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Abstract

Mathematical models have been applied in prediction of growth hormone treatment 

effectiveness in children since the end of 1990s. Usually they were multiple linear 

regression models; however, there are also examples derived by empirical non-linear 

methods. Proposed solution consists in application of machine learning technique – 

artificial neural networks – to analyse this problem. This new methodology, contrary 

to previous ones, allows detection of both linear and non-linear dependencies without 

assuming their character a priori. The aims of this work included: development of 

models predicting separately growth during 1st year of treatment and final height as 

well as identification of important predictors and in-depth analysis of their influence 

on treatment’s effectiveness. The models were derived on the basis of clinical data of 

272 patients treated for at least 1 year, 133 of whom have already attained final height. 

Starting from models containing 17 and 20 potential predictors, respectively for 1st year 

and final height model, we were able to reduce their number to 9 and 10. Basing on 

the final models, IGF-I concentration and earlier growth were indicated as belonging to 

most important predictors of response to GH therapy, while results of GH secretion tests 

were automatically excluded as insignificant. Moreover, majority of the dependencies 

were observed to be non-linear, thus using neural networks seems to be reasonable 

approach despite it being more complex than previously applied methods.

Introduction

Growth hormone (GH) therapy is widely approved in 
children with short stature caused by GH deficiency 
(GHD). It has also been documented that GH therapy 
may be beneficial in children with idiopathic short stature 
(ISS); however, significant variability in its effectiveness in 
different patients is observed (1, 2). Taking into account 
the inconsistent and sometimes disappointing effects of 
treatment, the need to create prediction models of growth 
response to GH therapy has been defined by Ranke as a new 

paradigm for GH treatment in 21st century (3). Moreover, 
the use of growth prediction models has been proposed 
as a personalized approach to GH treatment in clinical 
practice (4). Development of such models should allow 
to determine more precisely the factors that influence 
responsiveness to GH, to facilitate realistic expectations 
concerning the therapy outcome and to identify poor 
responders, as well as to individualize and optimize 
treatment modalities (3, 4, 5). Prediction of GH therapy 
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effectiveness should be a part of strategy for dealing with 
children with short stature, subjected to GH therapy (5).

In recent years, a number of prediction models 
have been created for different groups of patients and 
for different time horizons. Most frequently the models 
have been derived for prepubertal children with GHD 
(6, 7, 8, 9, 10, 11), while others were developed either for 
children in different pubertal stages (12, 13) or separately 
for prepubertal and pubertal ones (11). In some models, 
first-year response to treatment has been the only output 
variable (7, 13), while in others, the predictions have been 
done for few initial years of therapy (6, 8, 9, 10) or for 
the attained FH (11, 12). In one model, the total pubertal 
growth has been predicted (14).

Previously published models have been included as 
input variables – either only the data available before 
GH therapy onset or also the information gathered 
during treatment (6, 10, 11, 13, 14). Besides auxological 
parameters, GH peak after pharmacological stimulation 
has been considered as potential predictor of the therapy 
outcome in all the above-mentioned models (6, 7, 8, 9, 
10, 11, 12, 13, 14), in some of them also concentrations of 
IGF-I (7, 8, 9, 13) and IGFBP-3 (7, 9) have been processed.

The most frequently used method of deriving 
models of GH therapy outcomes has been multiple linear 
regression (MLR) (6, 7, 10, 11, 12, 13, 14); however, in two 
models, non-linear technique of empirical curve fitting has 
been applied (8, 9). The main limitation of MLR models 
is the necessity to assume linear dependencies between 
input and output variables, while the real relationships 
between them can be non-linear and sometimes remain 
poorly defined or even unknown.

Development of advanced computational statistical 
methods (machine learning) seems to give the chance 
to overcome these limitations. Our research group has 
recently presented for the first time models of prediction 
of FH of GH-deficient children with the use of artificial 
neural networks (ANN) (15). Neural networks are very 
complex computational systems, designed to some extent 
to resemble neuronal connections in the brain. There are 
different types of ANN used for modeling of biological 
processes. In present study, multilayer perceptron (MLP) 
was selected as a model for prediction of response to GH 
treatment. This approach was chosen, because it does not 
require assuming any particular character of dependencies 
between explained variable (output) and explanatory ones 
(input). A neural model typically consists of:

 • input layer to which explanatory data are delivered,
 • hidden layers (1 or 2) that process the data,

 • output layer that delivers final result of prediction.

