

SlDEAD31 DEAD-box RNA helicase RNA stability and refolding [46]

SlJA2 Solanum lycopersicum
jasmonic acid 2

Salicylic acid (SA) signal
regulation [47]

Table 2. Downregulated genes involved in plant heat stress response.

Plant Gene Protein Function Reference

Rice OsSUT1 Rice sucrose transport
protein Substance transport [48]

Banana
(Musa acuminata)

miR159 / Hormone regulation [49]

miR396 / Leaf development [49]

Chinese bayberry
(Myrica rubra Sieb. et Zucc.)

Unigene21949_All,
Unigene3820_All,
Unigene8475_All,
Unigene13442_All,

Unigene23855_All, and
Unigene23780_All

Ethylene receptor Ethylene signal regulation [50]

Unigene6615_All,
Unigene12612_All,

Unigene21144_All, and
Unigene24054_All

Ethylene response factors
(ERFs) Ethylene signal regulation [50]

Pepper CaWAKL20 WAK (cell wall-associated
protein kinase) ABA signal regulation [14]

Wheat miR159 / Hormone regulation [51]

Sunflower
(Helianthus annuus) miR396 / Leaf development [52]

Tomato SlDEAD30 DEAD-box RNA helicase RNA stability and refolding [46]

As a consequence, these gene products form regulatory networks that regulate gene
transcription and translation, activate antioxidant defenses, induce signaling pathways,
and maintain near-normal metabolism under stressful circumstances [53]. In this review,
we summarize the information acquired to date about the molecular mechanisms of plant
response to high-temperature stress, thereby helping to identify the detailed regulatory
networks that underlie heat stress response in plants. The specific functions of these genes
in conferring heat stress tolerance are also discussed, mainly in the model plants, Arabidopsis
and rice.
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2. Genes Involved in RNA and Protein Stability
2.1. RNA Helicase

RNA helicase plays an important role in RNA metabolism [54]. It is mainly involved
in the regulation of RNA structure formation, ribosome formation, and RNA and protein
processing. RNA helicase uses the energy released by ATP hydrolysis to transform the
RNA, ribonucleoprotein complex to correctly fold RNA and maintain the RNA dynamic
balance under abiotic stress [11].

The eukaryotic initiation factor-4A1 (eIF4A1) is a DEAD-box RNA helicase protein,
which is known to mediate protein–protein interactions or interactions with ATP or RNA.
Mostly, the binding and hydrolysis of ATP play a major role in RNA binding and duplex
unwinding [55]. The expression of OseIF4A1 was significantly upregulated under heat
stress in rice seedlings [31]. Strong ATP/Mg2+ binding under heat stress suggested a role for
OseIF4A1 in heat response. BrRH22 is a chloroplast-targeted DEAD-box RNA helicase in
Chinese cabbage (Brassica rapa) [34]. The expression of BrRH22 was greatly affected by high-
temperature stress, and a dehydration-responsive element-binding protein 2 (DREB2) was
significantly upregulated in BrRH22-overexpressed Arabidopsis under high-temperature
stress. In addition, SlDEAD30 and SlDEAD31 are two DEAD-box RNA helicases involved
in the abiotic stress response in tomato [46]. SlDEAD30 was highly expressed in roots
and mature leaves, whereas SlDEAD31 was expressed in all the tissues. Under heat stress,
the expression of SlDEAD30 was downregulated, and that of SlDEAD31 was upregulated.
SlDEAD31-overexpressed plants had a higher rate of photosynthesis and maintained a
stable water content under heat stress conditions. In response to heat stress, the survival
rate of SlDEAD31-overexpressed lines was higher than that of the WT, confirming that
SlDEAD31 could improve heat tolerance.

Thermotolerant Growth Required1 (TOGR1) is a DEAD-box RNA helicase that func-
tions as an intrinsic pre-rRNA chaperone in rice, and its expression and activity are en-
hanced by temperature increases [11]. Under heat stress, misfolding occurs in rRNA, which
destroys the interaction between the rRNA precursor and its interacting proteins. At this
time, TOGR1 expression is enhanced in the nucleolus, which helps the rRNA precursor to
effectively fold and interact with corresponding proteins to ensure the normal production
of rRNA. TOGR1-overexpression significantly improved rice growth under heat stress.
In order to study the role of TOGR1 in other crops, Yarra et al. successfully produced
transgenic plants of non-heading Chinese cabbage overexpressing the OsTOGR1 gene [56].
The overexpression of TOGR1 in Chinese cabbage improved the photosynthesis and in-
hibited the photooxidation of chlorophyll, so that transgenic Chinese cabbage maintained
high chlorophyll content under heat stress, indicating that TOGR1 positively regulated
thermotolerance in plants.

2.2. Heat Shock Factors and Heat Shock Proteins

The heat shock factors (Hsfs) and Hsps maintain near-normal cell physiology and
metabolism under heat stress conditions and play key roles in achieving stress tolerance in
plants. Hsfs can recognize the heat shock element in the upstream promoter region of Hsp
genes involved in the heat stress response, and upregulate their transcription. Under heat
stress, the synthesis of normal proteins in plants decreases, and the signal pathways induce
a sharp increase in the concentration of Hsps, helping to fold newly synthesized proteins
or to protect existing proteins that may become misfolded during heat stress.

