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and therapeutic targets
for colorectal cancer
Xiaofei Zuo1†, Wujun Long1†, Kai Lin2* and Guiqing Jia2*

1Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu, China, 2Department of
Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and
Technology of China, Chengdu, China
Background: Colorectal cancer (CRC) is one of the leading contributors to

cancer-related deaths worldwide, with more than 900,000 new diagnoses and

related deaths each year. This study aims to explore the prognostic value of

tumor-infiltrating immune cell (TIIC)-related genes in CRC, in order to discover

new biomarkers and therapeutic targets.

Methods: We integrated CRC transcriptome data from public databases to

construct and validate a prognostic model and analyzed single-cell RNA

sequencing (scRNA-seq) data to classify immune cell subtypes. A suite of

computational models was employed to assess TIIC signature scores and to

refine the selection of prognostic TIIC-related genes using multiple machine

learning techniques—including Random Survival Forest (RSF), LASSO regression,

and Cox proportional hazards regression, among others. In addition, pathway

enrichment, immune signature difference analyses, and immunotherapy

response predictions were performed. Potential biomarkers and therapeutic

targets were identified through differential gene analysis, gene set enrichment

analysis (GSEA), and copy number variation (CNV) landscape comparisons

between high and low TIIC groups.

Results:We identified 137 significant TIIC-RNAswithin the CRCmicroenvironment

and developed a prognostic model based on five key TIIC-RNAs. This model,

which leveraged machine learning methods such as RSF, LASSO, and Cox

regression, demonstrated outstanding performance in survival prediction across

TCGA-CRC and external validation datasets, outperforming 22 existing prognostic

models. Furthermore, the high TIIC score group showed heightened expression of

angiogenesis-related genes, whereas the low score group was enriched for

immune response-associated genes. The TIIC signature score was significantly

correlated with tumor-infiltrating immune cells, various metabolic characteristics,

and chromosomal instability, and it effectively predicted immunotherapy response

across diverse cancer types.

Conclusion: The findings of this study highlighted the promise of the TIIC

signature score in forecasting the outcomes for CRC patients. Additionally, it

emphasized its utility in predicting the effects of immunotherapy, thereby
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enhancing our comprehension of the intricacies within the tumor

microenvironment. Further research needs to concentrate on assessing the

clinical utility of the TIIC signature score while also confirming its relevance

across various populations and treatment contexts.
KEYWORDS

colorectal cancer, tumor-infiltrating immune cells, immunotherapy response
prediction, chromosomal instability, TIIC-RNAs
1 Introduction

Colorectal cancer (CRC) is considered one of the most lethal

cancers worldwide, with around 1.2 million new cases and 600,000

deaths each year (1). The development of CRC is linked to numerous

factors, including age, genetic predisposition, chronic inflammatory

bowel conditions, and poor lifestyle and dietary choices (2). CRC

poses significant health and economic challenges, not only

threatening health, but also bringing huge economic pressure. The

management of CRC typically entails a multifaceted approach,

incorporating various techniques like surgical procedures,

chemotherapy, radiotherapy, and targeted drug therapies (3).

Despite notable progress in treatment technologies, the five-year

survival rate for CRC continues to be comparatively low, especially

when the disease is identified at a later stage (4). The limitations of

treatment options and the uncertainty of treatment effects have

presented significant challenges for clinicians and patients. In the

face of CRC, the main dilemma in the current treatment field is how

to improve the effectiveness of treatment, reduce side effects, and

achieve personalized medicine (5). At present, the lack of knowledge

about CRC biomarkers limits the precise stratification of patients and

the choice of treatment paths. Simultaneously, the intricate nature of

the CRC tumor microenvironment makes it challenging for current

therapies to fully address the drug resistance and immune evasion

exhibited by tumor cells.

The role of tumor-infiltrating immune cells (TIICs) in CRC is

gaining increasing attention (6–8). The TIIC signature score is an

emerging bioinformatics tool that combines scRNA-seq data to

quantify the presence and activity of TIICs. This score can help

identify the patient population most likely to respond to

immunotherapy and provide new insights into the biological

behavior of CRC. In recent years, the TIIC signature score has

been applied in multiple clinical studies, especially in predicting the

efficacy of immunotherapy, with encouraging results (9). For

example, in breast cancer, lung cancer, and other types of solid

tumors, the TIIC signature score has been shown to effectively help

distinguish patients with good prognosis from those with poor

prognosis (10).

This research emphasizes the predictive significance of genes

associated with TIICs in CRC. By integrating data from the Gene

Expression Omnibus (GEO) and The Cancer Genome Atlas
02
(TCGA), we developed an innovative scoring system centered on

a TIIC signature that successfully predicts the survival outcomes of

CRC patients within multiple validation datasets. The TIIC

signature score excels beyond conventional clinical metrics and

demonstrates strong effectiveness in forecasting the success of

immunotherapy. Our study provides better insights into the

design of personalized treatment options for CRC patients.
2 Materials and methods

2.1 Cell culture

Colorectal cancer (CRC) cell lines LoVo and SW480, along with

normal colorectal epithelial cell line NCM460, were purchased from

Shanghai Zhongqiao Xinzhuo Biotechnology Co., Ltd. and ATCC

(Manassas, VA, USA), respectively. All cell lines were cultured in

DMEM medium (Solarbio, Beijing, China) supplemented with 10%

fetal bovine serum (FBS) and 1% penicillin-streptomycin. Cells

were maintained at 37°C in a 5% CO2 incubator.
2.2 RNA extraction and quantitative PCR

