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A B S T R A C T   

Global cognitive performance plays an important role in the diagnosis of HIV-associated neurocognitive disorders 
(HAND), yet to date, there is no simple way to measure global cognitive performance in people with HIV (PWH). 
Here, we performed connectome-based predictive modeling (CPM) to pursue a neural biomarker of global 
cognitive performance in PWH based on whole-brain resting-state functional connectivity. We built a CPM model 
that successfully predicted individual differences in global cognitive performance in the training set of 67 PWH 
by using leave-one-out cross-validation. This model generalized to both 33 novel PWH in the testing set and a 
subset of 39 PWH who completed a follow-up visit two years later. Furthermore, network strengths identified by 
the CPM model were significantly different between PWH with HAND and without HAND. Together, these results 
demonstrate that whole-brain functional network strengths could serve as a potential neural biomarker of global 
cognitive performance in PWH.   

1. Introduction 

Combination antiretroviral therapy (cART) is widely available, 
however, HIV-associated neurocognitive disorders (HAND) remain 
highly prevalent among people with HIV (PWH) (Heaton et al., 2010; 
Sacktor et al., 2016). Compared to the pre-cART era, antiretroviral 
treatment has significantly reduced the prevalence of the most severe 
form of HAND, HIV-associated dementia (HAD), but the prevalence of 
mild forms of HAND has remained largely unchanged or even increased 
(Heaton et al., 2011). Although in general PWH with HAND may 
experience milder symptoms, they are still facing an increased risk of 
cART non-adherence, virologic failure, and mortality (Sacktor et al., 
2016). Given that age is a major risk factor for HAND and that the HIV 
population is aging rapidly (Sacktor et al., 2016), it is important to better 
understand the mechanism and the progression of HAND. 

Global deficit score (GDS) is a widely-used method for summarizing 
the level of cognitive impairment in PWH (Carey et al., 2004). Specif-
ically, it considers both the number of impaired domains as well as the 
severity of deficits in a comprehensive neuropsychological (NP) battery 

across seven different cognitive domains (e.g., learning, memory, pro-
cessing speed, etc.). An individual test score from each cognitive domain 
(i.e., T-score) is first converted to a deficit score, then averaged across all 
domains to obtain a GDS. Although GDS has been shown to be sensitive 
to mild HIV-associated cognitive impairment in PWH (Carey et al., 
2004), it faces three empirical challenges. First, it takes hours to 
administer and score a comprehensive seven-domain NP battery, which 
generates a GDS. Second, due to the known practice effects in NP testing, 
it is hard to track changes in GDS over a short retest interval (Duff, 
2014), i.e., during the course of a clinical trial study. Third, differences 
in language, educational background, and culture are barriers for testing 
in diverse populations. 

These practical challenges could be greatly ameliorated by a poten-
tial neural biomarker of global cognitive performance in PWH, which 
can further track changes in global cognitive performance for early 
HAND intervention. We hypothesized that a well-established con-
nectome-based predictive modeling (CPM) (Finn et al., 2015; Rosenberg 
et al., 2016; Shen et al., 2017) can be used to identify network con-
nections (i.e., functional connectivity, FC) associated with global mean 
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T-score (GMT), an index of global cognitive performance. GMT was 
chosen over GDS as it is more suitable for predictive modeling and these 
two scores are highly correlated, see methods for details. CPM is a fully 
cross-validated, data-driven machine learning approach that has been 
applied to either resting-state FC or FC during a sustained attention task 
to derive a model that predicts sustained attentional performance in 
novel participants (Rosenberg et al., 2016). This sustained attention 
connectome-based predictive model has been generalized to predict 
severity of attention-deficit/hyperactivity disorder (ADHD) symptoms 
in children (Rosenberg et al., 2016), recall in a reading task (Jangraw 
et al., 2018), and inhibitory control in aging adults (Fountain-Zaragoza 
et al., 2019). 

CPM has been shown to have great potential in predicting cognitive 
abilities in healthy adults (Finn et al., 2015; Jiang et al., 2020; Rosen-
berg et al., 2016). However, it has not been applied to the field of PWH 
yet. In this study, we apply CPM to identify network connections that 
can predict global cognitive performance in a training set of 67 PWH 
using leave-one-out cross-validation (LOOCV), then we test whether the 
trained CPM model could be generalized to a testing set of 33 new PWH, 
a 24-month follow-up visit consisting of 39 PWH, and 40 
demographically-comparable controls. Last, we investigate the impact 
of HAND status on network connections identified by CPM in PWH. 

