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Abstract

Accurately quantifying animals’ spatial utilisation is critical for conservation, but has long remained an elusive goal due to
technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals,
however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust
statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal
movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM
predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared
home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly
accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68th

percentile error was ,1 km for LC 1, 2, and 3 while markedly less accurate (.4 km) for LC #0. Argos error structure was
highly longitudinally skewed and was, for all LC, adequately modelled by a Student’s t distribution. Both habitat use and
migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3)
and filtering terrestrial points (mean distance to migratory tracks 6 SD = 2.262.4 km; mean home range overlap and error
ratio = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly
overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations
nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore
recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for
research and evidence-based conservation purposes.
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Introduction

Global economic development puts increasing pressure on

terrestrial and marine ecosystems for the exploitation of natural

resources. Commercial activities (e.g. fishing, mining and oiling

exploitation) threaten to deteriorate animal habitats and therefore

put their survival at risk [1,2,3]. To mitigate human impact and

adequately delimitate protected areas, determining the distribution

of wildlife is paramount. Quantifying habitat use is similarly vital

to understand animals’ biophysical requirements (e.g. nutrition,

reproduction) and further predict areas of ecological significance

[4,5,6]. Breeding and foraging grounds are especially important

for conservation as those areas constitute crucial habitats in

animals’ lifecycles. Reproductive migration also represents a key

phase during which animals are exposed to various anthropogenic

threats over long distances. Estimating home ranges and migratory

corridors is however nontrivial and limited by the accuracy of the

tracking technique and the analytical methods used to estimate

animal position. Such assessment becomes even more technically

challenging when researching migratory animals, such as marine

turtles, that range over thousands of kilometres [7,8].

Satellite telemetry is now the most commonly used technique to

study long-distance migrants as they can be tracked remotely and

regularly for many months [9,10,11,12,13]. Two different systems

exist. Service Argos uses the Doppler shift in transmitted

frequencies to estimate animal location [14]. Positions are

subsequently classified into one of seven location classes (LC 3,

2, 1, 0, A, B, and Z) and have a 68th percentile spatial error

ranging from 0.5 (LC 3) to 10 km (LC B) [15,16,17]. However, as

air breathing marine animals commonly surface only briefly,

extended transmission opportunities are rare, resulting in high

proportions of locations with high spatial errors (LC 0, A and B)

[18,19]. The Fastloc GPS system overcomes this impediment by

having fast acquisition times (,100 ms) and uses the Global

Positioning System (GPS) to compute animal location with higher
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accuracy (95th percentile error ,140 m) [20]. Lower measure-

ment errors, combined with more frequent fixes [21,22], has

enabled researchers to quantify animal movement behaviour at

finer scales [23,24,25] and calculate more realistic habitat use

maps resulting in improved management recommendations,

including underpinning the designs of protected areas

[26,27,28]. Furthermore, tracking animals simultaneously with

both systems enables the quantification of the error associated with

each Argos LC, which is paramount for enhancing the accuracy of

Argos location estimates by incorporating error structures into

mathematical models [15,16,17,29]. As Argos datasets have been

collected for over three decades, using correcting algorithms to

rework historical datasets is a necessary step to obtain better

estimates of animal habitat utilisation and thus potentially avoid

the need to repeat studies with newer technology.

Although commonly applied to remotely sensed movement

data, ad-hoc heuristic methods for refining Argos location estimates

(e.g. speed filters) are subjective and discard substantial amounts of

potentially valuable data [10,30,31]. A more parsimonious

approach consists in fitting state-space models (SSMs) to Argos

locations [32,33]. SSMs separately account for Argos LC error

structure and stochasticity in animal movement using behavioural

correlated random walk models [34,35,36]. Irregular, non-

Gaussian error distributions are incorporated into this complex

statistical framework using Markov Chain Monte Carlo (MCMC)

estimation methods. Albeit computer intensive, this Bayesian

statistical framework does not remove extreme observations as do

other likelihood-based methods (e.g. Kalman filters) [37,38].

