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The STAT3 is often dysregulated in genitourinary tumors. In prostate cancer, STAT3 
activation correlates with Gleason score and pathological stage and modulates cancer 
stem cells and epithelial–mesenchymal transition. In addition, STAT3 promotes the 
progression from carcinoma in situ to invasive bladder cancer and modulates renal cell 
carcinoma angiogenesis by increasing the expression of HIF1α and VEGF. STAT3 is also 
involved in the response to tyrosine kinase inhibitors sunitinib and axitinib, in patients 
with metastatic renal cell carcinoma, and to second-generation androgen receptor 
inhibitor enzalutamide in patients with advanced prostate cancer. In this review, we 
describe the role of STAT3 in genitourinary tumors, thus describing its potential for 
future therapeutic strategies. 

Regulation of the protein STAT3 is often dysfunctional in genitourinary tumors, 
including prostate, bladder and kidney cancer. STAT3 is involved in the generation 
of these tumors and has an effect in their response to treatments. In this review, we 
describe its role in genitourinary tumors and discuss its potential for use in future 
therapies.
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The STAT proteins are involved in mediat-
ing cellular responses to cytokines [1]. STAT 
family includes seven members (STAT1, 
STAT2, STAT3, STAT4, STAT5A, STAT5B 
and STAT6). Among them, STAT3 plays a 
prominent role in tumor growth and inva-
sion [2]. STAT3 was discovered as an acute 
phase response factor, due to its ability to 
increase the expression of liver proteins in 
response to stress [3]. STAT3 activation 
(pSTAT3) is determined by the phosphory-
lation of the tyrosine residue at position 
705 by JAK [4]. Once activated, pSTAT3 
forms dimers, translocates into the nucleus, 
and binds to STAT-specific DNA-response 
elements, called gamma-activated sites to 
promote the transcription of selected genes.

STAT3 presents three alternative splice 
isoforms: the isoform 1 or α (producing 
a 770 aminoacids protein), the isoform 2 

(lacking aminoacid 701) and the isoform 3 
or β (lacking AAs 723–770 and with a shift 
from TTCSNTI to FIDAVWK, correspond-
ing to aminoacids 716–722). STAT3α is the 
more frequent isoform expressed in human 
carcinomas and is involved in tumor devel-
opment and metastasis. Otherwise, the β iso-
form seems to inhibit the transcriptional acti-
vation due to α isoform, resulting in tumor 
growth inhibition [5,6].

The list of STAT3 activators includes 
IL-6, EGF, S1P, inflammatory OSM, Src 
family members and growth factor receptors 
that possess intrinsic tyrosine-kinase activity, 
such EGFRs, HGF receptor (also known as 
c-Met) and PDGFR [7–10].

Deregulation of STAT3 signaling has been 
reported in several solid tumors, including 
breast [11], head and neck [12], prostate, renal, 
bladder, pancreas, ovarian and brain cancers 
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and melanoma [13–19]. This review summarizes recent 
findings on the role of STAT3 in tumor initiation, pro-
gression and angiogenesis, focusing on genitourinary 
tumors.

Role of STAT3 signaling in cancer
STAT3 acts as transcriptional regulator of a variety 
of tumor-promoting genes. Persistent STAT3 activa-
tion may be due to the loss of suppressors of cytokine 
signaling and protein tyrosine phosphatases expres-
sion, as well as to autocrine or paracrine inflammatory 
stimulation in the tumor microenvironment.

STAT3 activation alone is sufficient to induce cell 
transformation, showing a strong oncogenic potential 
and promotes the maintenance of a procarcinogenic 
inflammatory microenvironment during cancer initia-
tion and progression [20–22]. In addition, STAT3 inhi-
bition has been shown to suppress tumor growth and 
enhance the sensitivity to drugs in a variety of solid 
tumors [23,24].

The list of STAT3 target genes includes VEGF, Bcl2, 
c-myc, cyclin D1, Survivin and WASF3, a member of 
the WASP/WASF family, which are involved in tumor 
development and progression [25–29]. WASF3 regulates 
cell motility by modulating actin cytoskeleton dynam-
ics [66] and promotes invasion through the activation 
of NFκB and ZEB1 [30]. Furthermore, STAT3 pro-
motes carcinogenesis through the chaperone protein 
aging-associated gene 8 protein, which contributes to 
endoplasmic reticulum-associated degradation and 
promotes carcinogenesis both in vitro and in vivo [31].