2. Methods and materials 

2.1. Participants 

In total, 104 PWH and 40 demographically-comparable HIV-nega-
tive controls were recruited from the greater Washington, D.C. metro-
politan area. Participants were screened via telephone interview, 
followed by an onsite screening visit to ensure the following inclusion/ 
exclusion criteria were met: aged from 41 to 70 years old; able to speak 
and understand English; had more than seven years of education; had no 
MRI contraindications such as claustrophobia or metal implants; no 
illicit substance use within the past three months (mandatory urine 
toxicology tests was performed during each visit); and no other major 
neurological and psychiatric disorders (i.e., stroke, loss of consciousness 
for more than 30 min, or other HIV-unrelated neurological disorders). 
The study protocol was approved by Georgetown University’s Institu-
tional Review Board and written informed consent from each participant 
was obtained prior to enrollment. Four PWH were excluded due to 
visible brain anomalies (n = 2) or having GMT scores more than three 
standard deviations away from the group mean (n = 2), see quality 
control section in Supplemental Materials. Hence, the final dataset re-
ported here includes a total of 100 PWH and 40 demographically- 
comparable controls. HIV disease-related information for the 100 
PWH included: current CD4 count 679.5, 482  (median, interquartile 
range (IQR)); CD4 nadir 194.5, 307 (median, IQR); estimated HIV dis-
ease duration 26.1, 9.2 years (median, IQR); 82.4% of PWH were virally 
suppressed (lower than 20 copies/ml); 98% of PWH were on stable 
cART, 25% of PWH were diagnosed with HAND (see Table S1 for de-
tails). Among the 100 PWH, 39 participated in a follow-up visit (Visit 2) 
about two years after their first visit (Visit 1), and the data from Visit 2 
were used as one of the validating samples. The protocols of Visits 1 and 
2 were the same. Controls only had Visit 1 data. 

2.2. Neuropsychological testing 

To assess neurocognitive function across seven domains, i.e., infor-
mation processing speed, verbal fluency, learning, memory, executive 
function, working memory, and motor abilities, that are known to be 
affected in PWH, the following neuropsychological tests were adminis-
tered (Table S1): Brief Visuospatial Memory Test-Revised (BVMT-R) 
(Benedict et al., 1996); WAIS-III Digit Symbol Coding Test, Letter- 
Number Sequencing, and Symbol Search Subtest (Heaton et al., 2003; 
Wechsler, 1997); Grooved Pegboard Test (Heaton et al., 1991; Kløve, 

1963); Hopkins Verbal Learning Test-Revised (HVLT-R) (Benedict et al., 
1998); Controlled Oral Word Association Test (COWAT) (Benton et al., 
1983; Gladsjo et al., 1999); Trail Making Test A and B (Heaton et al., 
1991); Wide Range Achievement Test (WRAT) 4 Reading (Wilkerson 
and Robertson, 2006); Stroop Task (Golden and Freshwater, 1978); 
Wisconsin Card Sorting Test-64 (WCST) (Kongs et al., 2000). 

For each participant, a T-score for each cognitive domain was 
calculated separately using a normative database (Blackstone et al., 
2012; Carey et al., 2004), then a GMT, a global cognitive measure, was 
obtained by averaging the T-scores from each of the seven domains. In 
addition, a GDS was obtained (Blackstone et al., 2012; Carey et al., 
2004) and the Lawton and Brody Activities of Daily Living (ADL, 1969) 
index was computed to diagnose HAND using the standard Frascati 
guideline (Antinori et al., 2007). GMT but not GDS was used in this study 
for model training and testing because PWH with normal cognitive 
performance would have the same value (0) in GDS even though their 
GMTs are different (this would lead to much smaller variance, which is 
not desirable for predictive modeling). The GMT in 100 PWH ranged 
from 36.6 to 60.5, and was normally distributed. 