Despite their robustness and wide use in ecological research, few

studies have yet tested the accuracy of SSM predicted locations,

especially for subsequent geospatial analyses estimating habitat

utilisation [38,39].

Hawksbill turtles (Eretmochelys imbricata, Linnaeus 1766) are

migratory marine animals distributed circumtropically (Witzell

1983, Márquez 1990, Leon & Bjorndal 2002). Upon reaching

sexual maturity, individuals select a foraging ground where they

exhibit high site fidelity [40,41]. Episodically though, adults

migrate to the vicinity of their natal site to reproduce. Females

breed every two to six years, laying several clutches of eggs at a two

to three week intervals [42,43,44,45]. Between nesting events, i.e.

the inter-nesting period, females commonly inhabit the waters

surrounding their nesting sites [43,45,46]. Once the nesting season

is over, hawksbill turtles undertake post-nesting migrations to

return to their feeding sites [41]. Tracking hawksbill turtles from

their breeding site consequently provides information on their

inter-nesting, migratory and foraging behaviour. Using satellite

tracking data from seven hawksbill turtles, this study successfully

quantified the spatial error associated with commonly used Argos

statistical processing methods and identified the analytical

approach best enhancing the accuracy of location estimates and

home ranges. We additionally complemented this critical technical

assessment by thoroughly examining Argos location error struc-

ture to examine the consistency of our data with previous marine

vertebrate tracking studies and for future incorporation into

complex correcting algorithms.

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described field

studies. The animal use protocol for this research was reviewed

and approved by the Animal Ethics Committee of Charles

Darwin University and met the requirements of the Australian

Code of Practice for the Care and Use of Animals for Scientific

Purposes (1997) and the Northern Territory Animal Welfare Act

(1999) (Project Reference No A04005). A permit to undertake

scientific research on wildlife was also obtained from the

Northern Territory Government (Marine Biodiversity Group -

Department of Natural Resources, Environment, the Arts and

Sport) - Primary Holder: Scott Whiting; Nominees on Permit:

Xavier Hoenner and Elisabeth Dethmers (Reference No 39239).

The Groote Eylandt archipelago constitutes an Indigenous

Protected Area and is Indigenous owned. Permits and permission

to carry research on Indigenous land was obtained by the

Anindilyakwa Land Council.

Attachment Details
We attached, after oviposition, a Satellite Relay Data Logger

(SRDLs, Sea Mammal Research Unit, St. Andrews, U.K.) on each

of seven adult female hawksbill turtles nesting on Groote Eylandt,

northern Australia (13u58 S, 136u35 E). We mounted SRDLs onto

wedges to maximise communication efficiency between tags and

satellites (base = 102 mm, width = 5 mm, height = 30 mm,

hypotenuse = 106 mm, slope = 16u) [47]. Using quick-setting

two-part epoxy resin (Sika AnchorFixH-3+, Sika Australia Pty Ltd),

we glued transmitters and wedges onto the flat part between the

two anterior central scutes of the turtles’ shell. As the satellite

transmitters we used were hydrodynamic and represented less than

1.5% of hawksbill turtles’ weight, we presumed that they had

minimal effect on individual behaviour (SRDL = 700 g, average

weight of adult female hawksbill turtles = 48.7 kg) [48,49]. We

released all tagged animals unharmed when the epoxy had totally

cured. SRDLs used the Service Argos telemetry system to transmit

Fastloc GPS data, subsequently providing two sets of locations:

Argos and Fastloc GPS [18,29].