The epithelial–mesenchymal transition (EMT) is 
a process by which epithelial cells transdifferentiate 
into motile mesenchymal cells. Inappropriate activa-
tion of embryonic EMT programs in cancer cells pro-
motes cell plasticity and invasion [32]. Moreover, EMT 
is implicated in the acquisition of stem cell-like and 
chemoresistant phenotypes by tumor cells [33]. Inter-
estingly, STAT3 promotes cancer invasion also by 
modulating EMT [34]. Indeed, STAT3 regulates the 
expression of transcriptional factors driving EMT and 
modulates cytoskeleton dynamics during the initiation 
of the EMT process [34].

Recent studies have revealed persistent STAT3 acti-
vation in myeloid and T cells at primary tumor sites 
contribute to tumor-related immunosuppression, 
angiogenesis, growth and metastasis [35–39]. In addition, 
STAT3 signaling plays a crucial role also in other types 
of stromal cells, such as fibroblasts and endothelial 
cells, in initiating premetastatic niche formation [40].

Role of STAT3 signaling in prostate cancer
Prostate cancer (PCa) is one of the leading causes of 
death among men. In the last years, major advances 

have been made in understanding the genetic mecha-
nisms underlying PCa. STAT3 plays a crucial role 
in prostate carcinogenesis [41,42], as sustained by the 
evidence that STAT3 knockdown is associated with 
inhibited tumor growth in preclinical models [43]. 
STAT3 signaling is involved in modulating PCa cell 
survival. Indeed, STAT3 is required for the activation 
of antiapoptotic proto-oncogenes, such as Bcl-2 and 
Bcl-3 [44–46] and for the modulation of androgen recep-
tor (AR) expression and activity [47]. Furthermore, in 
vitro studies showed that STAT3 activation is higher in 
androgen-insensitive DU145 and PC3 cell lines com-
pared with androgen-sensitive LNCaP cells [48], sug-
gesting for a role of this pathway in the modulation of 
AR activity [48].

The role of STAT3 signaling in modulating prostate 
cancer stem cells (PCSCs), EMT and tumor angio-
genesis has only recently been investigated (Figure 1). 
PCSCs have been found in both prostate [49] and PCa. 
Their presence is associated with high STAT3 activity, 
low AR expression, higher potential to metastasize and 
with poor patient outcome [50]. It has been shown that 
treatment with LLL12, a STAT3 inhibitor, abrogates 
the propagating of PCSCs in vivo [51]. Furthermore, 
STAT3 knockdown inhibits sphere formation derived 
from human PCa cells [43] The crucial role of STAT3 in 
PCSCs may be explained by its role in the IL-6 signal-
ing, as sustained by the notion that soluble IL-6 recep-
tor fusion protein can significantly reduce CSC number 
and xenograft tumor growth in in vivo PCa models [43].

STAT3 activators IL-6 and CCL2 chemokine 
have been shown to play a role in modulating EMT 
in PCa. The EGF is also involved in EMT programs. 
The activity of EGF is mediated by several pathways, 
including STAT3, hypoxia inducible factor (HIF)1α 
and TWIST1 [52]. TWIST1 is a highly conserved 
transcription factor that belongs to the basic helix–
loop–helix family [53] and represents a key step dur-
ing PCa development and metastasis due to its role 
in EMT [54,55]. Notably, TGF-β1 has been shown to 
upregulate TWIST1, as well as to promote STAT3 
activation and HIF1α stabilization, thus contributing 
to PCa EMT and metastasization [55].

Interestingly, STAT3 is also implicated in promoting 
PCa angiogenesis [56]. Indeed, STAT3 is required for 
VEGF signaling [57]. The relationship between STAT3 
and AR in PCa is crucial in modulating VEGF tran-
scription, may be due to the presence of AR-binding sites 
in the promoter of VEGF gene [58]. Moreover, STAT3-
induced HIF1α transcription, which cooperates with 
STAT3 to induce VEGF expression [59].