2.3. MRI acquisition and preprocessing 

Structural MRI and resting-state functional MRI (fMRI) were ac-
quired at the Center for Functional and Molecular Imaging at George-
town University Medical Center using a 3-Tesla Siemens Magnetom Trio 
with a 12-channel head coil or Prisma-Fit scanner with a 20-channel 
head coil. The acquisition parameters were exactly the same between 
the two scanners. The potential effects of data acquisition from different 
scanners were controlled using the ComBat method (Johnson et al., 
2007; Yu et al., 2018). Yu et al. 2018 demonstrated that ComBat 
removed site effects and enhanced the power to find the age effect in 
functional connectivity. In addition, previous work from our lab found 
minimal scanner effects on functional connectivity using two different 
methods (ComBat or adding the scanner as a covariate) (Yang et al., 
2021). 

High-resolution T1-weighted images were acquired with 3D- 
MPRAGE using the following parameters: 1 × 1 × 1 mm3 resolution, 
TR/TE = 1900/2.52 ms, flip angle = 9◦, 160 contiguous 1 mm sagittal 
slices, FoV = 256x256 matrix. One run of resting state fMRI images was 
acquired with an echo-planar sequence using the following parameters: 
flip angle = 90◦, TR/TE = 2040/29 ms, FoV = 64 × 64 matrix, 35 
interleaved axial slices (4 mm thick, no gap; 3.2 × 3.2 mm2 in plane 
resolution). There were 264 acquisitions, and the first 5 acquisitions 
were discarded from analysis to allow for magnetization stabilization. 

The Computational Anatomy Toolbox (CAT, version 12.6) (www. 
neuro.uni-jena.de/cat/) and the CONN functional connectivity toolbox 
(https://www.nitrc.org/projects/conn/) were used for preprocessing 
and analyzing structural and functional MRI data, respectively. Default 
preprocessing procedures in the CAT and CONN software were applied. 
Standard structural MRI preprocessing in CAT consisted of correction for 
bias-field inhomogeneities, denoising, skull-stripping, segmentation, 
and corrections for partial volume estimation. Resting-state functional 
images were first preprocessed in SPM12 (https://www.fil.ion.ucl.ac. 
uk/spm/). The preprocessing of functional MRI data included slice- 
timing correction, realignment, coregistration to structural volume, 
normalization based on structural normalization parameters obtained 
from CAT12, outlier identification, and smoothing with an 8 mm 
FWHM. Normalized images were then processed following the standard 
CONN pipeline (Whitfield-Gabrieli and Nieto-Castañón, 2012). The 
temporal processing in CONN included movement regression, removal 
of signals from CSF and white matter, band passing [0.01 0.1] Hz, 
detrending, and a structural aCompCor strategy. Additional quality 
control can be found in Supplemental Materials. 
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2.4. CPM training and prediction 

We first divided 100 PWH into a training set (67 PWH) and a testing 
set (33 PWH) by using stratified sampling based on race and sex. The 
purpose of the stratified sampling was to make sure the demographics of 
these two sets were comparable, as there is considerable population 
heterogeneity in PWH (Marty et al., 2018; Rubin et al., 2019). For those 
39 PWH who completed Visit 2, 24 of their Visit 1 data fell into the 
training set, while 15 fell into the testing set. 

Prior to applying the CPM methods (Shen et al., 2017), we first 
defined network nodes using a 268-node functional brain atlas (shen268 
atlas) (Shen et al., 2013). Next, for each participant, pairwise Pearson 
correlation coefficients of averaged BOLD signals between every two 
nodes were calculated and Fisher-transformed. This resulted in a 268 ×
268 symmetric connection matrix. To assess the relevance of connec-
tions to GMT, the following analysis pipeline was performed. First, 
partial correlation between each connection and GMT was performed 
across participants in the training set, controlling for demographics (age, 
education, sex, and race). The resulting r values were statistically 
thresholded at different p values, e.g. from 0.01 to 0.001 with 0.001 
increments, and from 0.001 to 0.0001 with 0.0001 increments. Those 
thresholded r values were further separated into a positive tail 
(connection strength positively correlated with GMT) and a negative tail 
(connection strength negatively correlated with GMT). The threshold p 
< 0.0001 was chosen because it provided the best prediction perfor-
mance for left-out subjects (see next paragraph) in the training set 
(please note this threshold was chosen solely on the training set and was 
determined before applying the model to the three validation samples). 
Positive network strength was used to characterize each participant’s 
summed connections in the positive tail (i.e., positive network strength 
was calculated by adding up all the Fisher-transferred correlation co-
efficients z values of FCs that were significantly positively correlated 
with GMT). Likewise, negative network strength was calculated by 
summing the z values of the connections in the negative tail (i.e., 
negative network strength was the sum of all the z values of FCs that 
were significantly negatively correlated with GMT). 