Argos Location Class: Error Structure
We first examined the error structure of Argos LC following

methods in Costa et al. (2010) [15]. We first isolated Argos

locations obtained within five minutes of a GPS position. We then

estimated animal ‘‘true’’ position at the time of the Argos uplink by

linearly interpolating neighbouring GPS coordinates. Following

this procedure, we computed the error distance between Argos

locations and ‘‘true’’ animal positions and examined the latitudinal

and longitudinal components of error. To investigate Argos error

distribution for each LC, the latitudinal and longitudinal error

components were subsequently fitted to a t distribution using a

maximum likelihood approach. The t distribution allows for robust

incorporation of outliers and it best modelled all Argos LC

estimation errors except for LC 3 estimates [35]. For better

knowledge of Argos error distributions, we produced joint log-

likelihood surface plots with 95% confidence regions for the two

parameters influencing the t distribution (i.e. the scale parameter t
and the degree of freedom n). As the Gaussian distribution is a

special case of the t distribution when n R ‘, the shape of the 95%

confidence region indicates the suitability of the t distribution to

model each Argos LC error structure. We subsequently compiled

maximum likelihood estimates of t and n for comparison with

other studies.

Data Pre-processing
For each individual we compiled a Fastloc GPS and several

Argos-based datasets through discrete processing approaches

(Figure 1). We first applied a 100 km distance filter to raw Argos

and Fastloc GPS datasets to discard the most erroneous locations.

This procedure removed aberrant Fastloc GPS positions that were

not isolated with standard filtering algorithms (i.e. location

estimates derived from fewer than five satellites or with residual

Accuracy of Argos and State-Space Model Estimates
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errors $30) [29]. Argos datasets were then used to produce

(i) filtered Argos and (ii) state-space model (SSM) datasets. We

computed filtered Argos datasets by combining a set of distance,

speed, angle and location class filters commonly used in tracking

experiments and by removing terrestrial fixes using data from the

Australian Bathymetry and Topography Grid [50]. We adopted

the following filter thresholds as they produced biologically

relevant movement patterns while minimizing information loss

and were consistent with previous studies on hawksbill turtles:

50 km, 2 km.h21, 90u, LC Z [51,52]. A state-space analysis was

applied to both the Argos and filtered Argos datasets using the

hierarchical two state-switching correlated random walk model in

R and WinBUGS [37,53,54]. To enhance the accuracy of

predicted locations, we grouped individuals with similar data

collection frequency [36,55] and we adopted the following

parameters to run our model: 10000 iterations, a burn-in of

7000, a thin of 5 and two MCMC chains. We then assessed

convergence in WinBUGS by calculating the Gelman-Rubin

convergence statistic and through trace plot examination for

‘‘mixing’’ and stationarity [54]. Through this procedure we

obtained a SSM and filtered SSM dataset for each individual.

Finally, we attempted to further refine SSM datasets by discarding

terrestrial points and re-adding high quality Argos locations (LC 1,

2, and 3). Prior to geospatial analysis, we distinguished the inter-

nesting, migration and foraging phases for each individual and

each dataset by successively mapping animal positions through

time in R, using standard habitat discrimination criteria for

marine turtles [56,57].

Home Range Analyses
To assess habitat use during the inter-nesting and foraging

periods, we calculated the 50% and 95% utilisation distribution

(UD) using the fixed Kernel Density Estimation (KDE) method

derived from least-squares cross-validation bandwidths [58,59].

The 50% UD area represents an animal’s core area of activity

while the 95% area determines its overall home range [28,60]. As

female hawksbill turtles frequented a common marine area during

the inter-nesting period, we computed the combined utilisation

distribution (UD) for our seven breeding animals by aggregating

individuals’ locations. We used random sampling to account for

inter-individual differences in numbers of inter-nesting locations

and computed UD for 10 000 bootstrap iterations to explore

possible home range sizes and shapes.

