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Abstract 
Metabolic processes can transform a drug into metabolites with different properties that may affect its efficacy and safety. Therefore, 
investigation of the metabolic fate of a drug candidate is of great significance for drug discovery. Computational methods have 
been developed to predict drug metabolites, but most of them suffer from two main obstacles: the lack of model generalization due 
to restrictions on metabolic transformation rules or specific enzyme families, and high rate of false-positive predictions. Here, we 
presented MetaPredictor, a rule-free, end-to-end and prompt-based method to predict possible human metabolites of small molecules 
including drugs as a sequence translation problem. We innovatively introduced prompt engineering into deep language models to 
enrich domain knowledge and guide decision-making. The results showed that using prompts that specify the sites of metabolism 
(SoMs) can steer the model to propose more accurate metabolite predictions, achieving a 30.4% increase in recall and a 16.8% reduction 
in false positives over the baseline model. The transfer learning strategy was also utilized to tackle the limited availability of metabolic 
data. For the adaptation to automatic or non-expert prediction, MetaPredictor was designed as a two-stage schema consisting of 
automatic identification of SoMs followed by metabolite prediction. Compared to four available drug metabolite prediction tools, our 
method showed comparable performance on the major enzyme families and better generalization that could additionally identify 
metabolites catalyzed by less common enzymes. The results indicated that MetaPredictor could provide a more comprehensive and 
accurate prediction of drug metabolism through the effective combination of transfer learning and prompt-based learning strategies. 
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Introduction 
Drug metabolism alters drug molecules through chemical mod-
ification catalyzed by various drug-metabolizing enzymes. The 
resulting metabolites may have physicochemical, pharmacolog-
ical and even toxicological properties that are distinct from those 
of the original parent molecule [1]. Drug metabolism is nor-
mally divided into two phases, which commonly take place in 
the liver [2]. Phase I metabolism often involves the introduc-
tion or revelation of polar groups of the drug and is catalyzed 
primarily by cytochromes P450 (CYP450) enzyme family, other 
oxidoreductases and hydrolases. Phase II metabolism, which is 
mediated by transferases, serves as binding molecules to some 
endogenous small molecules to make their easy excretion from 
the body. Despite that xenobiotics generally become detoxified 
and deactivated via metabolism, metabolism of drugs may reduce 
efficacy and cause safety concerns. Toxicity can be triggered by 
the reactive metabolites that are formed through phase I and, less 
frequently, phase II reactions [3, 4]. Beyond that, drug metabolism 
may lead to drug–drug interactions and influence bioavailability 
[5]. Hence, it is significantly instructive to analyze the metabolism 

process for effectively developing drugs. Traditionally, the study 
of drug metabolism requires the use of sophisticated analytical 
techniques, which are both resource intensive and labor intensive. 

Computational methods for drug metabolism prediction have 
been developed to assist experimental assessment [6]. Some of 
these methodologies are very effective in the identification of the 
atoms within the molecule modified by metabolic transformation 
(known as sites of metabolism), such as SMARTCyP [7], FAME2 
[8], SOMP [9] and Xenosite [10], but they are almost exclusively 
specific to CYP isoforms. The correct identification of SoMs could 
help infer the metabolite structures or suggest where a molecule 
might be rationally designed. In contrast to in silico SoM prediction, 
the computational task that infers metabolite structures from 
parent compounds is more difficult. Current methods for this 
task are dominated by rule-based approaches, such as SyGMa 
[11], Biotransformer [12] and GLORYx [13]. The challenges for 
rule-based approaches are as follows. Firstly, their application 
domain is bound by the coverage of transformation rules, which 
are manually compiled by experts. They may fail to generate 
predictions when there is no match between the substrate and 
the rule pattern. Secondly, growth in the number of rules may
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lead to low precision performance, as the number of false posi-
tives is increased. To reduce the number of false positives, some 
approaches rank the predicted metabolites based on statistical 
analysis [11]. Another attempt is to build machine learning mod-
els to identify substrate specificity [14] as a preliminary step to 
the application of rules. However, most machine learning models 
are designed just for phase I metabolism. 

Artificial intelligence (AI) approaches for chemical reaction 
prediction have made significant progress in the last few years 
[15]. A representative work is molecular transformer [16], which 
tackled the reaction prediction problem as a machine translation 
task. Inspired by this, Litsa et al. proposed MetaTrans [17], a 
transformer-based deep-learning approach to directly convert 
parent molecules to metabolites and bypass the process of 
extracting metabolic transformation rules. However, MetaTrans 
was still performed with relatively low precision, which is a 
common challenge for metabolite prediction. 

Prompt-based learning [18] is an up-and-coming paradigm in 
natural language processing (NLP) that provides opportunities 
to enhance interactions with AI systems. In NLP, prompts are 
text-based additional instructions or context provided to a model 
to help it understand tasks better and generate expected out-
puts. Thakkar et al. [19] adapted this prompt to fit the context 
of the retrosynthesis prediction by describing the disconnection 
site in SMILES strings of a molecule and achieved an improve-
ment in prediction accuracy up to 39%. Inspired by this, we pre-
sented a prompt-based method named MetaPredictor to predict 
human metabolites for small molecules. We introduced prompts 
by embedding specific annotations within the SMILES string of 
parent molecules. The prompts specify the SoMs and are used to 
steer the transformer-based language model to translate a parent 
molecule into corresponding metabolites. Also, we validated this 
novel scheme on human metabolic transformations. The results 
demonstrated 30.4% performance improvement and 16.8% reduc-
tion of false positives over the baseline model, which confirmed 
that the SoM prompt could help the deep language model focus 
on critical regions and make more accurate predictions about the 
metabolites for small molecules. 

Materials and methods 
Overview of MetaPredictor 
MetaPredictor is a rule-free, end-to-end and prompt-based tool to 
predict human metabolites for small molecules. We characterized 
molecules with SMILES sequence, so the metabolite prediction 
task could be tackled as a sequence translation problem. The 
sequence-to-sequence Transformer architecture [20] was used for 
molecular language modeling. (More details about Transformer 
are provided in ESI: S2.1†.) 

MetaPredictor consists of two modules: SoM identifier and 
prompt-based metabolite predictor. It was designed as a two-
stage schema; the SoM identifier was trained to automatically 
label the SoMs of small molecules, making the prompt-based 
metabolite predictor compatible with automatic or non-expert 
global predictions. More specifically, we auto-tagged the potential 
SoMs of the interesting parent molecule using SoM identifier 
followed by metabolite inference with prompt-based metabo-
lite predictor. The interactive nature of prompt-based learning 
enables the effective integration of external knowledge including 
human-prompted input, resulting in local metabolite predictions 
for specific enzymes or specific SoMs. 