To ensure the internal validity of this procedure, a LOOCV method 
was applied. During each loop, predictive network strengths were 
defined and separated into positive and negative networks using data 
from 66 PWH (out of 67 PWH in the training set). Next, simple linear 
regression models (see models 1–6 below) were constructed using 
network strengths to predict GMT. Last, these models were used to 
predict the one left-out patient’s GMT based on his or her own network 
strengths (Model 1–3) or network strengths plus demographics (Models 
4–6). There were a total of 67 loops, and each of the 67 PWH was left out 
once. Given that GMT is corrected for demographics while network 
strengths are not, including demographics in the linear model might 
enhance the prediction of GMT (Model 4–6). 

Model 1. predictedGMT = positivenetworkstrength + constant 
Model 2. predictedGMT = negativenetworkstrength + constant 
Model 3. predictedGMT = positivenetworkstrength +

negativenetworkstrength + constant 
Model 4. predictedGMT = positivenetworkstrength + demographics +

constant 
Model 5. predictedGMT = negativenetworkstrength + demographics +

constant 
Model 6. predictedGMT = positivenetworkstrength +

negativenetworkstrength + demographics + constant 

Pearson correlations between the observed and the predicted GMT of 
all 67 PWH were used to evaluate predictive power. Statistical signifi-
cance of these correlations was achieved by permutation testing with 
5000 randomly shuffled samples, i.e., GMT values and demographics 
were shuffled across PWH 5000 times and then the whole CPM pro-
cedure was re-run based on those shuffled samples to obtain a null 

distribution of correlation coefficients between observed and predicted 
GMT values. 

To test the generalization of the CPM approach, we first identified 
connections that appeared more than 53 times (80%) in the 67 loops to 
form positive and negative networks. These connections are depicted in 
Fig. 3. Then the six regression models were reconstructed in the whole 
training set (67 PWH) before being applied to predict GMT of three data 
samples: 40 controls (Visit 1), 33 PWH in the testing set (Visit 1), and the 
Visit 2 data of 39 PWH. The data in these three samples were not used to 
train the models nor to select parameters. Pearson correlations between 
observed and predicted GMT were used to assess predictive power for 
each of the three samples separately. Statistical significance of these 
correlations was achieved by permutation testing with 5000 randomly 
shuffled samples of the training set (to obtain the null distribution of r 
values in testing sets, Visit 2, and controls, separately). See Fig. 1 for the 
flowchart of CPM training, prediction, and validation. 

2.5. Statistical analyses 

The statistical analyses were conducted in SPSS 25.0 (Chicago, IL), 
and MATLAB 2018b (Math Works, Natick, MA). All statistical analyses 
were two-tailed, and controlled for age, education (number of years), 
sex, and race. 

Contingency χ2 tests and ANCOVA were used to examine group 
differences in demographics across four samples (see Table 1). As our 
sample of participants was predominantly African American (AA), race 
was defined as a dichotomous variable: AA (1), non-AA (0). 

We also examined the relationship between network strengths 
(selected using the training set) and GDS using Visit 1 data from 100 
PWH, after adjusting for age, education, sex, and race. ANCOVA was 
used to assess the effect of HAND diagnoses on positive and negative 
network strength with age, education, sex, and race as nuisance 
covariates. 