Each of these layers consists of several basic computational 
units – artificial neurons that process the data in order 
to produce desired result. In MLP hidden and output 
neurons calculate the weighted sum of all their inputs 
and transform it by sigmoid function. Every layer passes 
results of its calculations to the next until the output is 
reached and the solution presented to model’s user. The 
process of derivation of neural models, called training, 
consists of adjusting the weight coefficients of all neurons 
so that they produce the result that is as close as possible 
to desired one. Several algorithms exist that can be applied 
for this purpose. Before application, each model should be 
tested on a new data set, not used for its derivation.

From the practical point of view, the most important 
measures of prediction models accuracy are prediction 
errors (i.e. differences between real and predicted values 
of the output variable) and the proportion of variability 
explained and unexplained by the model. Very important 
is also the knowledge, which of the potential predictors 
have a real influence on the output value and which 
are redundant. Next essential issue is to determine the 
relationships between particular input variables and 
the output prediction. Finally, the model should enable 
clinicians to identify non-responders, including both the 
patients in whom the prediction is poor, as well as those, 
who do not improve growth despite good prediction.

Subjects and methods

Prediction models of GH therapy effectiveness were 
derived on the basis of data collected from 272 patients 
(197 boys, 75 girls) treated with GH due to isolated, 
non-acquired GHD in 20042016 for at least one year  
(1st year response model), including 133 patients 
(89 boys, 44 girls) treated up to the attainment of FH (final 
height model). In both models, most of children were 
prepubertal at therapy onset; however, 1st-year response 
model included 59 children who entered puberty before 
treatment (37 boys, 22 girls), while FH model included 
39 ones (24 boys, 15 girls). The exclusion criteria were 
chronic diseases, multiple pituitary hormone deficiency, 
genetic syndromes, malnutrition, acquired GHD (brain 
tumors, cranial irradiation, injuries, etc.). Studies on GH 
therapy effectiveness were approved by the Committee of 
Ethics of Scientific Research in Polish Mother’s Memorial 
Hospital – Research Institute in Lodz. Written informed 
consent has been obtained from each patient and parents 
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or legal guardians after full explanation of the purpose 
and nature of all procedures used.

Characteristics of the cohort of patients

The following data concerning the therapy onset or 
patients’ history were collected and pre-processed if 
necessary:

1. height at therapy onset (H0), expressed as height SDS 
for age and gender according to Polish reference data 
(H SDS0) (16);

2. gender (G), transformed to numerical values 0 for boys 
and 1 for girls;

3. chronological age at therapy onset (CA);
4. height at least 6  months before treatment (HBT) and 

H SDSBT, respectively (16);
5. H SDS V0 – rate of changes of H SDS before treatment
6. body mass (M) and its SDS calculated with respect to 

height (M SDS) (16);
7. heights of mother (HM) and father (HF), expressed as 

HM SDS and HF SDS, respectively;
8. patient’s bone age (BA), assessed according to Greulich-

Pyle standards (17), expressed as BA/CA ratio;
9. pubertal stage (PUB), transformed to numerical values: 

0 – for prepubertal children, 1 – for pubertal ones;
10. gestational age (GA) and birth weight (BW), expressed 

as BW SDS for GA, according to (18);
11. GH peak after falling asleep (GHN) – an obligatory 

screening procedure in Poland, and in two stimulation 
tests: with clonidinie 0.15 mg/m2 orally (GHC) and 
with glucagon 30 μg/kg i.m., not exceeding 1.0 mg 
(GHG); GHD was defined as GH peak below 10.0 ng/mL  
in all tests; however, some patients with higher GH 
peak in one test were included to the study, as ones 
with either neurosecretory dysfunction or with normal 
GH peak only in nocturnal test (performed before its 
implementation as an obligatory screening procedure 
in Poland). This may constitute a bias of the study; 
however, we decided to include these patients as it was 
previously reported that assessment of nocturnal GH 
secretion may not identify all the patients with GHD 
(1, 19, 20); concentrations of GH were measured with 
IMMULITE 2000 system;

12. IGF-I and IGFBP-3 serum concentrations, expressed 
as IGF-I SDS and IGFBP-3 SDS for age and gender, 
respectively, assuming the log-normal distribution of 
IGF-I and IGFBP-3 concentrations, according to (21); 
concentrations of IGF-I and IGFBP-3 were measured 
with IMMULITE 2000 system;

13. initial GH dose in mg per week per kg of body mass 
(D); patients were treated with different initial doses 
of GH from the recommended range, chosen by their 
physicians, according to their clinical experience.