Total RNA was isolated from the cultured cells using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA) following the

manufacturer’s protocol. RNA quality and concentration were

assessed using a NanoDrop spectrophotometer. cDNA was

synthesized from 1 mg of RNA using ReverTra Ace qPCR RT

Premix (Toyobo, Osaka, Japan) and the gDNA Remover Kit

(Toyobo, Osaka, Japan). Reverse transcription was carried out at

42°C for 60 minutes, followed by enzyme inactivation at 95°C for 5

minutes. Quantitative real-time PCR (qRT-PCR) was performed

using SYBR Premix Ex Taq II (Takara Bio, Japan) on the Mx3005P

real-time PCR system (Stratagene, San Diego, CA, USA). GAPDH

was used as the endogenous control. The following thermal cycling

conditions were used: initial denaturation at 95°C for 10 minutes,

followed by 45 cycles of 95°C for 5 seconds, 60°C for 30 seconds.

The relative expression levels of the target genes were calculated

using the 2^(-DDCt) method, with each sample analyzed in

triplicate. Primer sequences are provided in Supplementary Table 1.
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2.3 Acquisition and processing of
transcriptome data

This research utilized RNA expression profiles along withmatching

clinical data (n=606) related to colorectal cancer sourced from the

public repository TCGA (https://portal.gdc.cancer.gov/) to create the

training set for the model (11). The data underwent conversion into

Transcripts Per Million (TPM) format, which was subsequently

log2 transformed to enable more detailed analysis. Simultaneously,

a validation set was created using a dataset comprising over 50

samples sourced from GEO (https://www.ncbi.nlm.nih.gov/geo/),

which included colorectal cancer chip data from GSE12945 (n=62),

GSE17537 (n=55), and GSE39582 (n=579) (12). To adjust the chip

data, the normalizeBetweenArrays function from the limma

package was utilized. TCGA and GEO are open-source databases

and do not require additional ethical approval. We follow the

regulations for data acquisition and use.
2.4 Acquisition and processing of scRNA-
seq data

The single-cell dataset employed in this research comes from

GSE166555, which is available in the GEO database and includes 13

CRC tumor specimens. For the data analysis, we applied the Seurat

package. To maintain cell quality, the mitochondrial content should

remain under 10%. The acceptable ranges for the UMI count of cells

and the gene count are between 200 and 20,000, and 200 to 5,000,

correspondingly. We performed data normalization and identified

the most variable genes, totaling 2,000. The Seurat package offers

various functions aimed at transforming data, particularly to reduce

the impact of the cell cycle, by setting the parameter vars.to.regress

to c(“S.Score”, “G2M.Score”). To achieve this objective, the

functions NormalizeData, FindVariableFeatures, and ScaleData

are applied. Furthermore, the harmony package is used to

manage batch effects. The dimensionality reduction technique

known as t-distributed stochastic neighbor embedding (tSNE) is

likewise derived from Seurat and is used for visualization (13).

We employ a range of markers tailored for various cell types. For

epithelial cells, we use markers such as “EPCAM,” “KRT18,”

“KRT19,” and “CDH1.” For fibroblasts, the relevant markers

include “DCN,” “THY1,” “COL1A1,” and “COL1A2.” In the case

of endothelial cells, we identify markers like “PECAM1,” “CLDN5,”

“FLT1,” and “RAMP2.” T cell markers that we utilize are “CD3D,”

“CD3E,” “CD3G,” and “TRAC.” Furthermore, for NK cells, we

recognize markers such as “NKG7,” “GNLY,” “NCAM1,” and

“KLRD1.” B cells are characterized by markers including “CD79A,”

“IGHM,” “IGHG3,” and “IGHA2.” For myeloid cells, the markers we

consider are “LYZ,” “MARCO,” “CD68,” and “FCGR3A.” Lastly, the

markers that denote mast cells are “KIT,” “MS4A2,” and “GATA2.”

Separate annotations were made for different cell subgroups. Using

these annotations, we created TSNE diagrams and violin plots to

visualize cell markers, among other visual representations. A volcano

plot depicted the genes that showed differential expression between
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immune cells and CRC cells. Following this, all immune cells were

categorized into a single cluster, whereas the tumor cells were

assigned to a distinct cluster, with automatic annotation conducted

using Sc-Type software. In the end, we utilized the FindAllMarkers

function to pinpoint the genes with differential expression when

comparing immune cells to CRC cells. This analysis was conducted

with parameters that encompassed a p-value below 0.05, a |log2FC|

greater than 0.25, and an expression ratio exceeding 0.1.
2.5 Obtaining TIIC-related genes

Through a thorough examination of immune and tumor cells

using single-cell RNA sequencing, along with an analysis of

colorectal cancer tissues via bulk sequencing, a computational

framework employing various algorithms was created. This

framework aims to determine TIIC feature scores and to select

the most significant TIIC-related RNAs. The detailed process

proceeds as follows:
1. From the expression values, the RNAs in the top 15% were

selected as candidates for immune-related RNAs.

2. Tissue-specific index (TSI) was used to identify potential

immune-related RNAs:

TSIRNA = o
N
i=1(1 − xRNA,i)

N − 1

In this framework, N represents the number of different

types of immune cells and xRNAs, while i signifies the

expression level of RNA in the i-th immune cell, which is

established by the normalized peak expression of RNA

throughout all cell types. TSI ranges from 0 to 1; an RNA is

considered universal to immune cells when TSI is 0, and

when TSI reaches 1, it is classified as specific to a particular

immune cell. Those RNAs that exhibit elevated expression

across all types of immune cells are termed immune-related

universal RNAs (iuRNAs).