The first plant Hsf was cloned from tomato (Solanum lycopersicum), although more
Hsfs were later reported from other plant species [57]. According to the characteristics of
the HR-A/B region, plant Hsfs can be classified into HsfA, HsfB, and HsfC [58]. HsfAs
possess activator motifs or aromatic and hydrophobic amino acid residues close to the
NES at the C-terminal region, while HsfBs have a repressor domain. The knowledge of
the role of HsfCs is limited. Most of the known roles of Hsfs in plant high-temperature
stress are concentrated in Class A Hsfs, and a few in Class B Hsfs and Class C Hsfs. In
pepper (Capsicum annuum L.), the CaHsfA1d protein is located in the nucleus [40]. The
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survival rate of CaHsfA1d-silenced pepper seedlings in response to heat treatment was
lower than that of the control group (TRV2:00), indicating that silencing of CaHsfA1d re-
duced the thermotolerance of pepper. After heat treatment, the germination rate and
fresh weight of CaHsfA1d-overexpressed Arabidopsis seeds were higher than those of the
corresponding wild type (WT). The overexpression of the CaHsfA1d gene enhanced the
expression of AtHsfA2/3, AtDREB2A, and AtHsps genes and genes related to glutathione
synthesis (AtGSTU5 and AtGPX3) in transgenic Arabidopsis. Zhang et al. cloned ZmHsf01,
a member of the HsfA2 subclass in maize (Zea mays L.) [39]. Under high-temperature
treatment, ZmHsf01 expression located in the nucleus was significantly upregulated in
young roots and leaves. Arabidopsis seedlings overexpressing ZmHsf01 had a higher chloro-
phyll content and survival rate than WT seedlings following heat stress, indicating that
Arabidopsis overexpressing ZmHsf01 had greater heat tolerance. The chlorophyll content
and survival rate of the Arabidopsis ZmHsf01/athsfa2 complementary strain, in which the
native Arabidopsis gene was knocked out but the corresponding maize heat shock factor
gene was overexpressed, were greater than in either athsfa2 or WT. This finding implied
that ZmHsf01 could partially or completely compensate for the heat tolerance defect of
the Arabidopsis athsfa2 mutant. Other reports found that overexpressing ZmHsf05 could
also compensate for the reduced heat tolerance of the Arabidopsis athsfa2 mutant. Both
ZmHsf05-overexpressed and ZmHsf06-overexpressed Arabidopsis plants had greater heat
tolerance than the WT plants [59,60]. Tomato (Lycopersicon peruvianum) HsfB1 is a novel
type of coactivator cooperating with tomato HsfA1. HsfB1 responded to heat stress by
maintaining and/or restoring the expression of housekeeping genes (such as Hsp17.6) [45].

As an important molecular chaperone, Hsps maintain normal cell physiology and
metabolism under stress conditions and play a key role in stress tolerance. OsHSP20
is located in type I cytoplasm in rice cells [12]. Under heat stress, the transcription of
OsHSP20 responded very rapidly, peaking at approximately 4000-fold more transcripts than
in the unstressed control within one hour. Under heat stress, overexpression of OsHSP20
increased the germination rate, plant height, and chlorophyll content of transgenic rice
under heat stress conditions, thus improving the heat tolerance during germination and
growth. OsHsp18.0 was also located in the cytoplasm, especially at the edge of the nucleus,
implying a potential role for OsHsp18.0 in nucleo-cytoplasmic trafficking [29]. Rice lines
with overexpressed or silenced OsHsp18.0, the latter resulting from RNA interference, were
constructed to study the effects on heat tolerance. The overexpressed OsHsp18.0 rice plants
showed greater heat tolerance than the WT, whereas the silenced plants showed a decrease
in heat tolerance.

One-year-old grape (Vitis vinifera) plants under heat stress for two hours at sunrise
and sunset [36]. Short heat stresses (2 h) were applied day and night to vines bearing
clusters sequentially ordered according to the developmental stages along their vertical
axes. The study found that HSFA6B was consistently upregulated under heat stress, but this
induction was more pronounced at night than day. Several transcripts coding for members
(VIT_04s0008g06000, VIT_18s0001g03120, VIT_18s0001g05850, VIT_16s0013g00980, and
VIT_16s0013g01000) of ethylene family response factors (ERFs) acting upstream of HSFs,
were all activated under heat stress. Transcriptome analysis of leaves at the jujube (Ziziphus
jujuba Mill.) seedling stage revealed that multiple HSPs such as HSP17, HSP18, HSP21,
HSP22, HSP23, HSP26, HSP70, HSP83, HSP90, HSF30, and HSC-2 were upregulated [37].
These results suggested that Hsfs and Hsps were crucial in plants under heat stress.