Additionally, the following data were obtained during or 
after 1st year of treatment and included as input variables 
in FH model:

1. patient’s height after 1  year of rhGH administration 
(H1), expressed as H1 SDS (16) and H SDS increase 
during 1st year of treatment (H SDS V1), the output 
variable in 1st year response model, calculated 
according to the formula: 

H SDS V H SDS H SDS1 = 1 0–

2. IGF-I and IGFBP-3 after at least 3 months of treatment 
(IGF-I1 and IGFBP-31), expressed as IGF-I1 SDS and 
IGFBP-31 SDS, respectively (21). Finally, the differences 
between SDS of concentration before and during 
treatment were calculated and included in the model 
(ΔIGF SDS and ΔIGFBP-3 SDS).

The attainment of FH was confirmed by patients’ BA of 
16 years for girls and 18 years for boys (22). The output 
variable in FH model was FH SDS (16).

Statistical characteristics of the whole group of 
patients are collected in Table  1 (data of subgroup who 
attained FH are presented in brackets). For the purpose of 
model derivation, whole datasets were randomly divided 
into 3 subsets:

 • training set: 60% of data (163 cases for 1st year and 79 
for FH prediction),

 • validation set: 20% of data (54 cases for 1st year and 27 
for FH prediction),

 • testing set: 20% of data (55 cases for 1st year and 27 for 
FH prediction).

Neural models derivation and analysis

MLP networks for both 1st-year response and FH 
prediction were trained either by backpropagation (23) 
or conjugate gradient (24) algorithm. Parameters of 
networks (number of hidden layers, number of neurons) 
and training were selected by genetic algorithm (25), that 
consists of following sequence of operations:

1. Generation of initial population of networks (in our 
case 200 of them) with parameters set randomly from 
the range of allowed values.
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2. Training and evaluation of obtained models by 
calculation of root mean square error (RMSE).

3. Elimination of certain portion of the least accurate 
networks (in this work 30%).

4. Generation of equal number of new models whose 
parameters are inherited from pairs of remaining 
networks (each parameter is assigned randomly to have 
a value coming from one of the two ‘parent’ networks) 
and their training.

5. Repeating steps 3 and 4 several times (here 5 times).

The best networks, in terms of accuracy of prediction, were 
chosen from final population predicting 1st-year response 
to GH treatment and FH SDS. Those networks were 
subjected to input data reduction by input cancellation 
algorithm (26). It is a model-based approach of redundant 
explanatory variables removal that is realized in the 
following way:

1. RMSE is calculated for original dataset.
2. Each input variable is separately replaced in whole 

dataset with its mean calculated over all cases from 
this set.

3. RMSE is calculated for all modified dataset.
4. A variable is removed that causes the lowest increase in 

RMSE when replaced by its mean.
5. Above operations are repeated until only one variable 

remains in the model.

The assumption behind the algorithm is that changing 
the value of important predictor influences strongly 

the prediction and aggravates its accuracy. At the 
same time, an insignificant variable is not used by the 
model in producing the result, therefore, assigning 
any value (e.g. average over whole set) in its place 
does not change prediction much. The last step of 
using this method is selection of number of significant 
inputs. It is done on the basis of sequence of RMSE 
values (or coefficient of determination, R2), calculated 
after removal of each variable. A rapid decrease in R2  
(or increase in RMSE) means that an important predictor 
was eliminated and indicates the moment when 
reduction should be finished. The process of redundant 
variables elimination is performed automatically and 
the whole procedure is similar; however – from the 
technical point of view – much complicated than step-
by-step backward elimination of insignificant variables 
in MLR models.