3. TIIC-RNAs are characterized by a notable increase in

immune cell types while exhibiting a decrease in tumor

cells’ expression levels.

4. To enhance classification, a range of machine learning

techniques such as Boruta, extreme gradient boosting

(Xgboost), least absolute shrinkage and selection operator

(LassoLR), random forest (RF), and microarray prediction

analysis (Pamr) were employed, with the overlapping

outcomes utilized to identify the most significant TIIC-RNA.
2.6 Construction and evaluation of TIIC
prognostic model

In order to explore and demonstrate the prognostic relevance of

Tumor-Infiltrating Immune Cells RNA (TIIC-RNA) in relation to
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overall survival in colorectal cancer patients drawn from the TCGA

cohort, we first undertook a univariate Cox proportional hazards

regression analysis. This statistical method allowed us to determine

the relationship between TIIC-RNA profiles and patient survival

rates, highlighting the importance of immune cell gene expression

in predicting outcomes for individuals with colorectal cancer.

Subsequently, we applied three distinct machine learning

algorithms specifically designed for survival analysis—LassoCox,

CoxBoost, and random forest. These approaches were chosen for

their ability to effectively handle and analyze complex datasets,

permitting a deeper investigation into the significance of TIIC-RNA

in survival assessments. By leveraging these advanced analytical

techniques, we aimed to enhance our understanding of how TIIC-

RNA can serve as a valuable predictor in clinical settings. Moreover,

we expanded our analysis by implementing a total of 20 different

machine learning algorithms for scoring purposes. This diverse

array of methodologies included Random Survival Forest (RSF),

Conditional Random Forest (CForest), Lasso-Cox, Elastic Net

Regression (Enet), Ridge Regression, Gradient Boosting based on

Regression Trees (BlackBoost), Parametric Survival Model

Regression (SurvReg), Conditional Inference Trees (CTree), Cox

Proportional Hazards (CoxPH), Oblique Random Survival Forest

(ObliqueRSF), Stepwise Cox Regression (StepwiseCox), Survival

Support Vector Machine (SurvivalSVM), Generalized Boosted

Regression Model (GBM), Ranger, Partial Least Squares

Regression with Cox Model (PlsRcox), Gradient Boosting using

Generalized Linear Model (GlmBoost), Supervised Principal

Components (SuperPC), Akritas Conditional Nonparametric

Survival Estimator (Akritas), and CoxBoost. The inclusion of

these varied algorithms allowed for robust comparisons and

strengthened our findings regarding the prognostic implications

of TIIC-RNA. We then identified the most reliable model based on

the comprehensive C-index derived from the external validation

dataset. Based on the median TIIC values for each cohort, patients

were categorized into groups with high and low TIIC scores. We

examined the survival outcomes for these two groups in both

TCGA-CRC and external validation datasets. Thereafter, ROC

curves were created to evaluate the predictive capabilities of the

models. Additionally, utilizing the TCGA dataset, we demonstrated

the differences in survival outcomes, tumor stages, and TNM

classifications between the two categories of TIIC signature

scores, along with the C-index variations for various evaluation

metrics across each dataset. To improve the assessment of the

prognostic effectiveness of the TIIC signature score, we included 22

prognostic models reported in the literature and compared their C-

index results with that of the TIIC signature score across TCGA-

CRC and other validation datasets (14–35).
2.7 Analysis of pathway enrichment and
immune characteristics between the two
TIIC groups

To begin with, we examined the biological traits of the two TIIC

signature score groups through Gene Set Variation Analysis
Frontiers in Immunology 04
(GSVA) analysis sourced from the MsigDB database (36).

Following this, we demonstrated the variations in Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway activities among the two TIIC signature score groups using

t-SNE plots (13, 37, 38). In addition, we carried out enrichment

analysis and visualization of the differentially expressed genes that

set apart the TIIC score groups, drawing upon data fromMetascape.

Finally, we performed GSEA analysis on the differentially expressed

genes differentiating the two score groups, employing the GO

pathway list.

The TIMER algorithm, known for estimating tumor immune

response, was utilized to analyze six types of immune cells.

Simultaneously, we applied the single-cell gene set enrichment

analysis (ssGSEA) method for evaluating 28 immune cell types.

Moreover, the Microenvironment Cell Populations-counter

(MCPcounter) algorithm was used to assess 10 categories of

immune cells. Lastly, the Estimation of Cell Populations and

Immune Cells in Tumors Using Expression Data (ESTIMATE)

algorithm facilitated the assessment of immune-infiltrating cell

presence, which we represented using heat maps. In addition, we

compared the differences in mRNA expression, methylation level,

CNV amplification, and CNV deep deletion of immune checkpoint-

related genes between the 2 groups.
2.8 Metabolic signature prediction related
to immunotherapy response and TIIC
signature score