Activated STAT3 signaling is associated with the 
clinicopathologic characteristics of PCa, such as 
high pathological stage and Gleason score [60,61]. In 
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addition, the expression levels of STAT3 activator IL-6 
are increased in patients with metastatic PCa compared 
with patients with nonmalignant diseases [62–64].

STAT3 activation negatively correlated with over-
all survival (OS) in PCa patients from biochemical 
relapse [61] and in castration-resistant PCa patients [65]. 
Furthermore, activated STAT3 is associated with 
shorter recurrence-free survival in patients who undergo 
radical prostatectomy or hormonal therapy [61].

Interestingly, STAT3 is involved in the development 
of drug resistance in patients with PCa. Enzalutamide 
is a second-generation AR inhibitor. Enzalutamide has 
been showed to increase the OS of patients with meta-
static PCa both in chemo-naive [66] and in patients 
pretreated with chemotherapy [67]. The identification 
of the mechanisms underlying primary and acquired 
resistance to this agent represents a major challenge 
for uro-oncologists. Antonarakis et al. reported that 
the presence of AR isoform encoded by splice variant 7 
(AR-V7), which is constitutively activated but lacks of 
the ligand-binding domain targetable by abiraterone 
and enzalutamide, was associated with drug resistance 

in 62 patients treated with one of these two agents [68]. 
In addition, the downregulation of STAT3 seems to 
reverse the resistance to enzalutamide in PCa cells. 
Thus, the combination of STAT3 inhibitor AG490 
and enzalutamide significantly inhibited tumor 
growth and induced cell apoptosis [69].

Furthermore, the inhibition of STAT3 signaling 
using small-molecule inhibitor Stattic has been shown 
to target both tumor-initiating cells (TICs) and differ-
entiated cells. In this study, STAT3 inhibition caused 
S-phase accumulation at low-dose levels and massive 
apoptosis at a relatively high-dose level in PCa cells. 
STAT3 knockdown led to the disruption of the micro-
vascular niche which TICs and non-TICs depend on. 
Thus, STAT3 inhibition is predicted to have greater 
efficacy for PCa treatment [70].

Role of STAT3 signaling in bladder cancer
Bladder cancer (BC) is the fourth most frequent cancer 
in men in developed countries [71]. Two main distinct 
forms based on the infiltration of the muscularis propria 
have been described: nonmuscle invasive tumors and 

Figure 1. Role of STAT3 in genitourinary tumors. 
AR: Androgen receptor; CIS: Carcinoma in situ; CSC: Cancer stem cell; EMT: Epithelial–mesenchymal transition; 
OS: Overall survival.
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muscle-invasive bladder carcinomas, the latter being 
characterized by easy access to lymphatics and blood ves-
sels for metastatic dissemination. In addition, low-grade 
or high-grade tumors can be described, characterized by 
different biological and clinical behaviors.

In the last years, major advances have been made 
in understanding the genetic mechanisms underlying 
BC. FGFR3 or p53 mutations seems to be mutually 
exclusive in urothelial carcinoma pathogenesis. In 
particular, FGFR3 gene mutations selectively occur 
in noninvasive (pTa) BC, while p53 mutations are 
rare (less than 5%) and are associated with high-grade 
tumors and invasive (pT1 or more) BC [72]. Gener-
ally, papillary pTa urothelial carcinomas show genetic 
stability, due to the absence of p53 inactivation, with 
chromosomal changes concerning only chromosome 9.

STAT3 has been implicated in the progression from 
carcinoma in situ to invasive BC. In particular, STAT3 
signaling acts as an important downstream mediator 
of inflammatory cytokines, such as IL-6 and IL-17, 
which are released during bladder tumorigenesis due 
to chronic inflammation (i.e., smoking, persistent uri-
nary tract infections) [73]. Moreover, early expansion 
of primitive CK14+ expressing cells, driven by STAT3 
and other pathways, leads to transition to carcinoma 
in situ-invasive pathway [74] (Figure 1).

Zhang et al. investigated the inhibitory effects of 
STAT3 silencing on human T24 BC cells in in vitro 
and in vivo models. In this study, the downregula-
tion of STAT3 or Survivin, an inhibitor of apoptosis, 
suppressed the proliferation of BC cells. Moreover, 
no additive effects were recorded by the STAT3 and 
Survivin joined knockdown, suggesting that they both 
belong to the same pathway in T24 cells [75].