The networks derived by input cancellation were 
investigated further in order to identify the role of each 
input in prediction of response to GH treatment. The 
task was realized by sensitivity analysis in a similar way 
to approaches presented in the studies on ecological 
predictions (27, 28). It consisted in plotting the 
relationships between input and predicted output (P HSDS 
V1 for 1st-year response and P FH SDS for final height) 
for whole range of values of each continuous explanatory 
variable, when all other such inputs assumed the mean 
value over whole dataset. Binary inputs (gender and 
pubertal stage) were assigned one of the possible values 
that are indicated for each figure.

Table 1 Statistical characteristics of patients’ cohort for 1st-year response model and for FH model (in brackets).

Mean s.d. Minimum Maximum

H SDS0 −2.80 (−2.68) 0.68 (0.50) −6.37 (−4.00) −1.59 (−1.61)
H SDS V0 −0.22 (−0.23) 0.23 (0.22) −0.87 (−0.61) 0.58 (0.58)
CA (years) 10.9 (12.3) 2.8 (1.5) 4.2 (4.3) 14.6 (14.6)
M SDS 0.26 (0.65) 1.41 (1.26) −2.8 (−2.08) 6.31 (3.61)
HM SDS −1.00 (−0.94) 0.94 (0.85) −4.43 (−3.03) 2.44 (1.93)
HF SDS −0.92 (−1.06) 1.13 (1.12) −5.09 (−5.09) 3.12 (3.12)
BA/CA 0.75 (0.80) 0.13 (0.10) 0.34 (0.46) 1.02 (1.02)
BW SDS −0.96 (−0.91) 1.00 (0.96) −5.38 (−3.8.) 1.37 (1.23)
GA (weeks) 39.3 (39.4) 1.3 (1.3) 35.0 (35.0) 43.0 (43.0)
GHN (ng/mL) 6.1 (6.3) 3.2 (3.7) 0.0 (0.0) 26.9 (26.9)
GHK (ng/mL) 7.1 (7.4) 4.0 (4.9) 0.4 (0.4) 40.0 (40.0)
GHG (ng/mL) 5.5 (6.0) 3.2 (3.7) 0.1 (0.1) 21.7 (21.7)
IGF-I SDS −1.91 (−1.94) 1.1 (1.11) −5.31 (−5.31) 0.78 (0.78)
IGFBP-3 SDS −0.36 (−0.41) 0.95 (1.00) −4.38 (−2.77) 3.16 (3.16)
D (mg/kg/week) 0.23 (0.23) 0.03 (0.03) 0.1 (0.13) 0.37 (0.37)
H SDS V1 0.66 (0.57) 0.35 (0.29) −0.09 (−0.09) 1.83 (1.45)
Δ IGF SDS (2.54) (0.98) (0.26) (6.37)
Δ IGFBP-3 SDS (0.87) (0.93) (−3.87) (3.17)
FH SDS (−1.04) (0.73) (−3.19) (0.60)
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Results

From the population of 200 networks for 1st year 
prediction, produced in final iteration of genetic 
algorithm, a network with 2 hidden units – MLP 17:17-
2-1:1 (number of input variables: #n of input neurons – 
#n of hidden units in consecutive layers – #n of output 
neurons: #n of outputs) was selected as the most accurate 
one. Similar procedure developing a model for final height 
indicated MLP 20:20-3-2-1:1 as the best model with all 
potential predictors. MLP 17:17-2-1:1 was trained by 
backpropagation, while MLP 20:20-3-2-1:1 by conjugate 
gradients algorithm. Both of those networks are presented 
schematically in Fig. 1; input variables abbreviations are 
explained in the 'Characteristics of the cohort of patients' 
section where they are indicated by bold font.

Those two models were subjected to input reduction 
by input cancellation algorithm. Results of this operation 
are presented in Fig.  2 as values of coefficient of 
determination (R2) after removal of each input. Basing 
on the plot for 1st year (Fig. 2A), it was observed that 7 
variables can be eliminated with only slight decrease in 
testing R2; therefore, it was decided that final model should 
contain 9 inputs (MLP 9:9-2-1:1). In the model for final 
height, 10 explaining variables could be removed without 
significant change to R2 (Fig. 2B), so final model was MLP 
10:10-3-2-1:1. Variables that remained in both models are 
illustrated in Fig. 2C, where blue ellipse indicates 1st-year 
model and pink one FH model. Both reduced networks 
are presented in Fig. 3. Summary of errors and coefficients 
of determination calculated for both full and selected 
reduced models is presented in Table 2.