2.3. Ubiquitin Ligases

The ubiquitin–proteasome pathway is an important way to regulate protein stability
in the signal transduction process under high-temperature stress [61]. Ubiquitin ligases
play a specific role in recognizing target protein substrates in the ubiquitin–proteasome
pathway, and selectively degrading the key components of stress signals, thus negatively
or positively regulating plant response to stresses.
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Kim et al. reported that a rice heat-induced RING finger protein 1 (OsHIRP1) rep-
resented a ring-HC type E3 ligase [10]. Under heat stress, the expression of OsHIRP1
increased significantly and expression levels of OsAKR4 and OsHRK1 were significantly
decreased in 14-day-old rice seedlings. An in vitro ubiquitination assay showed that
two substrate proteins, Aldo/Keto Reductase 4 (OsARK4) and HIRP1-Regulated Kinase
I (OsHRK1), were ubiquitinated by OsHIRP1 E3 ligase, and each was degraded by the
Ub/26S proteasome system. OsHIRP1-overexpressed Arabidopsis exhibited higher seed
germination rates and survival rates, compared with WT, under heat stress. The phenotype
analysis of OsHIRP1-overexpressing Arabidopsis showed thermotolerance under heat stress.
Expression of some heat stress-inducible genes (HsfA3, Hsp17.3, Hsp18.2, and Hsp20) were
also upregulated in the OsHIRP1-overexpressing Arabidopsis under heat stress (Figure 2).
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Figure 2. Schematic diagram of expression of OsHTRP1 and OsDHSRP1 under high-temperature
stress in rice. Under heat stress, the expression of OsHIRP1 and OsDHSRP1 increases significantly.
OsARK4 and OsHRK1 are ubiquitinated by OsHIRP1 E3 ligase, and each is degraded by the Ub/26S
proteasome system. OsHIRP1 promotes the expression of some heat stress-inducible genes (HsfA3,
Hsp17.3, Hsp18.2, and Hsp20) under heat stress. OsDHSRP1 E3 ligase ubiquitinates OsGLYI-11.2,
which is degraded by the Ub/26S proteasome system. The degradation of the OsGLYI-11.2 protein
maintains a lower acetaldehyde level, thus increasing methylglyoxal and ROS contents in Arabidopsis
plants overexpressing OsDHSRP1.

Kim et al. reported another rice protein (drought-, heat-, and salt-induced RING
finger protein 1 (OsDHSRP1)) acting as a ring-H2 E3 ligase [30]. The transcription level
of OsDHSRP1 was significantly upregulated in heat-stressed 14-day-old rice seedlings.
OsDHSRP1 E3 ligase ubiquitinated two interacting substrates in rice, glyoxalase (OsGLYI-
11.2) and abiotic stress-induced cysteine proteinase 1 (OsACP1), and each was degraded
by the Ub/26S proteasome system. Arabidopsis plants overexpressing OsDHSRP1 showed
increased sensitivity to heat stress, and their germination percentage and root length under
heat stress were lower than those of control plants. This was because the degradation of the
OsGLYI-11.2 protein maintained a lower acetaldehyde level, thus increasing methylglyoxal
and ROS content in the transgenic Arabidopsis plants (Figure 2).
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A protein with the RING domain and Tmemb_185A domain (abbreviated as AtPPRT1)
is a putative C3HC4 zinc-finger ubiquitin E3 ligase. It positively regulated the expression of
several heat stress-inducible genes (AtHSP21, AtHSFA7a, and AtZAT12) under heat stress,
and enhanced heat tolerance by reducing the accumulation of ROS in Arabidopsis [62].
AtPUB48 is an E3 ubiquitin ligase with a U-box and Armadillo-repeats [22]. AtPUB48-
overexpressed Arabidopsis plants exhibited increased basal and acquired thermotolerance
in terms of seed germination and seedling growth. In addition, wheat (Triticum aestivum)
F-Box Protein Gene (TaFBA1) encodes a subunit of the Skp1-Cullin-F-box E3 ligase complex,
which interacted with Triticum aestivum stress-responsive protein 1 (TaASRP1) and other
proteins [43]. TaASRP1-overexpression in wheat improved the enzymatic antioxidant sys-
tem and reduced cell damage under heat stress. In Sorghum (Sorghum bicolor), the heat- and
cold-induced RING finger protein 1 (SbHCI1) possesses E3 ligase activity and can interact
with and ubiquitinate the substrates (b14-3-3, SbbHLH065, and SbBGLU1) [42]. Sb14-3-3
is a protein located in the cytoplasm, whereas SbbHLH065 and SbBGLU1 are located in
the nucleus. In response to heat treatment, the survival rate of SbHCI1-overexpressed
plants was significantly higher than in the corresponding WT plants, indicating that
SbHCI1 positively regulated heat stress tolerance. The rice soluble ubiquitin-specific pro-
tease (OsUBP21) negatively regulated the heat shock response under heat stress [63]. Its
homologous gene AtUBP13 in Arabidopsis also exhibited protein deubiquitination activity
and negatively regulated heat shock response. Knocking down the expression of OsUBP21
in rice or knocking out AtUPB13 in Arabidopsis by T-DNA insertion enhanced the tolerance
of the mutants in response to heat stress, compared with the WT.

3. Genes Involved in Substance Transport

Plants coordinate growth and development with nutrient availability. Changes in the
external environment affect the synthesis, degradation, and transportation of substances in
plants. In recent years, genes involved in substance transport have been isolated and have
been shown to play significant roles in responses to abiotic and biotic stresses.