CDC91L1, also called phosphatidylinositol glycan 
class U, is an oncogene overexpressed in BC and is an 
independent predictor of recurrence for nonmuscle 
invasive tumors. Cell division cycle 91-like 1 is acti-
vated by a chromosomal translocation and leads to 
persistent STAT3 activation [76].

EGF and its receptor EGFR are overexpressed in BC. 
In particular, EGFR expression is limited to the basal 
cell layer in the healthy urothelium, while it is expressed 
in both deep and superficial cell layers in both low- and 
high-grade BCs [77]. In response to EGF, STAT3 becomes 
activated and induces MMP-1 transcription by interact-
ing with c-JUN, a component of the transcription factor 
activator protein-1 [78]. Interestingly, MMP-1 expression 
correlates with tumor high grade and invasiveness, thus 
suggesting that STAT3 activation is directly related to 
malignant behavior of T24 BC cells [79].

The establishment of a proangiogenic tumor envi-
ronment is the consequence of a deregulated high 
expression of proangiogenic factors or an inadequate 

inhibition of angiostatic factors. Among the receptors 
for CXC chemokines, CXCR4, a receptor for CXC 
chemokine CXCL12/SDF-1, is involved in the mainte-
nance of leukocyte trafficking during homeostasis and 
is key regulator of cell motility in BC. In the study 
led by Shen et al., higher CXCR4 expression correlated 
with STAT3 phosphorylation. In addition, STAT3 
inhibitor Stattic inhibited CXCL12-triggered STAT3 
phosphorylation and, consequently, cell motility and 
invasion in T24 BC cells [79].

Role of STAT3 signaling in renal cell 
carcinoma
Renal cell carcinoma (RCC) is one of the most lethal 
urologic cancers [80]. In the last decade, a better 
understanding of the role of VEGF and mammalian 
target of rapamycin pathways has led to the introduc-
tion of several agents to the therapeutic landscape of 
metastatic RCC. Nevertheless, the rate of complete 
responses is still low [81], and alternative targets should 
be investigated in in vitro and in vivo studies.

STAT3 is involved in RCC carcinogenesis, growth 
and tumor angiogenesis (Figure 1). Masuda et al. quan-
tified STAT3 and p53 mRNA expressions in a series 
of 47 Japanese patients with RCC. They found that 
the levels of STAT3 and p53 mRNA expressions were 
lower in tumor tissues compared with nontumor tis-
sues and did not correlate with RCC histology and 
stage [82]. On the other hand, Guo et al. investigated 
the immunoprofile of phosphorylated STAT3 in a 
series of 88 RCCs with different histologies and 21 
normal renal tissues. They reported that activated 
STAT3 was recorded in about 60% of ccRCC, 57% 
of papillary RCC and 33% of chromophobe RCC. 
Moreover, the nuclear expression of its phosphorylated 
form was enhanced in ccRCC, papillary RCC and uro-
thelial carcinoma compared with tumor with inferior 
malignant potential (chromophobe) or benign tumor 
(oncocytoma) [83].

Furthermore, Zhou et al. analyzed the gene expres-
sion profiles of 60 clear cell RCC (ccRCC). Their 
results were matched with normal renal samples from 
The Cancer Genome Atlas. They found that fatty 
acid-binding protein 7 was one of the most commonly 
overexpressed genes in ccRCC and was able to promote 
tumor growth through the activation of STAT3 and 
ERK signaling pathways [84].

CD44 transmembrane glycoproteins is a ubiquitous 
cell surface adhesion molecule involved in cell–cell and 
cell–matrix interactions. CD44 was originally described 
as a mediator of lymphocyte homing to peripheral 
lymphoid tissues and is closely correlated with tumor 
cell proliferation, metastasis and patient outcome [85]. 
Qin et al. analyzed the expression of CD44 and activated 
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STAT3 in a series of 75 RCC carcinoma and paired adja-
cent nontumor renal tissue samples from patients with 
localized ccRCC who underwent a nephrectomy. They 
found that CD44 was highly expressed in almost 50% 
or RCC and was associated with tumor grade, size and 
stage. They also observed a strong correlation between 
the expression of CD44 and pSTAT3. The simultane-
ous presence CD44 and pSTAT3 overexpression was 
recorded in 42.66% of tumor samples and had an addi-
tive negative impact on patient OS [86].