Comparing Home Ranges
Argos and GPS home ranges were compared by estimating the

overlaying percentage (OP) and error ratio (ER). These two

parameters respectively quantify the percentage of overlap

Figure 1. Flow diagram showing the different approaches used
to obtain our five Argos-derived datasets. Data transformation
procedures are indicated within dashed line boxes, datasets are
indicated within solid line boxes.
doi:10.1371/journal.pone.0040713.g001

Figure 2. Home Range Accuracy (HRA) index as a function of
the overlaying percentage (OP) and error ratio (ER). The top
panel represents the evolution of the HRA index for ERs comprised
between 0 and 10 000. The bottom panel highlights the smooth join for
ER = 1.
doi:10.1371/journal.pone.0040713.g002

Accuracy of Argos and State-Space Model Estimates

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40713



between the GPS and Argos-derived home ranges and examine

their size ratio using the following formula [61,62]:

ER~
home range sizeArgos

home range sizeGPS

We then designed a Home Range Accuracy (HRA) index for

automatic and objective discrimination of home range estimates.

This HRA index, built as a smooth joining algorithm, varies

between 1 (OP = 100%, ER = 1) and -1 (no overlap, ER R 0).

(1) For ER #1:

HRA index~
OP

100

� �
zk| log10 ERz1ð Þ{log10(2)½ �;

k = log0.5(10).

(2) For ER .1:

HRA index~
OP

100

� �
{log10 log10(ERz9)½ �

Because encompassing animal habitats is often the primary

objective of conservation-oriented ecological studies, we assigned

more importance on the OP than the ER term and penalised

home range size underestimation more severely than overestima-

tion by applying a steeper decrease for ER #1 (Figure 2). The

value of k was determined so that the second term in eq. (1) is

equal to -1 for ER = 0. Similarly, log10(2) and 9 allow for smooth

joining of the two equations for ER = 1.

To further explore the relationship between Argos and GPS

home range size, we fitted a set of polynomial generalised linear

models to those data (i.e. null, linear, quadratic, cubic and quartic

model) and evaluated the relative strength of evidence of each

candidate model using multi-model inference, based on informa-

tion theoretic [63]. More specifically we used the Akaike’s

Information Criterion corrected for small sample size (AICc) and

its associated weight wAICc.

Assessing Migratory Pathways
We additionally assessed the error associated with Argos

migratory pathways by computing the minimum distance between

location estimates and interpolated Fastloc GPS data. Assuming

constant speed and linear paths between locations, we linearly

interpolated neighbouring GPS positions to obtain one point every

200 metres, thereby recreating animals’ ‘‘true’’ migratory tracks.

Results

Hawksbill turtles only relayed a low proportion of LC .0

positions (mean 6 SD = 9.567.3%) (Table S1). On average

GPS locations were transmitted more frequently but for slightly

Figure 3. Joint log-likelihood surface plots for t distribution parameters t and n, for the longitude and latitude components of
error. Argos location classes are indicated in the lower right corner of each panel. Maximum likelihood estimates are represented by filled circles. The
95% confidence region on each panel is indicated in gray and delimitated by a thick black line. The contour interval is -1 with log-likelihood values
decreasing from the maximum likelihood point estimate.
doi:10.1371/journal.pone.0040713.g003

Accuracy of Argos and State-Space Model Estimates
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shorter time periods than Argos positions (mean daily transmis-

sion frequency = 3.660.6 vs. 2.360.9 locations, mean tracking

duration = 171.96125.4 vs. 203.26137.6 days respectively)

(Table S1). Argos location 68th percentile errors were relatively

low for LC 1, 2 and 3 (0.51, 0.67 and 1.02 km respectively)

(Table 1). Those errors were similar to previous studies but larger

than Argos theoretical estimates (Table 1). LC A and B locations

showed similar errors of about 10 km while LC 0 positions were

associated with a 4.2 km 68th percentile error (Table 1). The

95% confidence regions on joint log-likelihood surface plots

indicate that the observational error structure associated with

Argos location estimates of each LC follows a Student’s t

distribution (Figure 3). Although insufficient sample size prevent-

ed distribution fitting of Argos LC 3 positional errors, we found

that the 95% confidence region upper limit for the degree of

freedom (n) increased with the quality of Argos LC (Figure 3).