3.1. Water Transport

AQPs are membrane channel proteins transporting water and small solutes. Based on
the protein sequence homology and membrane localization, plant AQPs are divided into
five sub-families: plasma membrane intrinsic proteins (PIPs), tonoplast membrane intrinsic
proteins (TIPs), NOD26-like membrane intrinsic proteins, small basic membrane intrinsic
proteins, and GlpF-like membrane intrinsic proteins [64]. Recently, it has been reported
that AQPs are involved in response to heat stress. In wheat, TaTIPs respond to combined
heat and drought stresses, based on the representation of expressed sequence tags in wheat
grain-related cDNA libraries [65]. In soybean (Glycine max) seedling roots, expression
of the aquaporin gene GmTIP2;6 was upregulated under heat stress [13]. GUS activity,
driven by the GmTIP2;6 promoter, was strongly induced in the heat-treated transgenic
Arabidopsis plants and accumulated in hypocotyls, vascular bundles, and leaf hairs. While
six-month-old strawberries (Fragaria x ananassa cv. ‘Camarosa’) pretreated with sodium
hydrosulfide were exposed to heat stress for four hours, the expression of the aquaporin
gene FvPIP was found to be upregulated, allowing the plants to achieve heat tolerance [64].
Under high-temperature stress, the expression of three AQP genes (namely pip2-1, pip1-2,
and tip21) in leaves of the medicinal plant Rhazya stricta was upregulated. These proteins
promoted the diffusion of water across the cell membrane, balanced the water within
the cell, and improved the water utilization rate, which enhanced the heat tolerance of
R. stricta [41]. These results contributed new insights into the regulatory mechanisms of
thermotolerance in plants.

3.2. Photosynthesis and Sucrose Transport

In the process of higher plants’ photosynthesis, chlorophyll biosynthesis, photochem-
ical reaction, electron transfer, and CO2 assimilation play important roles in plant heat
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tolerance. It is well known that photosynthesis is highly sensitive to heat stress. Chlorophyll
is the main pigment for photosynthesis light absorbance. PSII is one of the most thermosen-
sitive components of photosynthetic apparatus. Heat stress changes the redox balance of
photosynthetic electron transport reactions [66]. Under heat stress conditions, the heat
tolerance of maize genotype “DKC7221” is based on its higher photosynthetic activity [5].
In the leaves of DKC7221 seedlings, heat stress did not affect the total chlorophyll content,
and the electron transport rate into the plastoquinone pool. The study also found that
under heat stress, DKC7221 was able to maintain a relatively high level of Fv/Fm ratio. The
study indicated that the electron transport reaction on the PSII unit remained almost intact
under heat stress conditions. A study demonstrated that chloroplast signal recognition
particle 43 (cpSRP43) effectively protected several tetrapyrrole biosynthesis proteins (GlutR,
CHLH, and GUN4) from heat-induced aggregation and enhanced their stability during leaf
greening and heat shock [67]. MdATG18a is the autophagy-related gene in apples (Malus
domestica) [33]. MdATG18a transcript was significantly upregulated under heat stress. A
study found that MdATG18a improved thermotolerance by enhancing autophagic activity
and maintaining high levels of photosynthesis. The overexpression of MdATG18a in apples
enhanced photosynthetic capacity, as shown by the electron transport rates in PSI and
PSII, the maximum photochemical efficiency of PSII, and the rate of CO2 assimilation. In
addition, a tomato chloroplast-targeted DnaJ protein (SlCDJ2) was found to be uniformly
distributed in the thylakoids and stroma of the chloroplasts [68]. Within 24 h at 42 ◦C,
the expression of SlCDJ2 gradually increased in six-week-old tomatoes. SlCDJ2 together
with Hsp70 may help protect ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)
activity from heat stress. This contributed to maintaining CO2 assimilation capacity and
enhancing heat tolerance.

Furthermore, sucrose transport also plays an important role in plant heat tolerance.
When rice plants are exposed to high temperatures during the grain ripening period, the
sink–source balance of carbohydrates is disrupted. The carbohydrates cannot be supplied to
the kernels through current photosynthesis after heading, thus affecting rice yield. Recently,
several laboratories reported that the level of high-temperature tolerance of rice was related
to carbohydrate concentration at the full-heading stage [69,70]. The rice sucrose transport
gene (OsSUT1) encodes a sucrose transporter, which plays an important role in maintaining
the supply of photoassimilates to the filling grains. OsSUT1 is highly expressed in leaf
sheaths, stems and grains after heading, but at only a low level in the roots [71,72]. The
expression level of OsSUT1 in grains between 8 and 30 days after flowering was reduced
under high-temperature conditions, suggesting that OsSUT1 was involved in the efficient
maturation of rice [48]. Furthermore, Miyazaki et al. studied the effects of heat stress on the
grain quality of heat-tolerant (‘Genkitsukushi’) and heat-sensitive rice cultivars (‘Tsukushi-
roman’) during maturation [69]. The non-structural carbohydrate content in the stems
(photosynthetic reserves accumulated during the less stressful part of the growing season)
of ‘Genkitsukushi’ at early maturation was significantly higher than in ‘Tsukushiroman’,
but greatly decreased under high temperatures. The expression of OsSUT1 in ‘Genkit-
sukushi’ grain was significantly higher than that of ‘Tsukushiroman’ under high-temperature
stress during the ripening period. These results suggested that OsSUT1 contributed to the
effective sucrose transport to rice grains, resulting in plant thermotolerance.

4. Genes Involved in Antioxidant Defense

One of the major consequences of heat stress is the accumulation of ROS, which leads
to oxidative stress. The most common ROS are 1O2, O2

·−, H2O2, and OH·. Plant oxidative
stress tolerance may be improved by increasing the activity of antioxidant enzymes such as
superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase [73,74].