Our novel methodology incorporates both transfer learning 
and prompt-based learning. Both transformer models were 

firstly pre-trained on general chemical reaction dataset and 
subsequently fine-tuned on the metabolic reaction dataset. A 
description of the problem can be found in ESI: S2.2†. In addition, 
we used ensemble strategy to generate diverse predictions to 
accommodate metabolism prediction tasks. The full workflow of 
MetaPredictor is illustrated in Fig. 1. 

Data collection and preparation 
Chemical reaction data 
The dataset for pre-training the models was derived from Lowe’s 
work on mining chemical reaction data [21], which had been 
widely utilized in forward prediction [16] and retrosynthetic anal-
ysis of chemical reactions [22]. By removing duplicates and filter-
ing, there were ∼1.2 million training instances with a single prod-
uct. The components in each chemical reaction were represented 
using the canonical SMILES and the reagents were removed. 

Metabolic reaction data 
Pairs of parent molecules and human metabolites that were rep-
resented by canonical SMILES constituted the metabolic reaction 
dataset. To derive a broad-coverage human metabolism dataset, 
we collected experimentally validated and structurally available 
human metabolites of both xenobiotic and endogenous com-
pounds from open-access databases, literatures and Lee’s Hand-
book of Metabolic Pathways of Xenobiotics [23]. The open-access 
databases included Human Metabolome Database (version 5.0) 
[24], Recon3D (version 3.01) [25], HumanCyc from MetaCyc (ver-
sion 23.0) [26], DrugBank (version 5.1.10) [27] and the reaction 
database of BioTransformer (MetXBioDB) [14]. The metabolites 
were produced by single-step enzymatic reactions. The parent 
molecule could be a drug or a drug metabolite in the case of 
drugs with multi-step metabolic transformations. We split the 
decomposition reaction into two distinct training instances and 
kept the reaction in both directions when it was indicated as 
reversible. Concerning the metabolic reactions of endogenous 
compounds, we retained the pairs where the atom number of 
maximum common substructure exceed 40% of the atoms of the 
parent molecule. This process could keep metabolite to maintain 
a significant degree of structural similarity to the parent molecule 
and filter out less relevant metabolites. Finally, we merged the 
metabolic reactions from various sources and removed dupli-
cates. RDKit toolkit [28] was employed for data processing. More 
details about data collection and source distribution are shown in 
ESI: S1.1† and Figure S1. 

Validation and test sets 
Since our work is focused on metabolic prediction for small 
molecules and specifically drug-like molecules, both the valida-
tion set and the test set consisted of drugs and drug metabolites. 
The validation set was handpicked by Litsa et al. [17] for selecting 
the hyperparameters for fine-tuned model and supervising model 
training, while the test set was used for evaluating the prediction 
performance of the model. In detail, the validation set consists 
of metabolic reactions derived from 96 parent compounds of 
DrugBank, catalyzed by not only CYP450 enzymes, but also non-
CYP450 enzymes. The test set was sourced from the dataset 
manually curated by the developers of the GLORY method and 
DrugBank, and 135 drugs with 283 identified human metabolites 
were handpicked to create a more diverse test set in terms of 
metabolizing enzymes. Since distinct metabolic processes may 
exist for parent molecules, we ensured that instances sharing the 
same parent molecules were not partitioned into different data 
partitions (training, validation, test).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
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Figure 1. The workflow of MetaPredictor. (A) Collection of metabolic reaction dataset. (B) Extraction of prompt that specified SoM of the parent compound. 
(C) Training for SoM identifier and prompt-based metabolite predictor. (D) Model inference for potential metabolites. 

Extracting prompt 
In this study, the prompts were automatically extracted to sub-
stitute manually labeling for model building. Firstly, all reac-
tions in both chemical reaction dataset and metabolic reaction 
dataset were atom-mapped using RXNMapper [29] to find out 
which atoms had altered the atomic environment during the 
reaction. The atomic environment includes the atom and all 
the bonds connected to the atom. For a given atom-mapped 
metabolic reaction SMILES, the atoms for which environment 
differed between parent molecule and metabolite were labeled in 
the parent molecule’s SMILES and served as prompt correspond-
ing to the site of metabolism. Similarly, the prompt-represented 
reactive atom was tagged in the reactant SMILES for a given atom-
mapped chemical reaction SMILES. It should be stated that the 
prompts were introduced by using the SMARTS notation [∗:1] [30], 
where ‘∗’ resembles any atom. The atom-mapping information 
was removed after extracting prompts. The pseudo-code is pro-
vided in ESI: S1.4†. 

Model building 
We processed different datasets for pre-training and fine-tuning 
to ensure that they aligned with the source and target sequences 
of the SoM identifier and prompt-based metabolite predictor. The 
distribution about the instances of the training, validation and 
test sets for different tasks are shown in Table S1 and Table 
S2. For the prompt-based metabolite predictor, we pre-trained it 
on the general chemical reaction dataset where the SMILES of 
reactants were labeled with reactive atom and then fine-tuned it 
on the dataset of metabolic reactions where the SMILES of parent 
molecules were prompted with SoMs. As for the SoM identifier, 
we also used transfer learning strategy to obtain generalized 
chemical knowledge about atomic reactivity. To enable the SoM 
identifier to automatically tag the SoM, the source sequences 
were SMILES of parent molecules and the target sequences were 
the SMILE of parent molecules with markers of SoMs. Before 

training the transformer model, the input sequence and the out-
put sequence were tokenized by using a regex pattern as described 
by molecular transformer. 

All models used supervised learning and a seq-to-seq Trans-
former architecture as deployed in the OpenNMT-py library ver-
sion 2.3.0 [31]. The transfer learning strategy employed in our 
study was to take the pre-trained model as a starting point for 
fine-tuning the model. For the parameters of the pre-trained 
model, minor changes were performed based on the molecular 
transformer. Regarding the fine-tuned model, diverse parameters 
including the SMILES augmentation strategy [32] and batch size 
were experimented and we selected models based on the accuracy 
of the validation set. More information about training parameter 
is provided in Table S3 and Table S4. 

Model inference 
Considering the fact that different metabolites may form through 
diverse enzymes for drugs, we constructed ensemble models 
based on the standard beam search algorithm to infer multiple 
possible sequences from integrated perspectives. 