Maximum likelihood estimates of the scale parameter t showed

larger longitudinal than latitudinal components of error for all

LCs (Table 2).

The combined core inter-nesting area (50% UD) was best

estimated using post-processed SSM locations (HRA index

= 0.943) (Table 3). All processing approaches produced 50% UD

polygon fully encompassing the core GPS 50% UD polygon

(100% overlap) (Figure 4). Argos and filtered Argos datasets

produced core areas twice the size of SSM-derived locations (ER

.14.0 against ER ,7.0 respectively) (Table 3). Post-processing

SSM locations improved home range size estimates by 72.7% and

30.4% respectively compared to Argos and SSM estimates

(Table 3). The combined 95% UD analysis, on the other hand,

identified the filtered Argos locations as best recreating the overall

GPS area (mean ER = 6.8, mean OP = 97.2%), producing size

estimates 3.4 times more accurate than Argos-based home range

while only inducing a 2.8% loss in overlap (HRA index = 0.893)

(Table 3, Figure 4B). SSM approaches produced the lowest ERs

(ER ,5.0) but failed to encompass completely the overall

combined inter-nesting area (OP,90.0%) (Table 3, Figure 4C,

D, and E). Contrarily to our 50% UD analysis, we observed a

parallel decrease of the ER and OP parameters for increasing

complexity of data processing.

Individual habitat use analyses revealed that post-processed

SSM locations best estimated the 50 and 95% UD (mean HRA

index = 0.657 and 0.718 respectively) (Table 3, Figure 5). Using

this approach, home range sizes were over seven times more

accurate than Argos home ranges (mean ER for 50% UD = 376.0

and 2712.0 respectively) and twice more than SSM’s (mean ER for

50% UD = 648.0) (Table 3). Filtered SSM locations produced the

most accurate home range size estimates (mean ER for 50%

UD = 348.5), but were associated with the lowest overlapping

percentages (average OP = 82.1%) (Table 3, Figure 5). Poor

overlap (,50%) was nevertheless only obtained when the number

of locations for home range analyses was low (,30). Although

post-processed SSM locations best recreated individual habitat

use, large error ratios were obtained (Table 3, Figure 5). Such

overestimation in home range size was particularly associated with

spatially restricted GPS areas (median size of GPS area = 2.0 km2,

range = 0.01–661.3 km2) (Figure 6). Animals with home ranges

smaller than 3 km2 had a mean ER of 527.5 while those with areas

larger than 3 km2 had a mean ER of 6.4. A linear generalised

linear model best described the relationship between post-

processed SSM and GPS home range sizes as it had the highest

level of support (wAICc = 0.66) and explained 38.5% of the

deviance observed (Figure 6). The best fit of this linear model

suggests an approximate two order of magnitude difference

between post-processed SSM and GPS home range sizes for small

GPS area (,5 km2), progressively decreasing to a one order of

magnitude difference for larger GPS area (Figure 6).

Using Argos locations to recreate animal migratory pathways

produced the highest errors (mean 6 SD = 4.969.2 km,

max = 77.3 km, n = 477 locations) (Figure 5 and 7). Post-process-

ing SSM predicted locations and filtering Argos locations both

minimised the distance to GPS tracks however the latter analytical

approach showed a broader dispersion and fewer observations

(mean 6 SD = 2.262.4 km, max = 12.8 km, n = 399 locations and

mean 6 SD = 2.163.1 km, max = 26.2 km, n = 297 locations

respectively) (Figure 5 and 7). While state-space modelling Argos

data improved their accuracy (mean 6 SD = 3.063.4 km), the

same procedure applied to filtered Argos data only slightly further

reduced error distances and discarded numerous fixes (mean 6

SD = 2.763.4 km, n = 78 locations, i.e. ,11 positions per individ-

ual migratory track) (Figure 5).

Discussion

In concordance with other marine turtle studies, our Argos data

were characterised by low numbers of daily uplinks and high

proportions of LC 0, A, B and Z location estimates [10,46]. Such

Table 1. Comparison of the 68th percentile spatial error associated with each Argos location class from different studies (in km).