3. Results 

There were no significant differences in demographics, GDS, and 
GMT across the four samples (Table 1). Among PWH, 25 out of 100 
(25%) were diagnosed with HAND. Eleven controls had a GDS higher 

Fig. 1. Flowchart of using a CPM model to predict GMT from whole-brain FC. 
Here we employed a cross-validated prediction framework to estimate GMT 
using whole-brain FC at rest. Network connections (FC patterns) identified from 
the training set were tested on the testing set, data from visit 2, and the control 
sample. PWH: people with HIV; LOOCV: leave-one-out cross-validation; CPM: 
connectome-based predictive modeling; FC: functional connectivity; GMT: 
global mean T-score. 
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than 0.5 (7 of them had >= 1 GDS, and removing these 7 controls did 
not change the study conclusion). These controls were not excluded as 
they met all the inclusion criteria mentioned in the Method and Mate-
rials. Detailed information about each sample can be found in Table S1. 

3.1. CPM results from the training set (Visit 1 of PWH, n = 67) 

By using the LOOCV method, all six regression models performed 
reasonably well in predicting GMT in unseen PWH and reached statis-
tical significance with 5000 permutation tests (permutation p < 0.05, 

see Fig. 2). The best linear regression model was the one that took 
positive network strength, negative network strength, and de-
mographics into account (Model 6). 

Six positive connections and one negative connection appeared more 
than 53 times (80%) in the 67 LOOCV loops (Fig. 3) and were selected 
for validation analysis. Detailed information about these seven con-
nections can be found in Table S2. Briefly, the positive network included 
6 FCs: FCs between the right cerebellum (cerebellum lobe 8) and the left 
posterior insula, the right posterior insula, the right putamen, the right 
postcentral gyrus; and FCs between the right postcentral gyrus and the 
right fusiform gyrus, the left parahippocampal gyrus. The negative 
network only included 1 FC between the right orbital prefrontal and the 
left middle temporal lobe. 

3.2. CPM validation with the testing set (Visit 1 of PWH, n = 34), Visit 2 
(PWH, n = 39), and controls (Visit 1, n = 40) 

The six positive and one negative FCs in Fig. 3 were used to recon-
struct the six regression models using data from the entire training set (n 
= 67). Then the six models were used to predict GMT of three unseen 
data sets: the testing set, Visit 2 data from PWH, and controls. All results 
are listed in Table 2. The CPM model trained with demographics, posi-
tive and negative networks was able to predict GMT of the testing set as 
well as Visit 2 data from the 39 PWH (permutation p < 0.05, see Table 2, 
Fig. S1, and Fig. S2. Results stayed the same when adding disease 
duration as a covariate, see Table S3). In contrast, the model could not 
be generalized to predict GMT of demographically-comparable controls 
(at least p greater than 0.4, see Table 2), suggesting that the model was 
specific to PWH. An additional receiver operating characteristic (ROC) 
curve analysis was performed to identify HAND diagnoses in the testing 

Table 1 
Demographics, GDS, and GMT of the training set, testing set, Visit 2 (PWH), and 
controls.   

Training 
set 

Testing 
set 

Visit 2 Controls p- 
value 

Age 56.6 (7.1) 56.2 (5.3) 58.1 
(6.7) 

54.6 (7.1) n.s.1 

Education 14.5 (3.1) 13.9 (2.9) 13.7 
(3.5) 

14.6 (2.7) n.s. 

Sex (Female%) 23.9% 24.2% 23.1% 35.0% n.s. 
Race (AA2%) 64.2% 63.6% 82.1% 60.0% n.s. 
Global Mean T 48.7 (5.9) 48.9 (5.3) 49.7 

(6.9) 
49.57 
(7.54) 

n.s. 

GDS3 0.3 (0.3) 0.3 (0.3) 0.3 
(0.4) 

0.39 
(0.47) 

n.s. 

Num of 
Participants 

67 33 39 40  

Note: data depicted as mean (standard deviation). 1. n.s. a non-significant dif-
ference was found across groups; 2. AA, denotes African Americans; 3. GDS, 
denotes global deficit score. PWH: People with HIV. 

Fig. 2. Correlations between GMT calculated from NP tests and GMT predicted by the six different regression models (see Methods). Network models were iteratively 
trained on resting-state data from 66 PWH and tested on resting-state data from the left-out PWH. POS: positive network strength; NEG: negative network strength; 
DEM: demographics (age, education, sex, and race); GMT: global mean T score; pp: the p-value based on a 5000 permutation test. 
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set, we found that by using predicted GMT in model 6, 0.6923 sensitivity 
and 0.7133 specificity were achieved (see Fig. S3). 