Beam search 
The beam search algorithm is a popular search algorithm based 
on heuristics, which explores all likely characters and maintains 
the k most probable sequences [33]. Through the application 
of beam search algorithms, SoM identifier can generate sev-
eral potential site-of-metabolism predictions for a given parent 
compound and prompt-based metabolite predictor can predict 
multiple metabolites for a SoM-prompt drug. By manipulating the 
beam size, the number of generated predictions can be varied. To 
strike a balance between enlarging the search space and obtaining 
the best prediction results, we tried to calculate the prediction 
performance on the validation metabolic set of all fine-tuned 
models with different beam sizes. In practice, beam sizes between 
3 and 15 have been shown to provide an appropriate compromise

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
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between precision and recall. Specific analysis is shown in Figure 
S2 and Figure S3. 

Processing and ranking of predicted results 
Since the model expands the SMILES sequence by selecting 
only the characters with higher probability when generating 
predictions, we need to filter the model outcomes to drop invalid 
SMILES and unreasonable metabolites. Invalid SMILES points to 
sequences that cannot be recognized by the RDKit toolkit. The 
unreasonable metabolites include metabolites that have far fewer 
atoms than the parent compound (<25%) and metabolites that 
contain different types of atoms from the parent compounds’ 
atoms or the organic compounds’ general atoms (H, C, N, O, S, 
P). After filtering, the models’ predictions could be ranked in 
accordance with the cumulated log likelihood. The greater the 
log likelihood accumulated across the generated sequence, the 
stronger the model’s confidence that the sequence is the correct 
result. 

Ensemble strategy 
To mitigate the potential biases of a single model’s performance, 
ensemble strategy is often utilized in research to obtain better 
generalization performance [34]. In our study, we adopted this 
approach by averaging the prediction distributions from several 
decodes that were trained under different strategies. In order 
to reach a balance between maximizing the correct prediction 
rate and keeping the false-positive rate low, we constructed the 
ensemble models by combining different individual models and 
evaluated their model performance on the validation set. The 
top-5 ensemble models are shown in Table S5 and Table S6. 
Finally, we chose four individual models for SoM identifier and 
five individual models for prompt-based metabolite predictor. As 
a complementary note, the output size for individual models 
and ensemble models with a beam size of k were restricted to a 
maximum of k due to the filtering of some predictions. 

Model evaluation 
The performance evaluation of MetaPredictor primarily depends 
on its accuracy in predicting SoMs and metabolites, as well as 
its false-positive rate of predictions. The accuracy was assessed 
mainly by calculating recall, which is the rate of the number of ref-
erence metabolites correctly identified by the model to the total 
number of reference metabolites. The precision that indicates the 
percentage of false positives was calculated by the proportion of 
correctly identified reference metabolites to the output size of the 
model. We also calculated the percentage of input molecules for 
which at least one, at least half and all SoMs or metabolites were 
correctly identified by each model to observe the scope of drug 
retrieval. 

To assess the efficacy of the algorithm to rank the decoded 
sequences, we calculated the top-N metrics when the model 
generates N predictions. For the evaluation of the prompt-based 
metabolite predictor, we compared the fingerprint similarity 
between predicted and reference metabolites. The prediction is 
considered correct if the fingerprint-based Tanimoto coefficient 
between the predicted metabolite and the reference is equal to 1. 

Results and discussion 
Analysis of metabolic reaction datasets 
The human metabolic reaction dataset used to train the model 
consisted of 14 782 unique pairs of parent molecules and metabo-
lites. To better understand the metabolic reaction dataset, we 

analyzed metabolic reactions in terms of the distribution of EC 
classifications (EC-levels 1) for the metabolizing enzymes. Despite 
that metabolizing enzyme information was not provided for a 
substantial portion of the dataset, it can be observed that all 
enzyme classes are covered in the labeled pairs as illustrated 
in Fig. 2A. Among the distribution of enzymes, oxidoreductases 
(EC1), hydrolases (EC3) and transferases (EC2) are the most promi-
nent categories. The former two are primarily responsible for 
catalyzing phase I drug metabolism, while the latter is dominant 
in phase II drug metabolism. 

We visualized the metabolic reaction dataset using the dimen-
sionality reduction algorithm TMAP. As shown in Fig. 2B, each 
point represents a metabolic reaction based on similarities cal-
culated by the reaction fingerprint RXNFP [35]. Color coding the 
TMAP by the EC classification number, these enzyme families 
formed relatively discrete clusters of reactions, and an observa-
tion could be made that the majority of unlabeled metabolic reac-
tions were likely catalyzed by oxidoreductases, transferases and 
hydrolases. The aforementioned analysis demonstrated that the 
metabolic reaction dataset covered the full spectrum of enzymes, 
with the expected biases toward the most frequent catalytic 
enzymes in the field of drug metabolism, thus providing a basis for 
training our model about the scope and specificity of metabolizing 
enzymes. 

In addition, we analyzed the types of metabolic reactions in the 
test set and presented the results in ESI: S1.3†. It indicated that the 
test set covers a diverse range of metabolizing enzymes, allowing 
a more comprehensive assessment of the prediction performance 
of the model. 

Model evaluation 
Comparisons with baseline models 
As a start, we evaluated the efficacy of transfer learning and 
ensemble strategy by presenting in juxtaposition the performance 
of four models on the metabolite test set, as shown in Fig. 3. 
Since the two modules of the MetaPredictor handled different 
prediction tasks, we made separate comparisons based on the 
ability of each model to identify reference SoMs or metabolites 
when generating five predictions. The results in Fig. 3 emphasized 
the significance of transfer learning and ensemble strategy. 

To be more specific, the average performance of the individual 
fine-tuned models that compose the ensemble models showed 
obvious improvement to the pre-trained models and the models 
that trained only on metabolic reaction data. Taking prompt-
based metabolite predictor as an example, the adoption of trans-
fer learning led to an average 37.65% increase in recall and an 
average 6.2% improvement in precision. Also, the predictions from 
the pre-trained models had a low proportion of invalid SMILES 
but the highest proportion of unreasonable SMILES, suggesting 
that while the pre-trained models understand the rules of general 
chemical reactions and the syntax of SMILES language, they lack 
the necessary expertise in metabolic transformations. In addition, 
the models trained only on metabolic data performed poorly 
in prediction accuracy, predicting the highest number of invalid 
SMILES but a lower number of unreasonable SMILES than pre-
trained models. This reflected the inadequacy of general chem-
istry training due to the relatively small amount of data, despite 
some knowledge of metabolic transformations being acquired. 
Furthermore, it can be seen that the ensemble models achieved 
not only a wider range of drug retrieval but also a higher recall 
rate and a lower false positive compared to the average individual 
models. Specifically, the ensemble model for the SoM identi-
fier increased the recall rate by 8% and the precision by 2.6%

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
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Figure 2. Analysis of the metabolic reaction dataset. (A) The composition of the dataset regarding the metabolizing enzymes based on the EC classification 
(exclusion of cases with no specified enzymes). (B) TMAP visualising the reaction similarity between metabolic reactions based on EC classification. 

compared to the individual fine-tuned models. This demonstrated 
that the ensemble strategy is an effective approach for enhancing 
the output diversity and reducing the occurrence of false posi-
tives, while not increasing the output size of the models. 