Source Methods LC3 LC2 LC1 LC0 LCA LCB N

ARGOS Theoretical 0.15 0.35 1.00 – – –

This study On animals, at sea 0.51 0.67 1.02 4.15 10.19 9.24 506

Costa et al. (2010) On animals, at sea 0.49 1.01 1.20 4.18 6.185 10.28 1105

Hazel et al. (2009) On animals, at sea 0.48 0.79 1.43 5.18 8.07 11.48 168

doi:10.1371/journal.pone.0040713.t001

Table 2. Maximum likelihood estimates and standard errors
for t distribution parameters t and n for longitudinal and
latitudinal components of Argos error.

LC Longitude Latitude N

tlon (SE) nlon (SE) tlat (SE) nlat (SE)

B 3.134 (0.379) 0.854 (0.094) 1.659 (0.206) 0.982 (0.121) 261

A 1.789 (0.440) 0.690 (0.124) 1.328 (0.236) 0.870 (0.146) 104

0 1.877 (0.457) 1.054 (0.269) 0.926 (0.170) 1.211 (0.275) 66

1 0.534 (0.115) 1.528 (0.482) 0.301 (0.063) 1.478 (0.448) 43

2 0.452 (0.145) 1.752 (0.920) 0.239 (0.073) 2.048 (1.162) 18

N represents the number of Argos locations of each location class (LC) obtained
within five minutes of a GPS uplink.
doi:10.1371/journal.pone.0040713.t002

Accuracy of Argos and State-Space Model Estimates
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limited transmission performances are most likely due to restricted

coverage of the tropics by polar-orbiting satellites, combined with

infrequent surface intervals [64,65,66]. Argos 68th percentile LC

errors were consistent with previous research, with LC 1, 2, and 3

within 1 km of ‘‘true’’ positions while LC #0 were markedly less

accurate (.4 km) [15,16]. Argos error structure was highly

longitudinally skewed and was, for all LC, adequately modelled

by a t distribution, which confirmed the non normality of Argos

location error distribution [15,17,35,67]. Maximum likelihood

estimates of t and n parameters characterising t-distributions

nonetheless differed substantially from those computed using

Argos locations of caged animals [35]. While those discrepancies

may be attributed to different experimental design and analytical

methodology, additional research quantifying the statistical

distribution parameters of Argos error is urgently required for

subsequent incorporation of error probability densities into

correcting algorithm.

Habitat utilisation was best quantified from post-processed SSM

locations as they consistently maximised the overlap of true animal

home ranges and best estimated their sizes. Argos locations greatly

overestimated home range sizes and subsequent filtering of data

only provided limited improvements. Applying a state-space

Figure 4. Combined 50% and 95% utilisation distribution (UD) contour polygon calculated for each Argos-based approach
compared to GPS estimates. The core GPS area (50% UD) and overall home range (95% UD) are delimitated by a red and orange line respectively.
Argos-based 50 and 95% UD polygons are coloured in dark and light blue respectively. (A) Argos, (B) filtered Argos, (C) SSM, (D) post-processed SSM,
(E) filtered SSM.
doi:10.1371/journal.pone.0040713.g004

Table 3. Mean HRA index (error ratio/overlaying percentage) associated to individual and combined inter-nesting home range
estimates using Argos-derived locations.