STAT3 has been shown to act as a potential modu-
lator of HIF-mediated VEGF expression in RCC [87]. 
Activated STAT3 can increase HIF1α protein levels by 
blocking HIF1α degradation and enhancing its de novo 
synthesis. In addition, STAT3 can activate HIF1 target 
genes by binding to HIF1 target gene promoters and 
forming complexes with coactivators CREB-binding 
protein and p300, and RNA polymerase II [88]. In accor-
dance with these findings, STAT3 inhibitor WP1066 
has been shown to induce apoptosis, and inhibit the 
basal and hypoxia-induced expression of HIF1α and 
HIF2α, as well as VEGF secretion in RCC cell lines [89].

Tumor-associated macrophages play a vital role in 
the carcinogenesis and progression of RCC [90]. Tumor-
associated macrophages release angiogenic cytokines that 
modulate RCC angiogenesis by activating NF-κB and 
STAT3 signaling. STAT3 is also involved in IL-6-in-
duced proliferation of RCC cells [89] and in the activation 
of RCC cancer cells mediated by macrophages, thus rep-
resenting an emerging target for the treatment of RCC.

STAT3 signaling pathway has been also associated 
with response to treatment in RCC. Single nucleo-
tide polymorphisms in the STAT3 gene have been 
associated with better response to IFN-α [91]. On 
the other hand, inhibited STAT3 activity enhanced 
the antitumor effects of VEGFR-tyrosine kinase 
inhibitor sunitinib [92]. In addition, VEGFR-tyro-
sine kinase inhibitor axitinib has been shown to 
modulate antitumor immunity by downregulating 
STAT3 expression and reversing the RCC-induced 
immunosuppression mediated by myeloid-derived 
suppressor cells [93].

Recently, data concerning the inhibition of RCC 
growth and metastasis via AKT/mammalian target of 
rapamycin, ERK and JAK2/STAT3 pathway inhibi-
tion induced by simvastatin have opened a novel thera-
peutic perspective for these patients [94], also these data 
should be confirmed in randomized trials.

Conclusion & future perspectives
Constitutively phosphorylated STAT3 has been 
implicated in several human tumors, including geni-
tourinary cancers (Figure 1). Based on its involve-
ment in tumor growth, metastasis and response to 

therapy, as well as in epigenetic regulation, CSCs and 
premetastatic niches, STAT3 has emerged as ideal 
molecular target for cancer therapy. The prominent 
role of STAT3, compared with other STAT mem-
bers, as a therapeutic target for genitourinary cancer 
is sustained by its activity in both tumor, stromal and 
immune cells, which also promote tumor development 
and progression. In addition, the STAT3 inhibitors are 
associated with a potentially lower risk of related tox-
icities due to the transient status of STAT3 signaling 
in normal cells and to the minimal effects of STAT3 
inhibition in mature cells.

STAT3 is placed at the crossroads of multiple signal-
ing pathways. Small-molecule drugs to target STAT3 
signaling have been developed over the last years and 
are in various phases of ongoing clinical study. Sev-
eral strategies have been evaluated to target directly 
STAT3 or inhibiting STAT3 protein or indirectly 
through blockade of the upstream components of this 
pathway. However, a specific anti-STAT3 inhibitor is 
not yet clinically available. Furthermore, the combina-
tion of STAT3 inhibitors with approved or emerging 
antiangiogenic or immunotherapeutic agents should 
be investigated in patients with genitourinary tumors.

Extensive clinical studies are trying to identify anti-
STAT3 drugs with high single-agent activity. How-
ever, the variety of STAT3 functions, together with its 
striking overall similarity with STAT1 and to the wide 
range of upstream activators converging on the JAK–
STAT3 pathway, are enabling to identify a single tar-
get that may be effective for cancer therapy in patients 
with genitourinary tumors.

In conclusion, these data suggest that STAT3 signal-
ing pathway is crucial in the carcinogenesis, growth, 
metastasis and response to treatment of genitourinary 
tumors. The identification and development of novel 
more selective agents will be an important scientific 
and clinical challenge in the therapeutic scenario of 
this population in the near future.
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protein levels by blocking HIF1α degradation and enhancing its de novo synthesis.
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