Subsequently, we respectively evaluated the prediction perfor-
mance of the two ensemble models that comprised MetaPredictor 
on the metabolic test set with different top-N metrics. As shown in 
Table S7, the results indicated that both modules of MetaPredictor 
performed good prediction accuracy for their respective metabolic 
site or metabolite prediction tasks and had a relatively wide range 
of drug retrieval scopes. 

To assess the efficacy of introducing prompts that specify the 
SoMs in improving the task of metabolite prediction, we used 
the same dataset and methodology without introducing prompt 
information to train the baseline model. Specifically, the source 
sequences of the baseline model are SMILES of the parent com-
pound without SMARTS notation [∗:1] that is used to tag the 
atoms that undergo metabolic transformation. The prompt-based 
metabolite predictor can use an additional input prompt to guide 
the metabolite translation, as opposed to the baseline model, 
which only generated metabolite predictions based on the under-
lying probability distribution of metabolism transformations in 
the training dataset. Then, we compared the performance of the 
baseline model and the prompt-based metabolite predictor on 
the metabolic test set, and the results are displayed in Fig. 4. 
The prompt-based metabolite predictor achieves superior perfor-
mance metrics than the baseline model in all cases where the 
output size of both models is comparable. Specifically, the imple-
mentation of guided prompts resulted in a remarkable average 
increase of 30.4% in recall and 16.8% in precision. This demon-
strated that the introduction of prompt learning could indeed 
guide the model to generate more accurate metabolite predictions 
while simultaneously reducing the occurrence of false positives. 

Comparison with other prediction tools 
In this study, we further evaluated the performance of MetaPre-
dictor by comparison with four existing drug metabolism predic-
tion tools: GLORYx, SyGMa, BioTransformer and MetaTrans. We 
compared the ability to identify and rank reference metabolites 
of these five methods on the metabolic test set. All methods 
generated metabolites through a single-step reaction and were 
evaluated using fingerprint similarity. For the ranking capability 
analysis, we compared the top-N (N = 5, 10, 15) prediction results 

generated by MetaPredictor, MetaTrans, GLORYx and SyGMa. The 
top-12 performance was also chosen to ensure a fair comparison 
with BioTransformer, which had an average output size of ∼12 
on the metabolic test set. As for MetaPredictor, we used its auto-
matic prediction pattern that generates SoM prompts without 
any human intervention. The introduction and implementation 
of other four methods are displayed in ESI: S3.3†. 

The results, as shown in Table 1, proved that MetaPredictor 
presented great prediction performance and ranking capabilities. 
Even though MetaPredictor was not trained on a drug-specific 
dataset, its performance was comparable to models that had been 
specifically developed for drug metabolism. We could observe 
that the identified metabolites by MetaPredictor had a relatively 
larger coverage of the dataset compared to the rule-based meth-
ods, which means generating at least one correct metabolite 
prediction for a larger proportion of the dataset. This might be 
explained by the fact that rule-based methods relied on the exact 
matching of compounds and metabolic rules for predictions, 
whereas MetaPredictor did not. The specific example was that 
BioTransformer could not generate metabolite predictions for four 
compounds in the test set resulting in relatively low coverage of 
the dataset. Moreover, MetaPredictor exhibited better prediction 
performance and ranking capability when compared with Meta-
Trans, which was also based on an end-to-end learning method. 
This improvement could be attributed to the introduction of 
prompt learning and the expansion of the training dataset, which 
provided another illustration of the effectiveness of prompt learn-
ing in guiding the model to generate more accurate predictions. 
However, as the number of predictions increases, we cannot be 
sure whether other approaches would show better performance. 
Table 1 shows that the model performance of the rule-based 
approaches improved more substantially with an increase in the 
model output size, albeit at the expense of precision. 

We further analyzed the top-12 performance of each method 
by concerning the various enzyme families, as shown in 
Fig. 5A. This evaluation focused on three enzyme families that 
play important roles in the metabolic processes: oxidation 
enzymes, the most prevalent of which are CYP450s, transferases, 
primarily including the UDP-glucuronosyltransferases (UGT) 
and sulfotransferases, and hydrolases. As we could see from 
Fig. 5A, MetaPredictor, BioTransformer and SyGMa showed 
some advantages in terms of identification of metabolites 
related to oxidation reactions. When considering phase II

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
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Figure 3. Top-5 prediction performance of the pre-trained models (chemical reaction only), the models trained only on metabolic data (metabolic reaction 
only), the average performance of the individual fine-tuned models (transfer learning) and the ensemble models (transfer learning + ensemble) for (A) 
SoM identifier and (B) prompt-based metabolite predictor on the metabolic test set. 

metabolism-related metabolites, MetaPredictor, GLORYx and 
SyGMa performed slightly better. MetaPredictor and SyGMa could 
correctly predict more hydrolase metabolites. Overall, all methods 
seem to have the capability to cover these enzyme families that 
are important for metabolism. 

Regarding MetaPredictor, the great diversity of the training 
set allowed the model to achieve metabolite prediction without 
being restricted to any specific classes of enzymes. More 
importantly, it not only showed better prediction performance 
in terms of the primary enzyme families of phase I and phase
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Figure 4. Comparison of prediction performance between the prompt-based metabolite predictor aware model (prompt-based model) and the baseline 
model that trained and evaluated on the same dataset when output size of models is the same. 