After input reduction, a sensitivity analysis was 
performed for reduced models MLP 9:9-2-1:1 and MLP 
10:10-3-2-1:1. Input–output dependencies in 1st-year 
model are presented in Fig. 4; all of them were done for 
prepubertal children, separately for girls (red curves) and 
boys (blue curves). The observed relationships are non-
linear and slightly different for boys and girls.

Analogical analysis for FH model (MLP 10:10-3-2-1:1) 
is shown in Fig. 5. In this case, gender and pubertal stage 
were not included in the model as redundant variables; 
therefore, the results are valid for both boys and girls 
either prepubertal or pubertal.

Finally, we were interested in accuracy of prediction 
for particular patients. It was analyzed with the use 
of Bland–Altman plots (Fig.  6). For 95% of patients, 
prediction error did not exceed 0.5 s.d. in the model of 
1st-year response to GH therapy and 1.0 s.d. in the model 
for FH; the mean error was about 0.27 s.d. and 0.50 s.d., 
respectively (for details see Table 2).

Discussion

In the present study, ANN model of 1st-year response to 
GH therapy explained 45% of its variability, with RMSE 
about 0.27 s.d./year that corresponds to about 1 cm/year. 
Other models of 1st-year response to treatment were 
created only for prepubertal children and explained 
from 33% (10) to 70% (7) of its variability, with the 
error of 1.46 cm (6) to 2.5 cm (7) in linear models and 
0.23 s.d. in non-linear model (8). We did not manage 

A B

Figure 1
Schematic representations of models for 1st-year response to GH treatment (A) and final height (B) with all available variables.
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to find any published model of 1st-year response to 
GH therapy for pubertal children or for children with 
different stages of puberty. Unfortunately, in some of 
the published models, the data on either explained 
variability or prediction error are missing. Moreover, 
despite the fact that the common model has been created 
for boys and girls, some gender-related differences in 

the relationships among the analyzed variables could 
be observed.

The best ANN model of FH SDS presented in the 
current study also explained 45% of its variability for 
testing group, with RMSE not exceeding 0.50 s.d. (that 
corresponds to about 3-cm difference between predicted 
and attained FH). For comparison, our previous model 

D

GA

PUB

HF SDS

H SDS V0

M SDS 

IGF-I SDS

G

CA

IGFBP-3 SDS

H SDS V1

H SDS0

BA/CA

HM SDS

A C

B

Figure 2
Results of input cancellation. Panels A and B present R2 coefficient (y axis) for model after removal of consequent inputs (x axis) presents number of 
removed inputs. (A) Result for 1st-year model, (B) Result for final height model. Order of input elimination is indicated above curves. Panel C shows 
variables that were included in reduced models; blue ellipse indicates 1st-year model, pink one final height model, the intersection of ellipses contains 
variables that are common for both models.

A B

Figure 3
Schematic representations of reduced models for 1st-year response to rhGH treatment (A) and final height (B).
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that included only pre-treatment data explained 42% 
variability of FH SDS with RMSE 0.63 s.d. Other models 
for FH prediction were derived either for only prepubertal 
children or separately for prepubertal and pubertal ones, 
which makes the direct comparison of our results with data 
from other studies impossible. However, the prediction 
error in our FH model was similar or even lower than that 
in published MLR models (11, 29). In our previous study 
(15), slightly better accuracy together with higher rate of 

explained variability of FH have been observed for ANN 
model vs MLR model, derived on the same data.

The best MLP model for 1st-year response contained 
9 input variables selected out of 17 potential ones, as 
the most significant input variables there were selected: 
patients’ age at therapy onset, gender and pre-treatment 
IGF-I SDS, while the model eliminated all the input data 
concerning direct assessment of GH secretion. The best 
MLP model for FH prediction eliminated 10 out of 20 

Table 2 RMSE and R2 for full and reduced models predicting 1st-year response to GH treatment and FH SDS.