The evaluation of the response to immunotherapy was

conducted using a comprehensive array of data from multiple

sources, specifically focusing on different cancer types. The

datasets included studies related to melanoma such as those from

Nathanson and GSE35640, as well as GSE91061 and GSE78220, all

of which further contributed to our understanding of melanoma

responses. Additionally, we incorporated data from IMvigor210,

which pertains to urothelial carcinoma (UC), and research from

Braun that relates to renal cell carcinoma (RCC). Further expanding

our analysis, we utilized datasets GSE179351 that examines both

colorectal adenocarcinoma and pancreatic adenocarcinoma

(COAD and PAAD), GSE165252 focused on esophageal

adenocarcinoma (ESCA), GSE103668 concerning triple-negative

breast cancer (TNBC), and GSE126044, which pertains to non-

small cell lung cancer (NSCLC). To assess the immunotherapy

response across these various datasets, we calculated the TIIC

signature scores for each dataset. This process allowed us to

effectively evaluate the underlying immune dynamics associated

with treatment responses. Furthermore, we extended our analysis to

the TCGA dataset by employing the TIDE online platform,

available at http://tide.dfci.harvard.edu/. This platform enabled us

to perform a thorough analysis of the immune response and

scoring, further enriching our understanding of how different

cancer types respond to immunotherapy initiatives.

Additionally, to investigate the overall metabolic traits in the

two groups identified by the TIIC signature scores, we performed
frontiersin.org

http://tide.dfci.harvard.edu/
https://doi.org/10.3389/fimmu.2025.1583327
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zuo et al. 10.3389/fimmu.2025.1583327
GSVA on metabolic pathways found in the KEGG database and

assessed the correlation between the TIIC signature scores and the

respective metabolic pathways.
2.9 Comparison of genomic variation
landscapes between the two groups

The R package “maftools” was employed to analyze the

mutation data and explore the variations in mutation load across

the two groups. The waterfall plot, displaying the top 30 genes, was

generated for both high-risk and low-risk groups using maftools. To

evaluate the differing mutation frequencies of genes in these two

groups, a chi-square test was performed. CNV data were analyzed

with Gistic 2.0 software. Following this, chromosome segments that

showed significant amplification and deletion were detected, and

variations in CNVs across chromosomes were assessed. Moreover,

we calculated the fraction of genomic alterations (FGA), the

fraction of gained genomes (FGG), and the fraction of lost

genomes (FGL). Ultimately, the findings related to CNV were

illustrated using the R package “ggplot2.”
2.10 Methodological rationale and data
processing details
Fron
1. Just ificat ion of Machine Learning Models for

Prognostic Analysis

To construct a robust prognostic model, we employed

multiple machine learning algorithms—including

CoxBoost, LassoCox, and Random Survival Forest (RSF)

—because they are well established for handling high-

dimensional genomic data, offer robust variable selection,

and minimize overfitting risks. In addition, by evaluating a

comprehensive set of 20 algorithms, we ensured that the

final model—selected based on the highest concordance

index (C-index) in external validation cohorts—was both

reliable and reproducible.

2. Criteria for Selecting the Top 15% RNA Candidates

From the expression profiles of immune cell populations,

the top 15% of RNAs were selected as candidate immune-

related transcripts. This threshold was determined

empirically, as preliminary analyses indicated that this

cutoff efficiently captures the most highly expressed—and

thus potentially the most biologically relevant—RNAs

while reducing background noise. Similar selection

criteria have been employed in previous studies to

identify key immune markers.

3. Batch Effect Handling in Transcriptomic Data Normalization

To minimize technical variability and correct for batch

effects, we applied tailored normalization strategies across

our datasets. For TCGA RNA-seq data, expression values

were converted to Transcripts Per Million (TPM) and log2-

transformed for standardization. For GEO microarray
tiers in Immunology 05
datasets, we used the normalizeBetweenArrays function from

the limma package to adjust for inter-array differences. For

single-cell RNA-seq data, batch effects were addressed using the

Harmony package, which integrates data from multiple samples

while preserving true biological variability.
2.11 Statistical analysis

Data processing, statistical evaluation, and graphing were

analyzed with R version 4.1.3. The Pearson correlation coefficient

was employed to evaluate the relationship between two continuous

variables. For the categorical variables, the chi-square test was used

for comparisons, whereas continuous variables were examined

using either the T-test or the Wilcoxon rank-sum test. The

survminer package was utilized to establish the optimal cutoff

value. Kaplan-Meier analyses and Cox regression assessments

were performed using the survival package. A p-value below 0.05

was considered to indicate statistical significance (* p < 0.05; ** p <

0.01; *** p < 0.001; **** p < 0.0001).
3 Results

3.1 Identification of TIIC-RNAs at the
single-cell level

By employing the CRC scRNA-seq dataset, we identified CRC

cells along with nine varieties of microenvironment cells (see

Figure 1A). For subsequent analysis, CRC cells alongside seven

immune cell types were chosen (see Figure 1B). We determined that

the highest 15% of RNA molecules exhibited expression in each

type of immune cell, amounting to a total of 4,743 RNAs considered

as potential immune-related RNAs. Utilizing the TSI score

threshold (TSI < 0.35), we identified 1,009 of these immune-

related RNAs as IURNAs. Figure 1C presents the differentially

expressed genes (DEGs) found within immune cells to emphasize

the precision of the identified cell types. The tSNE plots showing

immune cells in relation to CRC cells are depicted in Figure 1D,

where we performed a screening of differentially expressed genes

(DEGs) between these cell types, as illustrated in Figure 1E.

Compared to CRC cells, 157 DEGs that were significantly

upregulated in immune cells were categorized as TIIC-RNAs.

Leveraging the previously identified TIIC-RNAs, we applied five

machine learning algorithms for classification: Boruta, Xgboost,

LassoLR, RF, and Pamr. This approach allowed us to identify the

137 most important TIIC-RNAs, as demonstrated in Figure 1F.