Table 1. Comparison of prediction performance between MetaPredictor, MetaTrans, GLORYx, SyGMa and BioTransformer on the 
metabolic test set 

Method At least one 
metabolite (%) 

At least half 
metabolite (%) 

All metabolites 
(%) 

Total identified 
metabolites 

Precision 
(%) 

Recall 
(%) 

Output 
size 

Top5 MetaPredictor 77 67.4 45.2 154 20.6 54.4 748 
MetaTrans 72.6 63 31.1 129 17.2 45.6 748 
GLORYx 60.7 44.4 28.1 110 16.3 38.9 675 
SyGMa 68.1 62.2 35.6 135 20 47.4 675 

Top10 MetaPredictor 88.9 81.5 57 192 15.7 67.8 1221 
MetaTrans 81.5 73.3 44.4 161 11.4 56.9 1411 
GLORYx 71.9 63 40.7 159 11.8 56.2 1343 
SyGMa 81.5 74.1 51.1 181 13.5 64 1338 

Top12 MetaPredictor 91.1 85.9 61.5 205 12.2 72.4 1686 
MetaTrans 83.7 75.6 48.9 172 9.9 60.8 1732 
GLORYx 77.8 71.9 48.1 175 10.9 61.8 1606 
SyGMa 83.7 77.8 54.8 191 11.9 67.5 1600 
BioTransformer 69.6 64.4 42.2 173 10.8 61.1 1596 

Top15 MetaPredictor 91.9 86.7 64.4 209 10.9 73.9 1915 
MetaTrans 83 76.3 50.4 178 8.6 62.9 2068 
GLORYx 83.7 77.8 57 195 9.8 68.9 1985 
SyGMa 84.4 79.3 57 198 9.9 70 1992 
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Figure 5. The comparison of model performance between MetaPredictor, MetaTrans, GLORYx, SyGMa and BioTransformer considering (A) number of 
identified metabolites for each enzyme family on the metabolic test set; (B) recall for different molecular weights of parent drug molecules; (C) recall  
for different numbers of SoM in parent drug molecules. 

II metabolism, but also could find metabolites catalyzed by 
enzymes that are less frequent in drug metabolism, which 
may be missed by rule-based methods. One of these specific 
cases is that the drug fingolimod is transformed into an active 

compound fingolimod phosphate ( Fig. 6) through the metabolism 
process catalyzed by the enzyme sphingosine kinase (EC 2.7.1.91) 
[36]. This metabolite was also identified by MetaTrans, but 
not by the other three tools. The second specific case is the
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Figure 6. MetaPredictor correctly identified metabolites that transformed through uncommon enzymes. 

alpha-1 adrenergic agonist, phenylephrine, which is metabolized 
through a monoamine oxidase (EC 1.4.3.4) into the meta-
hydroxymandelic acid ( Fig. 6) which is an inactive metabolite [37]. 
Another noteworthy case is sennidins (Fig. 6), the metabolite of 
anthraquinone derivatives sennosides, which is derived through 
the hydrolysis of gut bacteria [38]. MetaPredictor correctly 
predicted this metabolic process, demonstrating its applicability 
beyond the range of hepatic metabolizing enzymes. 

To further explore the applicability and benefits of our models, 
we further evaluated and compared the performance between 
MetaPredictor and other tools considering different molecular 
weights of parent compounds and numbers of SoM in parent 
compounds. As shown in Fig. 5B, MetaPredictor showed com-
petitive recall in all molecular weight ranges, especially in the 
<200 Da and 350–500 Da ranges, where the recall reached 86.7% 
and 78.8%, respectively, much higher than those of other methods. 
This result indicates that MetaPredictor has stable and great 
prediction abilities for parent compounds of different molecular 
weights, and especially performs well for parent compounds of 
smaller and medium molecular weights. It can be seen from 
Fig. 5c that MetaPredictor showed favorable recall on parent com-
pounds containing from one to five SoMs, especially on parent 
compounds with only one SoM, where the recall was close to 
85%. While the recall of MetaPredictor gradually decreased as 
the number of SoM increased, probably due to the more complex 
metabolic pathways increasing the difficulty of model predic-
tion, MetaPredictor still showed competitive prediction perfor-
mance compared with other methods. These results highlight the 
robustness and versatility of MetaPredictor in prediction of drug 
metabolites. 

Challenging cases 
To better understand the potential capabilities and limitations 
of the proposed approach, we scrutinized the predicted metabo-
lites for drugs in the metabolic test set. The maximum average 
similarity based on molecular fingerprints between the model 
mispredictions and the reference metabolites was calculated to 
be 0.73, and Fig. 7 illustrates several representative cases where 
the predicted metabolite deviated from the reference metabolite. 

Occasionally, the difference between the reference metabolite 
and the nearest prediction could arise from just one non-reactive 
atom. A prime example is DBMET00112 (Case 1 in Fig. 7). Despite 
the model predicting that DBMET00112 would undergo hydrox-
ylation and correctly identifying the hydroxylation reaction site, 
it erroneously replaced the non-reactive hydroxymethyl of the 
original structure with a methyl group, a transformation that 
is unlikely observed in human metabolic pathways. For certain 
cases, the error may be attributed to the reference metabolite, 
as shown in Cases 2 and 3 in Fig. 7. In fact, we found evidence 
in the literature that ticlopidine in Case 2 could undergo two 
distinct oxidation reactions at the nitrogen atom, one involving 
the oxidation of the nitrogen atom and the other resulting in 
the N–C bond breakage [39]. Our model successfully predicted 
the latter reaction, whereas DrugBank only recorded the former 
as a reference metabolite. Similarly, the predicted metabolite of 
metoclopramide in Case 3 was derived from hydroxylation at 
the arylamino group, while the reference metabolite collected 
by Glory was generated from the oxidation of the same group. 
However, the N-O-glucuronide of metoclopramide was experi-
mentally detected in its human metabolites [40]. It was formed 
by sequential metabolism via P450 followed by UGT, and the 
intermediates in this process matched our model predictions. 

We also observed a problem in the model predictions regard-
ing successive oxidation reactions. Although the model correctly 
identified the position and type of oxidation reaction, the pre-
dicted structure sometimes does not align exactly with the ref-
erence metabolite. For example, in the case of the drug TAK-438 
(Case 4 in Fig. 7), the reference metabolite is a carboxylic acid, but 
the model predicted the metabolites to be the corresponding alde-
hyde. According to the literature, aldehydes are often identified 
as intermediates that are subsequently metabolized by CYP450 
enzymes into carboxylic acids [41]. It is particularly challenging 
for the model to address the case of metabolites that are formed 
through multiple transformations at diverse sites, as our model 
was trained on a single-step metabolic reaction dataset. Such 
instances include the drugs molsidomine and bupropion (Cases 
5 and 6 in  Fig. 7). In the case of molsidomine, the reference 
metabolite was possibly derived through a multi-step process
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Figure 7. Drug structure, corresponding reference metabolite and nearest prediction for several representative cases that MetaPredictor mispredicted. 

that involved esterase hydrolysis and oxidative decarboxylation 
[ 42]. Despite correctly identifying the product of the esterase 
hydrolysis, the model failed to simultaneously predict the oxi-
dation reaction. Regarding bupropion, the model identified the 
hydroxylation reaction type and hydroxylation site, but missed 
one cyclization reaction required for converting this prediction to 
the reference metabolite [43]. 