Oxidative stress is associated with a large accumulation of ROS, of which the accumu-
lation of H2O2 is a typical phenomenon. Hsfs can be involved in heat stress response as
directs sensor of H2O2 in plants [75]. HsfA has a transcriptional activation function and is
the main regulator of high-temperature-induced gene expression. After heat stress treat-
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ment, protoplasts of a hsfA2 knockout mutant accumulated a much higher concentration
of ROS than in WT protoplasts, causing a more rapid decline in the cell viability in the
hsfA2 knockout mutant than in the WT [6]. These results indicate that knockout of HsfA2
resulted in more severe oxidative stress and more cell death. Clearly, HsfA2 can protect
plants against heat-induced oxidative damage. Amongst these antioxidant enzymes, SOD
is an ubiquitous metalloprotein regarded as the first line of defense in plant cells against
ROS toxicity. Recombinant thermostable MnSOD from Nerium oleander showed excellent
resistance to temperatures up to 55 ◦C by stable dimeric and tetrameric states [76]. As
an important enzyme for scavenging ROS in chloroplasts, APX plays an important role
in high-temperature resistance of plants. A study of the APX (CaAPX) gene cloned from
Camellia azalea shows that overexpression of CaAPX induces orchestrated reactive oxygen
scavenging and enhances heat tolerances in tobacco [35].

5. Genes Involved in Heat Signal Transduction
5.1. Ca Signaling

Free Ca2+ is a universal second messenger, involved in various physiological processes.
When cells respond to changes in the external environment, the amount of Ca2+ transported
from the apoplast through the plasma membrane or intracellular Ca2+ stored in the cytosol
increases. After the cytoplasmic Ca2+ concentration increases, Ca2+ sensors transduce Ca2+

signals to various substrates, thereby regulating different physiological processes. These
plant Ca2+ sensors are classified into four major groups: the calmodulin family, the CDPK
family, the calcineurin B-like family, and its closely related group, the calmodulin-like
protein family [16].

CaM can bind to target proteins and act as part of the Ca2+ signal transduction
pathway. After plants are exposed to heat stress, the expression of CaM increases, and the
concentration of Ca2+ increases briefly [77,78]. A heat-induced increase in intracellular Ca2+

is one of the earliest cellular changes observed during the plant heat shock response.
LlWRKY39, a member of the WRKYIId transcription factor family of lily (Lilium spp.),

interacts with LlCaM3 in a Ca2+-dependent manner through the CaM-binding domain [15].
The LlWRKY39–LlCaM3 interaction repressed the activation ability of LlWRKY39 toward
its target genes. The overexpression of LlWRKY39 increased the heat tolerance of lily.
Further studies revealed that LlWRKY39 can activate the expression of multiprotein bridging
factor 1 (LlMBF1c) by directly binding to the LlMBF1c promoter. In addition, MBF1c is a
highly conserved transcriptional co-activator that plays an important role in the heat stress
response (HSR) [79]. These results indicated that LlWRKY39 may act as a downstream
component of the CaM-mediated Ca2+ signaling pathway that lies upstream of LlMBF1c in
the HSR.

A multi-protein family of CDPKs has been identified as Ca2+ sensors in many plant
species. CDPKs are directly activated by Ca2+ and can transmit Ca2+ signals downstream,
thus functioning in the regulation of plant growth, development, and abiotic stress re-
sponses [80]. ZmCDPK7 is located in the plasma membrane but can translocate to the
cytosol under heat stress [7]. ZmCDPK7-overexpression maize plants displayed higher
thermotolerance, photosynthetic rates, and antioxidant enzyme activity but lower H2O2
and MDA contents than WT under heat stress. ZmCDPK7 activated the chaperone function
of sHSP17.4 via phosphorylation, and positively regulated heat stress tolerance in maize.
ZmCDPK7 played a vital role in maintaining protein quality to reduce damage to mem-
branes and the photosynthetic apparatus under heat stress. Under heat stress, expression
of the lentil (L. culinaris) homologs of AtCDPKs, including AtCDPK4 and AtCDPK11, was
upregulated. AtCDPK4 and AtCDPK11 promoted ethylene biosynthesis, thereby enhancing
the heat tolerance of lentils [38].

In addition, cyclic nucleotide-gated ion channels (CNGCs) are non-selective cation
channels in the plasma membrane and have been found to play important roles in Ca2+

signal transduction [32]. In Arabidopsis, AtCNGC6 is a heat- and cAMP-activated plasma
membrane Ca2+-permeable channel, inducing the production of NO and H2O2, thereby reg-
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ulating the expression of Hsps and improving the heat tolerance of Arabidopsis [23–25]. Con-
versely, AtCNGC2 deficiency resulted in an increase in the activity of the ROS-quenching
enzymes ascorbate peroxidases, Hsps, and MBF1c-dependent heat response pathways in
Arabidopsis seedlings, indicating its negative role in thermotolerance of Arabidopsis at the
seedling stage [26,27]. Furthermore, mutants with functional deletions of OsCNGC14 and
OsCNGC16 reduced tolerance to both heat and cold in rice [32]. These mutants displayed
reduced survival rates, higher ROS accumulation, and increased cell death in response to
heat stress.