Combined home range Individual home range

50% UD 95% UD 50% UD 95% UD

Argos 0.846 (17.6/100) 0.822 (23.1/100) 0.573 (2712.0/90.7) 0.598 (2948.6/97.0)

Filtered Argos 0.865 (14.2/100) 0.893 (6.8/97.2) 0.595 (2224.8/88.1) 0.677 (867.7/95.4)

SSM 0.920 (6.9/100) 0.843 (4.9/90.0) 0.627 (648.0/90.1) 0.688 (496.4/95.0)

Post-processed SSM 0.943 (4.8/100) 0.832 (3.3/86.9) 0.657 (376.0/89.3) 0.718 (195.1/95.0)

Filtered SSM 0.938 (5.3/100) 0.798 (2.4/82.2) 0.591 (348.5/82.1) 0.653 (177.0/90.4)

50% and 95% UD refer to the core area of activity and overall home range respectively. Values in bold highlight the best refining approach for each Argos-based home
range estimate.
doi:10.1371/journal.pone.0040713.t003

Accuracy of Argos and State-Space Model Estimates
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modelling procedure on filtered Argos positions induced substan-

tial loss in overlaying animal habitats, possibly due to low numbers

of observations. The implementation of our ad-hoc heuristic filter

thresholds discarded on average over 58.8% of Argos initial fixes

(range = 18.2–89.4%), thus necessitating longer time steps for SSM

analyses, resulting in the production of few predicted locations.

While using Argos data in our SSMs produced home ranges with

good overlap and relatively accurate sizes, post-processing those

predicted locations by re-adding good Argos LC positions and

removing terrestrial positions considerably refined habitat use

estimation.

Our post-processing SSM approach also estimated animals’

migratory tracks with the greatest accuracy as it produced the

lowest mean and maximum errors along with high numbers of

observations. This post-processing procedure reduced the average

distance to the GPS track by 25% compared to SSM datasets,

thereby outperforming similar error assessment studies on Argos

migratory tracks analysed using continuous-time SSMs (mean and

median distance error of 3 and 4 km respectively) [38,39]. The

Figure 5. Box and whisker plots of the Home Range Accuracy
(HRA) index, error ratio (log10 transformed), overlaying
percentage (%), and error distance (km) computed using five
Argos-derived location estimates. Red crosses indicate mean
values. ppSSM – post-processed state-space model. Outliers are not
represented.
doi:10.1371/journal.pone.0040713.g005

Figure 6. Logarithmic relationship between post-processed
SSM and GPS home range sizes. The red solid line represents the
best fit of a linear generalised linear model (a = 1.352, b = 22.287,
adjusted r2 = 0.36), which had the most support (wAICc = 0.66) amongst
other polynomial candidate models. Red dashed lines represent the 2.5
and 97.5% confidence intervals.
doi:10.1371/journal.pone.0040713.g006

Figure 7. Migration tracks of three female hawksbill turtles
using Fastloc GPS (red), post-processed SSM (blue) and Argos
(green) locations.
doi:10.1371/journal.pone.0040713.g007
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latter studies employed Kalman filters to estimate SSM parameters

which necessitated prior speed filtering for Argos location errors to

follow a Gaussian distribution [38,39,68]. Our SSM approach, on

the other hand, used MCMC estimation methods, which offer

additional flexibility as they allow for the incorporation of non-

normal error structure. Quantifying the error associated with those

two methods (maximum likelihood- vs. Bayesian estimated- SSM

locations) on similar datasets nonetheless remains essential since

SSM outcomes intrinsically rely on the quality of Argos data. Such

assessment is particularly paramount as Service Argos now offers a

new Interacting Multiple Model (IMM) algorithm using Kalman

filters, which provides more locations (0.3 to 12.7% increase) with

better accuracy (reduction of mean error from 10 to 65%) and less

error dispersion (14 to 83% decrease) [19]. Comparative works are

therefore required concomitantly to the development of new

analytical procedures to highlight the most accurate processing

approach for typical quantification methods of animal behaviour.

We encourage those studies to use our HRA index for objective

discrimination of Argos processing approaches and optimal

refinement of home range estimates in exploratory analysis (e.g.

incremental filtering).