Overall, despite certain instances where the predicted metabo-
lites did not perfectly match with the reference ones, our inspec-
tion concluded that the model predictions still provided valuable 
insights for drug metabolism research. More specifically, many 
cases showed that the predictions correctly identified the reaction 
type, site of metabolism in the parent compound and even the 
intermediate of metabolic reactions. 

Model attention analysis 
With the help of the visualization of attention weights, we can 
see to some extent how the model learned metabolic transforma-
tions. Figure 8 shows the attention weights assigned by the model 
to tokens within SMILES of a parent drug molecule during the 
prediction of its metabolites. Higher attention weights indicate 
that the model considers those specific tokens more important for 
making predictions. It can be seen from Fig. 8A that the prompt-
based metabolite predictor assigns higher attention weights to the 
[CH2:1] token (with a darker color). This indicates that the model 
focuses on the crucial token that corresponds to the SoM of the 
parent drug molecule and consequently predicts the sequence of 
correct reference metabolite. Conversely, the heatmap in Fig. 8B 
shows a more scattered attention pattern, with higher weights
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Figure 8. Visualization of attention weights assigned by the model to tokens within SMILES of a parent drug molecule during the prediction of its 
metabolite (A) based on the prompt-based metabolite predictor that correctly identified reference metabolite and (B) based on the baseline model that 
mispredicted metabolite. 

assigned to atoms that are not involved in the metabolic trans-
formation. This may reveal why the baseline model generated 
incorrect prediction due to the lack of ability to effectively iden-
tify critical regions necessary for accurate metabolite prediction. 
This comparison further highlights the advantage of introducing 
prompt-based learning. By providing SoM prompts, the model can 
be better guided to focus on tokens that were critical for metabolic 
transformation and generate more accurate predictions. 

Conclusions 
In this study, we proposed a prompt-based learning approach 
named MetaPredictor to predict metabolites of small molecules 
in the human body. MetaPredictor consists of two transformer 
models: SoM identifier and prompt-based metabolite predictor. 
It was designed to automate workflows for a wider application. 
For the first time in metabolite prediction task, we integrated 
prompts that specified the SoMs with deep language model to 
enrich domain knowledge and navigate the translation of a parent 
molecule into correct metabolites. The prompt-based metabolite 
predictor achieved up to 89% recall and 22.6% precision for top-
5 predictions, which were ∼30% improvement of performance 
and 16% reduction of false positives over the baseline model that 
was trained on the same dataset. This demonstrated the validity 
of prompt-based learning that partly mitigated the challenges 
related to metabolite prediction, i.e. decreased precision due to 
increased output size. Furthermore, transfer learning strategy was 
utilized to acquire generalized knowledge of chemical reactions to 
tackle the limited availability of human metabolic reactions. 

Although MetaPredictor was not specifically trained on drug 
metabolic data, it showed improved or comparable performance 
with other drug-specific methods. The variety of the dataset 
enabled the MetaPredictor to predict metabolites catalyzed by 
uncommon enzymes, expanding the predictability of metabolic 
reactions and model generalization when the existing rule-based 
methods were focused on the major enzyme families. In addi-
tion, MetaPredictor performs reliably effectively across a range 
of molecular weights and can handle compounds with different 
numbers of SoMs effectively. MetaPredictor inferences metabo-
lites in a similar way to human experts, and the use of a prompt-
based language steers the inference of metabolite prediction mod-
els toward chemical transformations taking place around the 
SoMs, which also makes this inference more interpretable. When 
compared to the rule-free method, MetaPredictor not only pro-
vides a more comprehensive analysis of drug metabolism, but 
also allows for the integration of external knowledge and expe-
rience. This human-in-the-loop approach makes prediction of 
metabolites more accurate or more expected and provides a new 
paradigm for knowledge introduction for deep-learning models in 
the field of drug discovery. We expect that MetaPredictor could 
contribute to accelerating and enhancing safety and efficacy 
assessment in the early stage of drug discovery. 

Key Points 
• We presented a rule-free, end-to-end and prompt-based 

method named MetaPredictor to predict possible human 
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metabolites of small molecules and offered a solution to 
address the challenges associated with drug metabolite 
prediction. 

• The introduction of prompt engineering can steer deep 
language model to generate more accurate metabolite 
prediction, which provides a new paradigm for knowl-
edge introduction for deep-learning models in the field 
of drug discovery. 

• MetaPredictor was designed as a two-stage schema for 
a wider application and showed improved performance 
when compared to four available drug metabolite pre-
diction tools. It could provide a more comprehensive and 
accurate prediction of drug metabolism. 
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13. de Bruyn KC, Šícho M, Mazzolari A, et al. GLORYx: prediction of 
the metabolites resulting from phase 1 and phase 2 biotransfor-
mations of xenobiotics. Chem Res Toxicol 2020;34:286–99. https:// 
doi.org/10.1021/acs.chemrestox.0c00224. 

14. Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, et al. 
BioTransformer: a comprehensive computational tool for small 
molecule metabolism prediction and metabolite identification. J 
Chem 2019;11:1–25. https://doi.org/10.1186/s13321-018-0324-5. 

15. Nair VH, Schwaller P, Laino T. Data-driven chemical reac-
tion prediction and retrosynthesis. CHIMIA Int J Chem 2019;73: 
997–1000. https://doi.org/10.2533/chimia.2019.997. 

16. Schwaller P, Laino T, Gaudin T, et al. Molecular transformer: a 
model for uncertainty-calibrated chemical reaction prediction. 
ACS Cent Sci 2019;5:1572–83. https://doi.org/10.1021/acscentsci.9 
b00576. 

17. Litsa EE, Das P, Kavraki LE. Prediction of drug metabolites using 
neural machine translation. Chem Sci 2020;11:12777–88. https:// 
doi.org/10.1039/D0SC02639E. 

18. Liu P,  Yuan W,  Fu J,  et al. Pre-train, prompt, and predict: 
a systematic survey of prompting methods in natural lan-
guage processing. ACM Comput Surv 2023;55:1–35. https://doi. 
org/10.1145/356081. 

19. Thakkar A, Vaucher AC, Byekwaso A, et al. Unbiasing retrosyn-
thesis language models with disconnection prompts. ACS Cent 
Sci 2023;9:1488–98. https://doi.org/10.1021/acscentsci.3c00372. 