5.2. Nitric Oxide Signaling

It has been confirmed that NO acts as a signaling molecule in plant heat stress re-
sponses. Endogenous NO levels increase in Arabidopsis under heat stress [48]. When wheat
is exposed to heat stress, exogenous application of NO enhances the heat tolerance of
wheat by reducing H2O2-induced oxidative stress and photosynthetic suppression [81].
Nitric oxide-associated protein 1 (NOA1) is involved in the regulation of NO [82,83]. Xuan
et al. found an increased level of NO in a loss-of-function mutant noa1 slightly reduced the
survival ratio in the condition of heat stress, compared with WT [84]. NO acts as a second
messenger for the induction of AtCaM3 expression under heat stress. It was found that the
AtCaM3 mRNA transcription was strongly inhibited in the noa1 seedlings under heat stress.
Under the care of 20 µM sodium nitroprusside, the AtCaM3 mRNA transcription levels
turned back to the rescued noa1 line and increased successfully. This result revealed that
under heat stress, AtCaM3 acted as downstream signal transduction of NO. In addition,
further research showed that NO regulated the DNA-binding activity of HSFs and the
accumulation of HSPs through AtCaM3. Therefore, NO enhanced the thermotolerance of
Arabidopsis. Peng et al. found that CNGC6, a heat-activated Ca2+ permeable channel, could
not only mediate Ca2+ signaling but also induce NO production [24]. Further research
found that CNGC6 regulated internal NO levels by free Ca2+ under heat stress. CNGC6
stimulated HSP expression with the help of NO. In order to enhance thermotolerance, NO
played a role as downstream receptors of CNGC6.

5.3. Hormone Signaling

After plants are subjected to biotic or abiotic stress, the production of hormones will
help the plants adapt to unfavorable environments [17]. The major hormones produced by
plants in response to stresses are abscisic acid (ABA), salicylic acid (SA), ethylene, jasmonate
(JA), and gibberellins (GA). Recent studies have provided substantial evidence for ABA,
SA, ethylene, and JA in regulating plant heat stress response.

ABA is an important hormone enabling plants to tolerate external stress and mediating
stomatal closure to adapt to heat stress. High-temperature stress stimulates ABA signaling
in plants and accelerates ABA synthesis [85,86]. A recent study demonstrated that TaMYB80,
a R2R3-MYB subfamily gene, was involved in ABA-mediated responses to heat stress in
wheat [44]. The overexpression of TaMYB80 in Arabidopsis increased ABA levels under heat
stress. When exogenous ABA was applied, the expression of TaMYB80 in wheat seedlings
was significantly upregulated. The survival rate of TaMYB80-overexpressed seedlings
following heat stress was significantly higher than that of the WT, indicating that TaMYB80
overexpression improved heat tolerance. In addition, under heat stress, compared with
WT plants, AtMYB68-overexpressed Arabidopsis exhibited increased sensitivity to ABA,
reduced transpiration, and improved seed yield, showing that AtMYB68 overexpression
improved the heat tolerance of Arabidopsis [87]. The overexpression of AtMYB68 controlled
by the heat-inducible promoter P81.1 in Brassica napus also improved heat tolerance at
the flowering stage, enhancing pollen viability and reducing water loss and transpiration
under heat stress. In addition, cell wall-associated protein kinases (WAKs) are typical
RLKs [88]. Although it was upregulated under the treatment of ABA, transcription of the
WAK-like gene CaWAKL20 in peppers was downregulated under heat stress [14]. Exposed
to high temperatures, the survival rate of CaWAKL20-overexpressed Arabidopsis plants was
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decreased. Further research found that ABA pretreatment increased the survival rate of
CaWAKL20-overexpressed Arabidopsis plants under heat stress. Analysis of gene expression
under heat stress and ABA pretreatment showed that CaWAKL20 downregulated the
thermotolerance of plants by inhibiting the expression of several ABA-responsive genes.
Those ABA-responsive genes encode an abscisic acid-responsive element-binding protein,
ABA-responsive element-binding factor, DREB, and HsfA3.

As an endogenous signal molecule in plants, SA levels can be upregulated under
heat stress to alleviate the damage caused to plants by heat stress. Several transcription
factors are also known to play important roles in SA signal pathways by mediating defense
responses in plants. Arabidopsis WRKY39 positively regulates SA signal pathways [28].
In response to heat stress, the overexpression of WRKY39 increased the expression levels
of heat-related genes such as SA-regulated pathogenesis-related 1 and MBF1c and enhanced
the tolerance to heat stress. SlJA2, a transcription factor with a conserved NAC domain,
was isolated from tomato [47]. Under heat stress, it was found that the degree of wilting
in a SlJA2-overexpressed tobacco transgenic line was significantly higher than that of
WT. Further studies showed that, in the SlJA2-overexpressed tobacco under heat stress,
the SA content decreased, stomatal opening increased, the rate of water loss increased,
and the plants contained higher concentrations of the ROS H2O2, and O2

−. These results
showed that the overexpression of SlJA2 reduced the heat tolerance of tobacco through the
SA pathway.