 
Prediction horizon

 
Network architecture

RMSE R2 (%)

TR V TS TR V TS

1st year MLP 17:17-2-1:1 0.258 0.255 0.267 42.8 47.3 48.7
MLP 9:9-2-1:1 0.254 0.249 0.277 44.5 49.7 45.0

FH MLP 20:20-3-2-1:1 0.489 0.498 0.493 53.7 59.3 44.0
MLP 10:10-3-2-1:1 0.485 0.476 0.498 54.5 62.9 44.9

MLP number (n#) of inputs: n# of input neurons, n# of neurons in consecutive hidden layers, n# of output neurons: n# of outputs.
TR, training set; TS, testing set; V, validation set.

Figure 4
Sensitivity analysis for 1st-year model – MLP 9:9-2-1:1.
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potential predictors. In this model, the most important 
variables were patients’ height at therapy onset (H0 SDS), 
pre-treatment IGF-I SDS and IGFBP-3 SDS, but again, none 
of GH stimulation tests results.

The problem of eliminating the variables that are 
considered as crucial for the diagnosis of GHD has 
been observed also in our previous ANN model for FH 
prediction, based on pre-treatment data only (15), as well 
as in some of the previously published linear and non-
linear models (6, 11, 13, 14). Moreover, the same situation 
was reported in the model for patients with ISS (29) and 

in some models for patients with the broad spectrum 
of GH secretion capacities (8, 9). This finding requires 
further investigations on the significance of the results 
of GH stimulation tests for GH therapy effectiveness. 
It seems that the variability of GH response to stimulation 
should be taken into account, as previous studies have 
documented both early normalization of decreased GH 
secretion (30, 31, 32) and the converse situation (33).

In current classifications, GHD is defined as secondary 
IGF-I deficiency (34, 35). Nonetheless, IGF-I secretion 
was included as a potential predictor of GH therapy 

Figure 5
Sensitivity analysis for FH model – MLP 10:10-3-2-1:1.
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effectiveness only in a few models (7, 8, 9, 13, 14, 15). 
More severe IGF-I deficiency presented to be a significant 
predictor of better response to treatment in all the models 
except ones with incomplete data on IGF-I concentrations 
(8, 9). However, in the present study, IGF-I deficiency was 
not required as inclusion criterion, as in Poland, it is still 
not necessary to document decreased IGF-I secretion to 
diagnose GHD. Our results confirm the significance of 
IGF-I deficiency for better effectiveness of GH therapy. 
The importance of IGFBP-3 assessment in diagnosing 
GHD is still a matter of discussion (1, 36). This parameter 
presented to be a significant input variable in our FH 
model but not in 1st-year response one. In other studies, 
IGFBP-3 was included only in two models (7, 9), but it 
presented to be insignificant.

Creating FH model, we have entered as potential 
predictors the data obtained during 1st-year of treatment: 
an increase of H SDS (H SDS V1), IGF-I SDS (Δ IGF SDS) 
and IGFBP-3 SDS (Δ IGFBP-3 SDS); however, only H SDS 
V1 has been included in the final model. With respect to 
IGF-I significance, similar findings have been presented 
by Schonau and coworkers. (7). In all published models 
in which an increase of growth rate during GH therapy in 
the time period preceding the forecast was included, it has 
been the most important input variable (6, 10, 11, 29) or 
even the only significant predictor (9).

The complexity of neural models can seem to be an 
obstacle in their daily use in clinical practice. However, 
they could be implemented as user-friendly software 

as it was done for instance in the case of the models 
presented by Elias and coworkers (37). Still, application of 
models in the field of GH treatment response prediction 
requires some caution due to usage of various methods 
of hormonal assessment and differences in growth 
between populations. Certainly, any model should 
require calibration before it can be applied to children of 
different ethnicity or examined by laboratory methods 
with different reference ranges than those used in patients 
whose data we used to derive that model.

The undoubted contribution of our study to the 
deepening knowledge of the importance of particular 
auxological indices and results of hormonal tests for 
GH therapy effectiveness are presentations of non-
linear dependencies between the analyzed input and 
output variables. This result is clearly a consequence of 
application of neural models that are more flexible in 
finding dependencies in data than other computational 
methods. Moreover, the progress of information 
technologies observed in recent years allows relatively 
easy translation of such complex tools to clinical practice.
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Figure 6
Bland-Altman plots for 1st-year model (A) and FH SDS model (B). Horizontal axis presents mean of real and predicted values, while vertical one 
prediction error (difference between real and predicted value). Green horizontal line indicates mean difference and red horizontal lines 95% confidence 
interval.
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