20. Vaswani A, Shazeer N, Parmar N et al. Attention is all  you need.  
Adv Neural Inf Process Syst 2017. 

21. Lowe DM. Extraction of Chemical Structures and Reactions from the 
Literature. Ph.D. Thesis, University of Cambridge, 2012. 

22. Schwaller P, Petraglia R, Zullo V, et al. Predicting retrosyn-
thetic pathways using transformer-based models and a hyper-
graph exploration strategy. Chem Sci 2020;11:3316–25. https:// 
doi.org/10.1039/C9SC05704H. 

23. Lee PW, Aizawa H, Gan LL, et al. Handbook of Metabolic Pathways 
of Xenobiotics (Vol. 1 - Vol. 5). John Wiley & Son Ltd., 2014. 

24. Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human 
metabolome database for 2018. Nucleic Acids Res 2018;46:D608– 
17. https://doi.org/10.1093/nar/gkx1089. 

25. Brunk E, Sahoo S, Zielinski DC, et al. Recon3D enables a three-
dimensional view of gene variation in human metabolism. Nat 
Biotechnol 2018;36:272–81. https://doi.org/10.1038/nbt.4072. 

26. Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database 
of metabolic pathways and enzymes. Nucleic Acids Res 
2018;46:D633–9. https://doi.org/10.1093/nar/gkx935. 

27. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a 
major update to the DrugBank database for 2018. Nucleic

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae374#supplementary-data
https://github.com/zhukeyun/Meta-Predictor
https://github.com/zhukeyun/Meta-Predictor
https://github.com/zhukeyun/Meta-Predictor
https://github.com/zhukeyun/Meta-Predictor
https://github.com/zhukeyun/Meta-Predictor
https://github.com/zhukeyun/Meta-Predictor
https://doi.org/10.1016/j.drudis.2012.01.017
https://doi.org/10.1016/j.drudis.2012.01.017
https://doi.org/10.1016/j.drudis.2012.01.017
https://doi.org/10.1016/j.drudis.2012.01.017
https://doi.org/10.1016/j.drudis.2012.01.017
https://doi.org/10.1016/B978-0-12-415813-9.00003-9
https://doi.org/10.1016/B978-0-12-415813-9.00003-9
https://doi.org/10.1016/B978-0-12-415813-9.00003-9
https://doi.org/10.1016/B978-0-12-415813-9.00003-9
https://doi.org/10.1517/17425255.4.11.1415
https://doi.org/10.1517/17425255.4.11.1415
https://doi.org/10.1517/17425255.4.11.1415
https://doi.org/10.3109/03602530903401658
https://doi.org/10.3109/03602530903401658
https://doi.org/10.3109/03602530903401658
https://doi.org/10.1038/nrd4581
https://doi.org/10.1038/nrd4581
https://doi.org/10.1038/nrd4581
https://doi.org/10.1038/nrd4581
https://doi.org/10.1021/ml100016x
https://doi.org/10.1021/ml100016x
https://doi.org/10.1021/ml100016x
https://doi.org/10.1021/ml100016x
https://doi.org/10.1021/ml100016x
https://doi.org/10.1021/acs.jcim.7b00250
https://doi.org/10.1021/acs.jcim.7b00250
https://doi.org/10.1021/acs.jcim.7b00250
https://doi.org/10.1021/acs.jcim.7b00250
https://doi.org/10.1021/acs.jcim.7b00250
https://doi.org/10.1021/acs.jcim.7b00250
https://doi.org/10.1093/bioinformatics/btv087
https://doi.org/10.1093/bioinformatics/btv087
https://doi.org/10.1093/bioinformatics/btv087
https://doi.org/10.1093/bioinformatics/btv087
https://doi.org/10.1093/bioinformatics/btv087
https://doi.org/10.1021/ci400518g
https://doi.org/10.1021/ci400518g
https://doi.org/10.1021/ci400518g
https://doi.org/10.1021/ci400518g
https://doi.org/10.1021/ci400518g
https://doi.org/10.1002/cmdc.200700312
https://doi.org/10.1002/cmdc.200700312
https://doi.org/10.1002/cmdc.200700312
https://doi.org/10.1002/cmdc.200700312
https://doi.org/10.1093/nar/gkac313
https://doi.org/10.1093/nar/gkac313
https://doi.org/10.1093/nar/gkac313
https://doi.org/10.1093/nar/gkac313
https://doi.org/10.1093/nar/gkac313
https://doi.org/10.1021/acs.chemrestox.0c00224
https://doi.org/10.1021/acs.chemrestox.0c00224
https://doi.org/10.1021/acs.chemrestox.0c00224
https://doi.org/10.1021/acs.chemrestox.0c00224
https://doi.org/10.1021/acs.chemrestox.0c00224
https://doi.org/10.1021/acs.chemrestox.0c00224
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.1186/s13321-018-0324-5
https://doi.org/10.2533/chimia.2019.997
https://doi.org/10.2533/chimia.2019.997
https://doi.org/10.2533/chimia.2019.997
https://doi.org/10.2533/chimia.2019.997
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1039/D0SC02639E
https://doi.org/10.1039/D0SC02639E
https://doi.org/10.1039/D0SC02639E
https://doi.org/10.1039/D0SC02639E
https://doi.org/10.1039/D0SC02639E
https://doi.org/10.1039/D0SC02639E
https://doi.org/10.1145/356081
https://doi.org/10.1145/356081
https://doi.org/10.1145/356081
https://doi.org/10.1021/acscentsci.3c00372
https://doi.org/10.1021/acscentsci.3c00372
https://doi.org/10.1021/acscentsci.3c00372
https://doi.org/10.1021/acscentsci.3c00372
https://doi.org/10.1021/acscentsci.3c00372
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1038/nbt.4072
https://doi.org/10.1038/nbt.4072
https://doi.org/10.1038/nbt.4072
https://doi.org/10.1038/nbt.4072
https://doi.org/10.1093/nar/gkx935
https://doi.org/10.1093/nar/gkx935
https://doi.org/10.1093/nar/gkx935
https://doi.org/10.1093/nar/gkx935
https://doi.org/10.1093/nar/gkx935


MetaPredictor: prediction of drug metabolites | 13

Acids Res 2018;46:D1074–82. https://doi.org/10.1093/nar/ 
gkx1037. 

28. RDKit. Open-Source Cheminformatics Software. https://www. 
rdkit.org/. 

29. Schwaller P, Hoover B, Reymond J-L, et al. Extraction of organic 
chemistry grammar from unsupervised learning of chemi-
cal reactions. Sci Adv 2021;7:eabe4166. https://doi.org/10.1126/ 
sciadv.abe4166. 