Ethylene is a small gaseous plant hormone molecule. Heat stress can increase the
content of ethylene in tomato pollen grains [89]. In the experiment on tomato, ethylene
production went up significantly under heat stress (42 ◦C). The more ethylene produced,
the more HSP70 is expressed [90]. Another study found that pollen grains of tomato plants
(cultivar “Hazera 3017”) have the capacity to produce ethylene under heat stress [89].
In mature pollens under heat stress, upregulation of the ethylene receptor SlETR3 and
downstream components of the ethylene-signaling cascade (including SlCTR2), and upreg-
ulation of several genes involved in ethylene biosynthesis (including SlACS3 and SlACS11)
were observed. ERFs play a critical role in ethylene signaling and heat stress response.
Results showed that ethylene signaling-defective mutants could weaken basal thermotol-
erance. Plants with activated ethylene signaling could strengthen basal thermotolerance.
Huang et al. reported that two interacting ERFs, ERF95, and ERF97, acted as downstream
receptors of ethylene insensitive 3 (EIN3). They were bounded directly to the promoter
of HsfA2. This showed a EIN3-ERF95/ERF97-HSFA2 transcriptional cascade under heat
stress [91]. In addition, 1-Methylcyclopropene, an ethylene resistance agent could weaken
the physiological effect of ethylene by preferentially attaching ethylene receptors. Analysis
of Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit transcriptome from postharvest
storage revealed that most ethylene receptors (Unigene21949_All, Unigene3820_All, Uni-
gene8475_All, Unigene13442_All, Unigene23855_All, and Unigene23780_All) and ERFs
(Unigene6615_All, Unigene12612_All, Unigene21144_All and Unigene24054_All) were
downregulated because of heat stress and 1-MCP treatment [50]. At the same time, ABF
(CL3405.Contig1_All), PR-1C (Unigene1312_All), GH3 (Unigene13051_All), and MYC2
(Unigene23741_All) related to ethylene signaling were also downregulated.

JA and its derivatives including methyl jasmonic acid (MeJA) together are called JA.
JA is necessary for the activation of defense response against necrotrophic pathogens [92].
JA positively regulates thermotolerance in Arabidopsis by physiological protection from
heat-induced damage, and the application of exogenous JA also can increase thermotol-
erance [93]. The study showed that MeJA could significantly improve the heat tolerance
of perennial ryegrass (Lolium perenne L.) through the alteration of osmotic adjustment,
antioxidant defense, and the expression of JA-responsive genes [94]. Heat stress and ex-
ogenous MeJA upregulated transcript levels of related genes (LpLOX2, LpAOC, LpOPR3,
and LpJMT) and LpHsp70 in JA biosynthetic pathway, which enhanced the accumulation
of JA and MeJA content. Yu et al. found that JA levels were higher in thermotolerant
cucumber than in thermosensitive cucumber [95]. Heat stress specifically enriched the
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lipid metabolism, metabolism of amino acids, and biosynthesis of secondary metabolites in
thermosensitive cucumber. Repair, catabolism, and energy metabolism were specifically
enriched in thermotolerant cucumber.

6. Other Regulatory Genes

NcRNAs are a type of RNA that has no obvious open reading frame and can directly
perform biological functions without coding for a protein. NcRNAs can be classified into
small RNAs (18–30 nucleotides [nt]), medium-sized ncRNAs (31–200 nt), and lncRNAs
(>200 nt) [96].

6.1. MiRNAs

MiRNAs are a major class of small RNAs in plants, with a length of 18–36 nt. They
degrade or inhibit the translation process of their target genes through sequence com-
plementation, thereby regulating gene expression at the post-transcriptional level [97,98].
MiR156 subtypes have been reported to be induced by heat stress. After four-day-old
Arabidopsis seedlings were exposed to heat stress, the expression of miR156 was highly
upregulated. By inhibiting the expression of SQUAMOSA promoter-binding protein-likes,
miR156 maintained the expression of heat stress response genes (such as HsfA2 and Hsps),
thereby increasing the expression of Arabidopsis thermotolerance [18]. MiR159 is involved
in the control of GA signal transduction and GAMYB transcription factors that negatively
regulate pollen development [99]. After wheat seedlings were subjected to heat stress, the
transcription of miR159 was downregulated, leading to the accumulation of the mRNA of
its target gene TaGAMYB, which participates in heat stress response [51,100]. Studies found
that miR159-overexpressed rice showed increased heat sensitivity. When two-week-old
sunflower (Helianthus annuus) seedlings were subjected to heat stress, the transcription
of miR396 was downregulated, which increased the expression of the WRKY family tran-
scription factor HaWRKY6, thereby helping the sunflower to be protected against heat
stress damage [52]. Studies found that transgenic sunflowers expressing a miR396-resistant
form of HaWRKY6 were more sensitive to heat stress. After fifteen-day-old Arabidopsis was
subjected to heat stress, the expression of miR398 was upregulated, which downregulated
the transcription of its target genes copper/zinc superoxide dismutase 1 (CSD1), CSD2, and
copper chaperone for SOD [101]. This reduced the accumulation of ROS, which enhanced
the heat tolerance of Arabidopsis. Studies found that transgenic Arabidopsis expressing the
miR398-resistant forms of CSD1, CSD2, or copper chaperone for SOD were more sensitive
to heat stress. In the heat-stressed banana (Musa spp. AAA group, cv. Cavendish), miR164
and miR168 were accumulated. Both miR159 and miR396 were greatly repressed by heat
stress [49].

6.2. LncRNAs

LncRNAs are a type of non-coding RNA that is widely present in eukaryotes, with a
length greater than 200 nt and extremely weak transcription ability. LncRNAs are involved
in plant growth and development, nutrient metabolism, biotic and abiotic stress responses,
and other biological processes [102].