3.3. Network strengths, GDS, and HAND diagnosis 

As GDS and GMT were highly correlated, the network strengths 
should be correlated with GDS as well. Indeed, although networks were 
defined only on the training set of 67 PWH, both positive and negative 
network strengths strongly correlated with GDS in the 100 PWH 

(consisting of both the training set and testing set, see Fig. 4). The cor-
relation was stronger with the positive than the negative network 
strength. 

In addition, ANCOVA analysis was conducted to test the difference of 
positive/negative network strength across three groups: PWH with 
HAND diagnoses, PWH without HAND diagnoses (non-HAND), and 
controls, with age, education, sex, and race as covariates. For positive 
network strength, significant group differences were found (F(1,133) =
10.33, p < 0.0001). Post-hoc analyses revealed significant differences 

Fig. 3. Network definitions. Positive network (red lines) includes six FCs. Negative network (blue line) includes one FC. R: right hemisphere; L: left hemisphere. See 
Table S2 for the location of each node. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Model prediction in four samples.  

Regression models Training set Testing set Visit 2 Controls 

r pp r pp r pp r p 

Model 1  0.350  0.047*  0.166  0.112  0.318  0.037* − 0.137  0.400 
Model 2  0.382  0.040*  0.024  0.228  0.276  0.051 0.006  0.972 
Model 3  0.464  0.012*  0.187  0.167  0.359  0.032* − 0.111  0.497 
Model 4  0.449  0.013*  0.303  0.079  0.296  0.043* 0.079  0.626 
Model 5  0.461  0.010*  0.256  0.126  0.266  0.081 0.105  0.520 
Model 6  0.578  0.002**  0.359  0.033*  0.347  0.018* 0.072  0.661 

Note: pp : the p-value based on a 5000 permutation test. p: the p values for predicting controls’ GMT were based on correlation analysis as the permutation test was not 
conducted due to poor prediction. * denotes p < 0.05, ** denotes p < 0.01. 

Fig. 4. Correlation between GDS and adjusted positive/negative network strength (adjusted for age, education, sex, and race). Data points come from a combination 
of the training set and the testing set during Visit 1. GDS: global deficit score; PWH, people with HIV. 
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between PWH with HAND and PWH without HAND (F(1,94) = 26.1, p <
5 × 10− 6, see Fig. 5, left panel), and between PWH with HAND and 
controls (F(1,59) = 4.8, p < 0.05, see Fig. 5, left panel), but not between 
PWH without HAND and controls (p greater than 0.1). For negative 
network strength, significant group differences were found (F(1,133) =
4.26, p < 0.05). Post-hoc analyses demonstrated a significant difference 
between PWH with HAND and PWH without HAND (F(1,94) = 9.5, p <
0.01, see Fig. 5 right panel), but not between controls and either PWH 
group (all p values greater than 0.1). 

4. Discussion 

In this study, we successfully applied the connectome-based machine 
learning approach, CPM, to predict global cognitive performance 
measured by GMT in PWH using network connections at rest. The CPM 
model trained with 67 PWH was able to generalize to 33 novel PWH and 
a follow-up visit from 39 PWH, but not to demographically-comparable 
controls. In addition, network strengths were significantly different 
between PWH with HAND and without HAND. Taken together, network 
strengths may serve as a neural biomarker for global cognitive perfor-
mance (measured by GMT) in PWH and complementary evidence of 
global cognitive deficit (defined by GDS), although further replication 
and refinement are needed before application in clinical settings. 

CPM has been shown to be a valid and reliable approach to investi-
gate brain-behavior relationships (Beaty et al., 2018; Finn et al., 2015; 
Jiang et al., 2020; Rosenberg et al., 2016; Shen et al., 2017). Motivated 
and supported by the emerging evidence that individual differences in 
functional connectivity patterns are reliable across time (Noble et al., 
2019), CPM and similar data-driven approaches have made significant 
progress in elucidating functional connection-based biomarkers of 
complex cognitive abilities, including fluid intelligence (Finn et al., 
2015), sustained attention (Rosenberg et al., 2016), intelligence quo-
tient (Jiang et al., 2020), and creativity (Beaty et al., 2018). Moreover, a 
recent study has further shown that resting-state FC patterns are capable 
of predicting cognitive impairment in an older population (Lin et al., 
2018), demonstrating that CPM has a lot of potential in predicting 

cognitive abilities in clinical settings. To our knowledge, the current 
study is the first study that has applied CPM to the population of PWH. 