30. Theory D. SMARTS - A Language for Describing Molec-
ular Patterns. https://www.daylight.com/dayhtml/doc/theory/ 
theory.smarts.html. 

31. Klein G, Kim Y, Deng Y et al. OpenNMT: Open-Source Toolkit 
for Neural Machine Translation Proceedings of ACL 2017, System 
Demonstrations 2017. 

32. Tetko IV, Karpov P, Van Deursen R, et al. State-of-the-art aug-
mented NLP transformer models for direct and single-step ret-
rosynthesis. Nat Commun 2020;11:1–11. https://doi.org/10.1038/ 
s41467-020-19266-y. 

33. Freitag M, Al-Onaizan Y. Beam Search Strategies for Neural 
Machine Translation. Proceedings of the First Workshop on Neural 
Machine Translation 2017. 

34. Dong X, Yu Z, Cao W, et al. A survey on ensemble learn-
ing. Front Comp Sci 2020;14:241–58. https://doi.org/10.1007/ 
s11704-019-8208-z. 

35. Schwaller P, Probst D, Vaucher AC, et al. Mapping the 
space of chemical reactions using attention-based neural net-
works. Nat Mach Intell 2021;3:144–52. https://doi.org/10.1038/ 
s42256-020-00284-w. 

36. David OJ, Kovarik JM, Schmouder RL. Clinical pharmacokinet-
ics of fingolimod. Clin Pharmacokinet 2012;51:15–28. https://doi. 
org/10.2165/11596550-000000000-00000. 

37. Gelotte CK, Zimmerman BA. Pharmacokinetics, safety, and 
cardiovascular tolerability of phenylephrine HCl 10, 20, and 
30 mg after a single oral administration in healthy volun-
teers. Clin Drug Investig 2015;35:547–58. https://doi.org/10.1007/ 
s40261-015-0311-9. 

38. Hardcastle J, Wilkins J. The action of sennosides and related 
compounds on human colon and rectum. Gut 1970;11:1038–42. 
https://doi.org/10.1136/gut.11.12.1038. 

39. Farid NA, Kurihara A, Wrighton SA. Metabolism and 
disposition of the thienopyridine antiplatelet drugs 
ticlopidine, clopidogrel, and prasugrel in humans. J Clin  
Pharmacol 2010;50:126–42. https://doi.org/10.1177/009127000 
9343005. 

40. Argikar UA, Gomez J, Ung D, et al. Identification of novel meto-
clopramide metabolites in humans: in vitro and in vivo stud-
ies. Drug Metab Dispos 2010;38:1295–307. https://doi.org/10.1124/ 
dmd.110.033357. 

41. Guengerich FP, Sohl CD, Chowdhury G. Multi-step oxidations 
catalyzed by cytochrome P450 enzymes: processive vs. distribu-
tive kinetics and the issue of carbonyl oxidation in chemical 
mechanisms. Arch Biochem Biophys 2011;507:126–34. https://doi. 
org/10.1016/j.abb.2010.08.017. 

42. Lorenc-Koci E, Czarnecka A, Lenda T, et al. Molsidomine, a nitric 
oxide donor, modulates rotational behavior and monoamine 
metabolism in 6-OHDA lesioned rats treated chronically with L-
DOPA. Neurochem Int 2013;63:790–804. https://doi.org/10.1016/j. 
neuint.2013.09.021. 

43. Sager JE, Choiniere JR, Chang J, et al. Identification and struc-
tural characterization of three new metabolites of bupro-
pion in humans. ACS Med Chem Lett 2016;7:791–6. https://doi. 
org/10.1021/acsmedchemlett.6b00189.

https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://www.rdkit.org/
https://www.rdkit.org/
https://www.rdkit.org/
https://www.rdkit.org/
https://doi.org/10.1126/sciadv.abe4166
https://doi.org/10.1126/sciadv.abe4166
https://doi.org/10.1126/sciadv.abe4166
https://doi.org/10.1126/sciadv.abe4166
https://doi.org/10.1126/sciadv.abe4166
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://doi.org/10.1038/s41467-020-19266-y
https://doi.org/10.1038/s41467-020-19266-y
https://doi.org/10.1038/s41467-020-19266-y
https://doi.org/10.1038/s41467-020-19266-y
https://doi.org/10.1038/s41467-020-19266-y
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1038/s42256-020-00284-w
https://doi.org/10.1038/s42256-020-00284-w
https://doi.org/10.1038/s42256-020-00284-w
https://doi.org/10.1038/s42256-020-00284-w
https://doi.org/10.1038/s42256-020-00284-w
https://doi.org/10.2165/11596550-000000000-00000
https://doi.org/10.2165/11596550-000000000-00000
https://doi.org/10.2165/11596550-000000000-00000
https://doi.org/10.1007/s40261-015-0311-9
https://doi.org/10.1007/s40261-015-0311-9
https://doi.org/10.1007/s40261-015-0311-9
https://doi.org/10.1007/s40261-015-0311-9
https://doi.org/10.1136/gut.11.12.1038
https://doi.org/10.1136/gut.11.12.1038
https://doi.org/10.1136/gut.11.12.1038
https://doi.org/10.1136/gut.11.12.1038
https://doi.org/10.1177/0091270009343005
https://doi.org/10.1124/dmd.110.033357
https://doi.org/10.1124/dmd.110.033357
https://doi.org/10.1124/dmd.110.033357
https://doi.org/10.1124/dmd.110.033357
https://doi.org/10.1016/j.abb.2010.08.017
https://doi.org/10.1016/j.abb.2010.08.017
https://doi.org/10.1016/j.abb.2010.08.017
https://doi.org/10.1016/j.abb.2010.08.017
https://doi.org/10.1016/j.abb.2010.08.017
https://doi.org/10.1016/j.neuint.2013.09.021
https://doi.org/10.1016/j.neuint.2013.09.021
https://doi.org/10.1016/j.neuint.2013.09.021
https://doi.org/10.1016/j.neuint.2013.09.021
https://doi.org/10.1016/j.neuint.2013.09.021
https://doi.org/10.1021/acsmedchemlett.6b00189
https://doi.org/10.1021/acsmedchemlett.6b00189
https://doi.org/10.1021/acsmedchemlett.6b00189
https://doi.org/10.1021/acsmedchemlett.6b00189
https://doi.org/10.1021/acsmedchemlett.6b00189

	 MetaPredictor: in silico prediction of drug metabolites based on deep language models with prompt engineering
	Introduction
	Materials and methods
	Results and discussion
	Conclusions
	Key Points
	Supplementary data
	Funding
	Data availability