Correspondingly, we validated the expression levels of AIP,

HNRNPH1, UBE2D2, and NFKB2 in CRC cell lines through

quantitative PCR. The results showed a significant reduction in

the expression of AIP and HNRNPH1, while UBE2D2 and NFKB2

expression were significantly elevated (Supplementary Figure 1). To

ensure the robustness of our analysis, we performed cross-
frontiersin.org
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validation using independent datasets. In addition to constructing

the prognostic model with the TCGA-CRC cohort, we validated the

TIIC signature score in multiple independent GEO datasets
Frontiers in Immunology 06
(GSE12945, GSE17537, and GSE39582). The consistent

performance across these datasets demonstrates the model’s

stability and supports its potential clinical applicability.
FIGURE 1

TIIC-RNA results were identified at the single-cell level. (A) t-SNE maps of identified microenvironment cells and CRC cells. (B) t-SNE diagrams of
identified CRC cells and 4 types of immune cells. (C) Violinplot of differentially expressed genes in identified immune cells. (D) t-SNE maps of
identified immune cells and CRC cells. (E) Volcano map of differentially expressed genes between immune cells and CRC cells. (F) Venn diagram
shows the classification by crossing genes identified by five ML algorithms.
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3.2 Construction of TIIC prognostic model

A Cox proportional hazards regression analysis focusing on a

single variable was performed to evaluate the prognostic

importance of TIIC-RNA concerning overall survival (OS) in

individuals diagnosed with CRC. In the TCGA dataset, five TIIC-

RNAs were identified (Figure 2A). Subsequently, three distinct

machine learning (ML) methods for conducting survival analysis

were applied to these five genes: CoxBoost (Figure 2B), LassoCox

(Figures 2C, D), and random forest (Figures 2E, F). By cross-

referencing the results from these three techniques, four prognostic

TIIC-RNAs were identified (Figure 2G). Following this, a

comprehensive set of 20 ML algorithms was utilized to create the

prognostic model, with the most dependable model being derived

from the overall C index of the external validation dataset. Among

these 20 ML algorithms, the RSF algorithm demonstrated the best

performance (see Figure 2H). In the TCGA-CRC cohort, patients

with higher TIIC signature scores experienced significantly poorer

survival outcomes (p < 0.05; see Figure 2I). The predictive

performance of the TIIC signature score was robust, as

demonstrated by the time-dependent ROC curves, which yielded

AUC values of 0.975, 0.972, 0.965, 0.965, and 0.975 for 1-, 2-, 3-, 4-,

and 5-year overall survival predictions, respectively (Figure 2J). To

further evaluate its prognostic value, we compared our model with

22 previously published prognostic models using standard

evaluation metrics, including the concordance index (C-index)

and AUC. Our TIIC signature score achieved a C-index close to

0.97, which was consistently higher than the values reported for the

other models (most of which were below 0.95), thereby

demonstrating its superior predictive accuracy across both the

TCGA-CRC dataset and external validation cohorts. The AUC

values for the other datasets are displayed in the figure

(Figure 2J). Moreover, the robustness of the TIIC signature score

was further confirmed in independent GEO validation cohorts. The

model consistently demonstrated high predictive accuracy across

different datasets, thereby reinforcing its potential as a reliable tool

for clinical risk stratification and personalized treatment

decision-making.
3.3 Comparison of the prognostic value
between TIIC signature score and previous
features

The TCGA dataset revealed notable variations in survival

outcomes, tumor stage, and the TNM staging system among the

two TIIC signature score groups (p < 0.05, Figure 3A). The group

identified as high-risk exhibited a more advanced disease

progression and increased mortality rates. Moreover, the TIIC

signature score demonstrated superior performance in C-index

across various datasets when compared to factors such as age,

gender, tumor stage, and the TNM staging system. This indicates a

higher predictive efficacy than that of the conventional clinical
Frontiers in Immunology 07
feature system (Figure 3B). To evaluate the prognostic effectiveness

of the TIIC signature score in relation to other assessment systems,

we integrated 22 prognostic models identified in the current

literature and examined the C-index for each prognostic

evaluation system across TCGA-CRC and diverse validation

datasets (Figure 3C–F). Our TIIC model demonstrated superior

performance compared to the majority of other previously

published models in TCGA-CRC and external validation datasets.
3.4 Prediction of biological mechanisms
associated with TIIC signature scores

Given the immune-related traits that are heightened in the low

group, we intend to investigate the potential biological mechanisms

in greater depth. Most pathways linked to a high TIIC signature

score were reduced in comparison to those observed in the low

group (Figure 4A). From the GOBP and KEGG databases, eight

pathways were selected that showed notable differences between the

two groups. The tSNE plots for these samples were presented, along

with the associated ssGSEA scores for each pathway (Figure 4B).