The current model, which generalizes across two samples, represents 
an important first step towards finding a neural biomarker of global 
cognitive performance in PWH. In particular, this CPM model performed 
reasonably well when applied to PWH from the second visit two years 
after the first visit, suggesting that it can be a useful tool to track global 
cognitive function over time. It is especially useful for multiple tests 
under short retest intervals, which is hampered by practice effects when 
using the GDS approach. 

Although only a few connections (6 in the positive network and 1 in 
the negative network) have been identified by the model, it does not 
imply that these 7 functional connections form the essential neural basis 
of global cognitive performance in PWH. Rather, it may reflect necessary 
subprocesses that are vital for brain function in PWH but not in controls, 
or degree of neural injury that is specific to PWH. This might explain 
why CPM models trained with PWH were able to predict global cogni-
tive performance of unseen PWH but not demographically-comparable 
controls. Future studies are needed to test this hypothesis. 

Out of the connections identified by the CPM model, the right cer-
ebellum lobe 8 is the main node identified by CPM. In the past two 
decades, there has been growing evidence that the cerebellum is 
involved in nearly all the aspects of human behaviors, apart from its 
well-established role in motor function (Guell and Schmahmann, 2020; 
King et al., 2019; Schmahmann, 2019; Schmahmann et al., 2019; 
Schmahmann and Sherman, 1998; Stoodley et al., 2012; Stoodley and 
Schmahmann, 2009). Specifically, while sensorimotor processing is 
predominantly located in the cerebellar anterior lobe, the posterior lobe 
plays an important role in cognitive and emotional processing 
(Schmahmann, 2019). One exception to this functional division along 
the anterior-posterior axis is the cerebellar lobe 8, which is the second 
representation of motor functions but is also involved in various 
cognitive functions (Guell and Schmahmann, 2020; Schmahmann, 
2019; Schmahmann et al., 2019). For example, a recent study demon-
strated a functional map of the cerebellum using a comprehensive, 
multi-domain task battery during fMRI (King et al., 2019). Based on this 

Fig. 5. Positive and negative network strength across 3 groups (HAND, non-HAND, and controls). PWH with HAND diagnoses showed significantly lower positive 
network strength compared to both controls (p < 0.05) and non-HAND PWH (p < 5 × 10− 6) and significantly higher negative network strength compared to non- 
HAND PWH (p < 0.01). In each box plot, the central mark (red line) indicates the median, the bottom and top edges of the box are the 25th and 75th percentiles of 
the samples, respectively, and the whiskers extend to the most extreme data points not considered outliers. Outliers were included in analyses. The outlier par-
ticipants (depicted as red + ) were identified using the isoutlier function in MATLAB. * denotes p < 0.05; ** denotes p < 0.01; *** denotes p < 5 × 10− 6. PWH, people 
with HIV; HAND, HIV-associated neurocognitive disorders. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

F.N. Yang et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 30 (2021) 102677

7

map, the cerebellar region identified by the CPM model in the current 
study (located in lobe 8, centered at 23.4, − 59.3, − 52.1, MNI co-
ordinates) is related to divided attention and motor planning, which are 
known to be affected in PWH (Marcotte et al., 2006; Moore et al., 2006) 
and are proposed to be key components of global cognitive performance. 
In addition, the cerebellum is relevant to health and diseases. For 
example, the cortico-cerebellar network has been shown to be involved 
in the aging process in the brain, and disruption to this network is 
related to cognitive impairment in healthy, elderly adults (Bernard et al., 
2013). Indeed, PWH with HAND in our study showed reduced cortico- 
cerebellar connections as compared to both PWH without HAND and 
demographically-comparable healthy controls. 

In addition to the cerebellum, CPM identified nodes such as bilateral 
insula, right putamen, and right post central gyrus as also part of the 
somatosensory network (Seitzman et al., 2020). That is, given their roles 
in sensorimotor processing, especially information processing speed, 
one of the bases of cognition (Salthouse, 1996), slow processing speed 
might partially account for cognitive abnormalities in PWH (Fellows 
et al., 2014). 