Post-processed SSM locations benefit from the integration of

Argos LC error structures into correlated random walk models

and from subsequent objective filtering of biologically irrelevant,

terrestrial locations. This approach can be automated and applied

routinely as users only have to choose appropriate time steps and

MCMC parameters. Predicted datasets are temporally regular and

therefore well suited for home range analysis using KDE methods

[69]. This temporal regularisation nevertheless discards small

numbers of accurate Argos fixes (,10% for this study) by

predicting locations at fixed time steps. Integrating those few

good Argos LC positions back into SSM predicted datasets

therefore provided additional information on animals’ true

positions and improved both migratory track and habitat

utilisation estimates. Poor overlap of true animal habitats was

only observed for small sample sizes, which confirms that kernel

computation requires a minimum number of observations [70,71].

The number of locations is therefore crucial to estimate animal

utilisation distribution accurately and should ideally be standard-

ised for behavioural inference and spatial use comparisons

between individuals [72]. While KDE methods don’t account for

physical boundaries and may include areas of little use, they

robustly describe habitat use and are more accurate than home

ranges estimated from minimum convex polygon approaches

[73,74,75]. Although we recommend future comparative studies to

use the same analytical method for estimating utilisation distribu-

tion, the emergence of more complex algorithms (e.g. mechanistic

home range models) may provide more insights into animal

behaviour as they incorporate the location of external natural

features (i.e. resources, habitat types) [76,77,78].

Our home range size estimates were characterised by large

error ratios, especially for animals living in spatially restricted

habitats as indicated by the positive linear relationship between

post-processed SSM and GPS home range sizes. Our results

consequently stand in contrast with the average error ratio of 2.8

(range = 1.2–3.5, n = 5 individuals) obtained for 50% UD polygon

computed using azimuth filtered Argos locations [29]. The latter

study nonetheless employed different kernel density estimation

methods and animals displayed broader movements (GPS 50%

UD area = 0.7–2.6 km2). The large error ratios we obtained

primarily for small GPS areas may be explained by the inherent

error structure of Argos data that disperses locations around

animal true positions. For instance, animals inhabiting a 0.01 km2

area will have an estimated home range at least 400 times larger

due to the average distance error of 2 km. The Fastloc GPS

technology is thus preferable to investigate the fine scale spatial

behaviour of species with restricted habitats as even the most

parsimonious Argos data processing approach will lead to

significant overestimation.

Conclusions
Recreating animals’ paths from inaccurate data has now

become an important discipline in ecology, incorporating state

of the art mathematical models into complex statistical frame-

works. This study constitutes an important stepping stone for

wildlife tracking research as it identified the best analytical

technique for processing remotely sensed Argos tracking data.

Although post-processed SSM locations are still associated with

higher spatial errors than Argos LC 1, 2, and 3, they provide

substantial improvement for home range and migratory pathway

estimation compared to Argos or filtered Argos data and

consistently recreated animal spatial utilisation with the greatest

accuracy amongst the set of commonly used Argos analytical

methods we tested. Historical Argos datasets (i.e. obtained using a

non-linear least-squares algorithm) can therefore be reworked

using our approach to refine our knowledge of animal behaviour

and provide evidence-based conservation recommendations to

underpin various management strategies including protected

areas. Further research is nonetheless needed as those results rely

on a small number of individuals, which relayed low numbers of

daily uplinks and high proportions of poor LC locations.
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51. Troëng S, Dutton PH, Evans D (2005) Migration of hawksbill turtles Eretmochelys

imbricata from Tortuguero, Costa Rica. Ecography 28: 394–402.

52. van Dam RP, Diez CE, Balazs GH, Colón Colón LA, McMillan OW, et al.

(2008) Sex-specific migration patterns of hawksbill turtles breeding at Mona

Island, Puerto Rico. Endangered Species Research 4: 85–94.

53. R development core team (2009) R: a language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. http://

cran.r-project.org/.

54. Spiegelhalter DJ, Thomas A, Best NG (1999) WinBUGS Version 1.2 User

Manual. MRC Biostatistics Unit, Cambridge, U.K. http://www.mrc-bsu.cam.

ac.uk/bugs/.

55. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis,

second edition. London: Chapman and Hall.
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