Furthermore, we demonstrated the enrichment outcomes for the

upregulated genes within the high TIIC group through Metascape,

revealing their connection to the BMP signaling pathway and the

modulation of growth factors (Figure 4C). We presented the GSEA

results for the prominent genes found in both the high TIIC group

and the low TIIC group. The findings indicated that in the high

TIIC group, there was an upregulation of GOBP_BLOOD_

V E S S E L _ M O R P H O G E N E S I S , G O B P _ T U B E _

MORPHOGENESIS, GOBP_REGULATION_OF_PROTEIN_

MODIFICATION_PROCESS, and GOBP_VASCULATURE_

DEVELOPMENT. In contrast, the low TIIC group exhibited

u p r e g u l a t i o n o f G O B P _ D E F E N S E _ R E S P ON S E ,

GOBP_IMMUNE_RESPONSE, GOBP_RESPONSE_TO_

CYTOKINE (noted twice), and GOBP_INFLAMMATORY_

RESPONSE (see Figure 4D).
3.5 TIIC signature is significantly correlated
with immune-related features

The TIMER algorithm for tumor immune estimation was

employed to assess six types of immune cells, whereas the Single

Cell Gene Set Enrichment Analysis (ssGSEA) method was used for

examining 28 different immune cell types. Furthermore, the

MCPcounter algorithm was utilized to evaluate 10 different

immune cell types, while the ESTIMATE algorithm was applied

to estimate the number of immune infiltrating cells found within

tumors. As the TIIC score rises, we observed an increase in the

activity of the matrix score, TumorPurity, Fibroblasts, Activated

CD4 T cells, CD56dim NK cells, and others (p < 0.05, Figure 5A).

Additionally, we analyzed the TIIC score and compared the

variations in mRNA expression, methylation level, CNValue of
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FIGURE 2

Results of TIIC prognostic model construction. (A) Univariate Cox regression analysis of TIIC-RNA. (B) Reduce the dimension of prognostic genes by
CoxBoost algorithm. (C, D) Reduce the dimension of prognostic genes by LassoCox algorithm. (E, F) Dimension reduction of prognostic genes was carried
out by random survival forest algorithm. (G) Venn diagram shows intersecting survival prognostic genes identified by three ML algorithms. (H) Score using 20
ML algorithms, based on a comprehensive C-index situation of externally validated datasets. (I) Kaplan-Meier survival curves for TIIC signature scores for OS
in TCGA-CRC and other validation datasets. (J) Time-dependent ROC curves of the TIIC signature score for 1-5 years of OS in TCGA-CRC and other
validation datasets.
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Amp, and CNValue of Del for each immune regulatory gene across

the high and low TIIC groups (Figure 5B).
3.6 Validation of the predictive value of
TIIC signature score for immunotherapy
response in multiple datasets

Taking into account the predictive potential of the TIIC signature

score for the benefits of immunotherapy, we subsequently evaluated
Frontiers in Immunology 09
its efficacy using different immunotherapy datasets from various

cancer types. Within the IMvigor dataset, patients with urothelial

carcinoma who had elevated TIIC signature scores demonstrated

improved survival rates (Figure 6A). Individuals diagnosed with

ulcerative colitis (UC) who displayed a elevated tumor-infiltrating

immune cell (TIIC) signature score showed a more favorable reaction

to anti-PD-L1 immunotherapy (refer to Figure 6B). Moreover, an

examination of the Braun dataset indicated that renal cell carcinoma

(RCC) patients possessing a low TIIC signature score had improved

survival rates (see Figure 6E). In the context of RCC patients, those
FIGURE 3

Comparison of prognostic value between TIIC signature score and previous features. (A) Comparison of different clinical factors in the two TIIC signature
assessment groups. (B) TCGA-CRC and other validation datasets with TIIC feature scores and C-index bars for various clinical factors. (C–G) TCGA-CRC and
other validation datasets TIIC feature scores and C-index plots of 22 colorectal cancer models.
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exhibiting a high TIIC signature score demonstrated a superior

response to anti-PD-1 immunotherapy (illustrated in Figure 6F).

Furthermore, the Nathanson dataset suggested that patients with a

low TIIC signature score also realized better survival outcomes

(shown in Figure 6I). Patients presenting with a low TIIC signature

score were observed to have a superior response to immunotherapy

(as depicted in Figure 6J). In addition, the GSE78220 dataset revealed

that individuals presenting with low TIIC signature scores had

enhanced survival rates (as illustrated in Figure 6K) and exhibited a

more positive response to immunotherapy (as indicated in

Figure 6L). Moreover, patients who had high TIIC signature scores

in the GSE179351 (COAD and PAAD) datasets (Figure 6C),

GSE35640 (Figure 6D), GSE91061 (Figure 6G), GSE103668
Frontiers in Immunology 10
(Figure 6H), GSE165252 (Figure 6N), and GSE126044 (Figure 6M)

demonstrated a favorable immunotherapeutic response The TIDE

algorithm indicated that within the TCGA dataset, the percentage of

patients who responded was reduced in the group with a lower TIIC

signature score (see Figure 6O).
3.7 Prediction of metabolic features
associated with TIIC signature scores

To investigate the comprehensive metabolic traits in the two

groups identified by the TIIC signature score, a Gene Set Variation

Analysis (GSVA) was performed on the metabolic pathways
FIGURE 4

Biological characteristics of TIIC signature score in TCGA dataset. (A) GSVA analysis based on MsigDB describes the biological properties of the two
TIIC feature assessment groups. (B) t-SNE plots for GO and KEGG describe the differences in path activity between the two TIIC signature rating
groups. (C) Enrichment analysis of differentially expressed genes between groups with high TIIC rating based on Metascape. (D) GSEA result graphs
of GO and KEGG for groups with high TIIC rating and groups with low TIIC rating.
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documented in the KEGG database. Furthermore, a notable

correlation was found between the TIIC signature scores and

various metabolic pathways (Figure 7A). Interestingly, the group

with a low TIIC signature score exhibited significantly heightened

activation of both fatty acid elongation and degradation processes.

Conversely, the high TIIC signature score group demonstrated

notably greater activation of Arachidonic acid metabolism and

Glycerophospholipid metabolism (refer to Figure 7B).