The negative network included a connection between the right 
orbital prefrontal cortex and the left middle temporal lobe. Given that 
PWH with HAND have higher negative network strength than PWH 
without HAND, it might reflect a compensatory mechanism that PWH 
with HAND need more brain regions to be involved in global cognition. 

In the present study, we found that the CPM model based on resting 
state FC could reliably predict global cognitive function (GMT) in PWH 
(Fig. 2) and differentiate PWH with HAND from PWH without HAND 
(Fig. S3), suggesting that alterations in spontaneous neural activity 
might be a useful predictor of cognitive performance and cognitive 
impairment in PWH. Our fMRI finding is in line with previous neuroHIV 
studies using magnetoencephalography (MEG) technique (Groff et al., 
2020; Lew et al., 2018; Spooner et al., 2020; Wiesman et al., 2018). For 
instance, Wiesman et al. (2018) found that the spontaneous neural ac-
tivity in the gamma band differentiated PWH from controls, whereas 
that in the alpha band differentiated PWH with HAND from controls and 
PWH without HAND. Given that similar predictions can be made across 
the present fMRI study and above-mentioned MEG studies, the findings 
using resting state fMRI techniques and the findings with MEG might 
share some common neural bases, i.e., neural oscillations in the alpha 
band, which dominates neural activity at the resting state (de Munck 
et al., 2007). This assumption is in accordance with previous studies, 
which found resting-state FC is more related with alpha oscillations than 
with any other frequency bands (Mantini et al., 2007; Marino et al., 
2019; Pasquale et al., 2010). Thus, future MEG-fMRI studies are needed 
to directly examine the link between resting state FCs and spontaneous 
neural activity in the alpha band. 

The current study has several advantages and also clinical implica-
tions. Compared to previous studies applying different machine learning 
approaches (e.g., Gaussian process regression, support vector regres-
sion) to predict GMT from brain structures (Underwood et al., 2018) or 
graph properties (Chockanathan et al., 2019; 2018) without testing 
generalizability, our study established a CPM model that has stronger 
generalizability and better interpretability (this is one aspect of CPM, see 
comparisons between CPM and other machine learning approaches in 
Shen et al., 2017). In addition, traditional correlation/regression ana-
lyses tend to overfit the data and thus have low generalizability (Shen 
et al., 2017). By using an unbiased, data-driven approach based on 
whole-brain functional connections, the CPM model has a chance to 
capture distributed connections that are potential signatures of a com-
plex index of cognitive performance in PWH. In terms of clinical im-
plications, the CPM model could be used as a supplementary method to 
track global cognitive performance, for example, as a surrogate marker 
of treatment effectiveness in clinical trials. It is time-efficient (10-min 
scan time vs. hours of NP battery), and can be administered several times 
under short retest intervals. More importantly, it is a promising avenue 
to apply real-time fMRI neurofeedback to change the connection- 

behavior relationship identified by the CPM model. 
Several limitations should be noted. First, although our sample of 

PWH had reasonably good diversity in terms of demographics, e.g., age 
ranged from 41 to 70 years old, caution should be taken in generalizing 
our results to populations that have different demographic backgrounds. 
Second, the visit 2 sample used in the current study cannot be treated as 
a completely independent validation sample, as visit 1 data of 24 out of 
39 PWH from the visit 2 sample were included in the training set. The 
purpose of including the visit 2 sample is to show that the relationship 
between network strengths and GMT were reliable across time (when 
there is no sign for cognitive impairment). Thus, network strengths 
identified by the current study have the potential to track changes of 
global cognitive performance. Third, we have a relatively small sample 
size, and thus future studies are needed to replicate our study using a 
larger sample, and out-of-sample replications and model refinement are 
needed before this neural biomarker can be used in clinical settings. 

In conclusion, we demonstrated that functional connectivity at rest 
might be a good neural biomarker of global cognitive performance in 
people with HIV, especially for longitudinally tracking changes in 
cognitive performance. This neural biomarker might be considered as 
complementary, easy to obtain evidence of cognitive impairment aside 
from GDS. Future work might examine therapy-induced changes in 
functional connectivity as a biomarker of treatment efficacy in evalu-
ating new therapies for HAND. 
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