Song et al. used strand-specific RNA sequencing to identify 204 high-temperature-
responsive lncRNAs in poplar (Populus simonii) [19]. In response to heat stress, the expres-
sion of TCONS_00202587 and TCONS_00260893 were significantly upregulated. Compared
to the control group under high temperatures, silencing of lncRNA TCONS_00202587 and
TCONS_00260893 resulted in the significant downregulation of their target Potri.017G089800
(CNGC2) and Potri.012G002800 (protein phosphatase 2C), respectively. Further experi-
ments showed that high-temperature-responsive TCONS_00202587 and TCONS_00260893,
regulated their targets via RNA interference or acted as RNA scaffolds, thereby promoting
photosynthetic protection and recovery under heat stress. Wang et al. analyzed the lncRNAs
of three-week-old Chinese cabbage seedlings and verified three differentially expressed
lncRNAs (TCONS_00017642, TCONS_00053114, and TCONS_00004594) in response to heat
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stress by strand-specific RNA-sequencing [103]. Among them, lncRNA TCONS_00004594
cis-regulated the expression of Bra021232 downstream of the protein-coding gene. Heat
treatment of the heat-tolerant Chinese cabbage variety ‘XK’ found that the expression of
bra-miR164a was upregulated, whereas the expression of eTM (TCONS_00048391) and
its target genes (Bra030820 and NAC1) were downregulated. The expression levels of
lncRNAs were estimated by the fragments per kilobase per million fragments mapped
value, using Cuffdiff. Compared with the controlled group, 108 lncRNAs in three-leaf-
stage cucumber (Cucumis sativus L.) seedlings leaves expressed differentially under heat
stress. 56 lncRNAs were upregulated while 52 lncRNAs were downregulated [20]. The
study found that the protein-encoding genes Csa4M314390.1 (Erf ) and Csa5M613470.1
(Myb_Related) were involved in the response. The competing endogenous RNA network
indicated that TCNS_00031790, TCNS_00014332, TCNS_00014717 and TCNS_00005674,
NOVE_CIRC_001543, and NEWE_CIRC_000876 might interact with miR9748 and reg-
ulate heat shock response through miR9748 and its target genes in the plant hormone
signaling pathway.

7. Summary and Prospects

Under the current climate of global warming, high-temperature stress has aroused
great concern. Plants have evolved complex and efficient mechanisms of sensing and
responding to high temperatures, consisting of the activation of numerous regulatory
and signaling pathways that eventually lead to a fine metabolic adjustment to achieve
survival (Figure 1) [104]. Among these mechanisms, Hsf and Hsp play key roles in HSR. In
addition, we also found that protecting the normal synthesis of chlorophyll and reducing
the production of ROS play important roles in enhancing plant heat tolerance. The signaling
pathway includes Ca2+, NO, and hormone signaling. They could help plants adapt to
high-temperature environments.

Due to expressions of genes, plants at different growing stages respond to heat stress
differently. For example, Arabidopsis at the stage of germination requires the expression of
CaHsfA1d, OsHIRP1, and AtPUB48 under heat stress. Arabidopsis at the stage of seedling
requires the overexpression of ZmHSF01, OsHsp20, TaMYB80, miR156, etc. Brassica napus at
the flowering stage requires the overexpression of AtMYB68 under heat stress. Tomato pol-
lens require the expressions of SlACS3 and SlACS11 under heat stress. Rice grains between
photoassimilates and filling grains require the expression of OsSUT1 under heat stress.

The response of plants to heat stress is a very complex process. It is worth noting that
many published studies only show the expression of heat-regulated genes in response to
heat stress, but do not detail the upstream regulatory mechanisms and downstream target
genes. Future research should focus mainly on the upstream mechanisms, such as heat
stress sensing, which activate transcriptional cascades. Functional genomics, proteomics,
and transcriptomics are required to research the response of plants to high-temperature
stress. For example, the third-generation gene editing technology, namely CRISPR-Cas9,
will be a powerful tool in this endeavor [105]. Furthermore, recently developed tech-
nologies, e.g., assay for transposase-accessible chromatin sequencing, RNA sequencing,
chromatin immunoprecipitation sequencing, RNA modification (m6A/m1A/m5C), and
single-cell RNA sequencing will be essential to elucidate gene networks involved in plant
heat stress response and tolerance.
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Abbreviations

ABA abscisic acid
AQP aquaporin
APX ascorbate peroxidase
CaM calmodulin
CAT catalase
CDPK calcium-dependent protein kinase
CNGC cyclic nucleotide gated ion channel
CSD copper/zinc superoxide dismutase
DREB dehydration-responsive element-binding protein
EIN3 ethylene insensitive 3
ERF ethylene response factor
GA gibberellin
GAD3 glutamate decarboxylase 3
GAT1 glutamine amidotransferase 1
Hsf heat shock factor
Hsp heat shock protein
HSR heat stress response
JA jasmonate
lncRNA long ncRNA
MBF1c multiprotein bridging factor 1c
MDA malondialdehyde
miRNA microRNA
MYB V-myb avian myeloblastosis viral oncogene homolog
NOA1 Nitric oxide-associated protein 1
ncRNA non-coding RNA
NO nitric oxide
nt nucleotide
PIP plasma membrane intrinsic protein
RLK receptor-like protein kinase
ROS reactive oxygen specie
Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase
SA salicylic acid
SOD superoxide dismutase
SUT sucrose transporter
TIP tonoplast intrinsic protein
TOGR Thermotolerant Growth Required
WAK cell wall-associated protein kinase.
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