Furthermore, there was a negative correlation between the TIIC

signature score and metabolic pathways including fatty acid

degradation and caffeine metabolism, while a positive correlation

with glycerophospholipid metabolism and phenylalanine

metabolism was observed (p < 0.01, see Figure 7C).
3.8 SNV mutation difference analysis and
CNV difference analysis

Variations in the frequencies of chromosomal changes were

observed between the two categories of TIIC signature scores

(Figure 8A). The waterfall plot represents the modifications in the

top 30 genes within these two risk categories. Clearly, APC (73.2%),

TP53 (60%), and TTN (46.3%) show higher rates of mutation

(Figure 8B). The cohort displaying a high score for the TIIC

signature showed heightened chromosomal instability, as evidenced
Frontiers in Immunology 11
by FGA, FGG, and FGL. Significant statistical differences were noted

in FGA and FGG, while FGL did not reveal any remarkable

alterations (Figure 8C). The difference in CNV mutation on

chromosome 7 was pronounced between the two groups (Figure 8D).
4 Discussion

CRC is one of the leading contributors to cancer-related deaths

worldwide, causing approximately 1.2 million new cases and close

to 600,000 deaths each year (39). Its occurrence is associated with

factors such as age, genetics, chronic intestinal inflammation,

unhealthy lifestyle and diet (40). CRC not only threatens health,

but also brings a heavy economic burden. Treatment typically

involves a combination of surgery, chemotherapy, radiotherapy,

and targeted therapy. However, despite ongoing improvements in

treatment technology, the five-year survival rate for advanced CRC

continues to be low. The uncertainty of treatment effects and the

limitations of options pose challenges to both doctors and patients.

The current challenges facing CRC treatment include improving

efficacy, reducing side effects and achieving personalized medicine.

Insufficient understanding of CRC biomarkers hinders the selection

of precise treatment pathways. In addition, the complex tumor

microenvironment of CRC makes it difficult to overcome cell

resistance and immune escape (41).
FIGURE 5

Immunological characteristics of TIIC signature score in TCGA dataset. (A) Correlation between feature scores and immunoinfiltrating cells. (B)
Differences in mRNA expression, methylation degree, CNValue of Amp and CNvalue of Del between immunoregulatory genes in high and low
TIIC groups.
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FIGURE 6

Prediction of immunotherapy response by TIIC characteristic score. (A) Kaplan-Meier survival curve for TIIC signature scores of OS in IMvigor
dataset. (B) Association between TIIC feature scores and immunotherapy response in the Vigor dataset. (C) Association between TIIC signature
scores and immunotherapy responses in the GSE179351 dataset. (D) TIIC signature score and immunotherapy response in the GSE35640 dataset. (E)
Kaplan-Meier survival curve for TIIC signature scores of OS in Braun dataset. (F) Association between TIIC signature scores and immunotherapy
response in the Braun dataset. (G) TIIC signature score and immunotherapy response in the GSE91061 dataset. (H) TIIC signature score and
immunotherapy response in the GSE103668 dataset. (I) Kaplan-Meier survival curve for TIIC signature scores of OS in the Nathanson dataset. (J)
Association between TIIC signature scores and immunotherapy response in the Nathanson dataset. (K) Kaplan-Meier survival curve for TIIC signature
scores of OS in GSE78220 dataset. (L) Association between TIIC signature scores and immunotherapy response in the GSE78220 dataset. (M) TIIC
signature score and immunotherapy response in the GSE126044 dataset. (N) TIIC signature score and immunotherapy response in the GSE165252
dataset. (O) The TIDE algorithm predicted the association between TIIC feature scores and immunotherapy responses in the TCGA dataset.
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In recent years, researchers have begun to focus on the role of

TIIC in CRC. The TIIC signature score serves as a novel instrument

that utilizes single-cell RNA sequencing data to measure the

presence and activity levels of these cells (42). This score helps

identify patients who may respond to immunotherapy and provides

a new perspective for understanding CRC. TIIC signature score has

been applied in multiple clinical studies, especially in predicting the

effect of immunotherapy, showing promise, such as in the study of

breast cancer, lung cancer and other solid tumors, it can effectively

distinguish patients with different prognoses (43).

In this study, we successfully identified CRC-related RNAs (TIIC-

RNAs) specifically expressed in the immune microenvironment at the

single-cell level using scRNA-seq datasets. We screened seven immune

cells from CRC cells and nine microenvironment cells for analysis, and

finally identified 137 of the most valuable TIIC-RNAs. These RNAs not

only serve as possible biomarkers for diagnosing CRC patients but may

also play a role in the mechanisms behind CRC progression, offering

fresh insights for a deeper comprehension of the tumor immune

microenvironment. Subsequently, based on the TIIC-RNAs identified

above, we constructed a prognostic model that has excellent predictive

ability for OS in CRC patients. We screened through multiple machine

learning algorithms, identified the most reliable model and validated it.
Frontiers in Immunology 13
The ROC curve demonstrated its excellent sensitivity and specificity,

especially in predicting 1 to 5-year survival. The findings indicate that

the TIIC signature score may serve as an independent prognostic

marker and could potentially surpass the conventional clinical staging

system, thus offering robust evidence for personalized medicine. In

addition, our study showed that the TIIC signature score can not only

more accurately reflect the severity of CRC patients, but also effectively

distinguish patients with different risk levels. Compared with other

published prognostic models, our model showed significant

superiority, suggesting that our model may become an important

part of future clinical practice. The noticeable difference in survival

rates among the high-risk and low-risk groups emphasizes the

importance of the TIIC signature score as an indicator of prognosis.

This discovery holds considerable importance in directing clinical

treatment choices and developing individualized treatment strategies.

To investigate the potential biological mechanisms, we additionally

examined the patterns of gene expression in groups characterized by

high and low TIIC signature scores. Our results demonstrated that the

cohort with a low TIIC signature score revealed an upregulation of

pathways related to immunity, while the cohort exhibiting a high TIIC

signature score displayed enhanced activation of BMP signaling

pathways, along with the regulation of growth factors and several
FIGURE 7

Metabolic characteristics of TIIC feature score in TCGA dataset. (A) The metabolic pathways of 11 metabolic classes in two TIIC characteristic
assessment groups were analyzed based on KEGG GSVA. (B) Differences in metabolic pathways between the two TIIC profile groups. (C) Correlation
between TIIC feature scores and KEGG-based GSVA analysis of metabolic pathways.
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additional pathways. This disparity may arise from the enhanced ability

of tumor cells in the high TIIC signature score group to evade immune

system surveillance, resulting in a poorer prognosis. At the same time,

the GSEA results also revealed different gene expression patterns

between the two groups, especially in vascular morphogenesis,

tubular morphogenesis, and protein modification process regulation.

The study examined the ability of the TIIC signature score to predict

the effects of immunotherapy. Our results revealed a relationship

between the TIIC signature score and the effectiveness of

immunotherapy in different cancer types. Importantly, patients who

had higher TIIC signature scores seemed to show a better response to

anti-PD-1/PD-L1 treatments, providing a conceptual basis for

identifying appropriate candidates for immunotherapy. Furthermore,

analysis using the TIDE algorithm corroborated these findings,

suggesting that diminished TIIC signature scores could correspond

to reduced rates of immunotherapy response, which holds significant

implications for refining immunotherapy strategies. By conducting

GSVA analysis on metabolic pathways within the KEGG database, we

discovered a notable correlation between TIIC signature scores and

specific metabolic processes. Notably, pathways including fatty acid

elongation, degradation, and arachidonic acid metabolism exhibited

increased activity in the group with higher TIIC signature scores. These

findings suggest that metabolic reprogramming may be an important

aspect of CRC development, and also propose a new direction: the

possibility of improving treatment effects by regulating specific
Frontiers in Immunology 14
metabolic pathways. This provides new ideas for future drug

development and treatment methods. Although our GSVA analysis

revealed significant correlations between the TIIC signature score and

several key metabolic pathways (such as fatty acid elongation,

degradation, arachidonic acid metabolism, and glycerophospholipid

metabolism), it is important to note that these findings are currently

hypothesis-generating. Further experimental investigations, both in

vitro and in vivo, are necessary to validate the causal relationships

and elucidate the underlying molecular mechanisms linking

TIIC-related immune responses with metabolic reprogramming in

colorectal cancer.

In conclusion, the assessment of SNV mutations in conjunction

with variations in CNV revealed the genetic diversity that exists

between the two groups defined by TIIC signature scores. Notably,

the detection of frequently mutated genes like APC, TP53, and TTN, in

addition to copy number alterations on chromosome 7, indicates that

these variations could significantly contribute to the onset and

progression of CRC. Moreover, the heightened chromosomal

instability noted in the group with a high TIIC signature score

indicates a higher degree of genomic instability in these patients,

potentially elucidating the factors contributing to their poor prognosis.

This study also has some limitations. First, this study mainly

relies on data from public databases for analysis, which may not

fully represent the true situation of all CRC patients, and lacks direct

verification of patients in specific populations or regions. Second,
FIGURE 8

SNV mutation difference analysis and CNV difference analysis results. (A) Chromosome amplification and deletion based on GISTIC 2.0 in two TIIC
signature assessment groups. (B) Genomic mutation landscape in two TIIC signature assessment groups. (C) Proportion of genome changes, portion
of genome acquired, and proportion of genome loss in both TIIC signature assessment groups. (D) Distribution of CNV mutations in chr7 across two
TIIC signature assessment groups.
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although we verified the prognostic value of the model through

multiple machine learning algorithms, the actual clinical

application effect of the model still needs to be further confirmed

through clinical trials. Furthermore, the precise molecular pathways

linking TIIC signature scores with metabolic traits and responses to

immunotherapy have yet to be completely clarified, necessitating

additional experimental research in the future to corroborate these

results. Finally, due to the limitations of sample size and data type,

our analysis may not fully cover all relevant variables, so the impact

of these factors should be carefully considered when interpreting

the results.

In summary, this study not only deepened the understanding of

CRC and its immune microenvironment, but also developed a

prognostic model with potential clinical application value. More

importantly, our work provides multiple new research directions for

future research, including but not limited to exploring new

therapeutic targets, optimizing immunotherapy strategies, and

understanding tumor metabolic remodeling. Our research results

are expected to promote progress in the diagnosis and treatment of

CRC to improve the quality of life and survival rate of patients.
5 Conclusion

This research highlights the promise of the TIIC feature score for

forecasting the prognosis of patients with CRC and suggests its utility in

predicting immunotherapy outcomes while providing greater insights

into the intricate nature of the tumor microenvironment. Subsequent

studies should focus on evaluating the potential of TIIC feature score in

clinical applications and verifying its applicability in diverse

populations and different treatment scenarios.
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