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ABSTRACT
Background. Preeclampsia remains a serious disorder that puts at risk the lives of
perinatal mothers and infants worldwide. This study assessed potential pathogenic
mechanisms underlying preeclampsia by investigating differentially expressed proteins
(DEPs) in the serum of patients with early-onset preeclampsia (EOPE) and late-onset
preeclampsia (LOPE) compared with healthy pregnant women.
Methods. Blood samples were collected from fourwomenwith EOPE, fourwomenwith
LOPE, and eight women with normal pregnancies, with four women providing control
samples for each preeclampsia group. Serum proteins were identified by isobaric tags
for relative and absolute quantitation combined with liquid chromatography–tandem
mass spectrometry. Serum proteins with differences in their levels compared with
control groups of at least 1.2 fold-changes and that were also statistically significantly
different between the groups atP < 0.05were further analyzed. Bioinformatics analyses,
including gene ontology and Kyoto Encyclopedia of Genes and Genomes signaling
pathway analyses, were used to determine the key proteins and signaling pathways
associated with the development of PE and to determine those DEPs that differed
between women with EOPE and those with LOPE. Key protein identified by mass
spectrometry was verified by enzyme linked immunosorbent assay (ELISA).
Results. Compared with serum samples from healthy pregnant women, those from
women with EOPE displayed 70 proteins that were differentially expressed with
significance. Among them, 51 proteins were significantly upregulated and 19 proteins
were significantly downregulated. In serum samples from women with LOPE, 24
DEPs were identified , with 10 proteins significantly upregulated and 14 proteins
significantly downregulated compared with healthy pregnant women. Bioinformatics
analyses indicated that DEPs in both the EOPE and LOPE groups were associated with
abnormalities in the activation of the coagulation cascade and complement system
as well as with lipid metabolism. In addition, 19 DEPs in the EOPE group were
closely related to placental development or invasion of tumor cells. Downregulationof
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pregnancy-specific beta-1-glycoprotein 9 (PSG9) in the LOPE group was confirmed by
ELISA.
Conclusion. The pathogenesis of EOPE and LOPE appeared to be associated with coag-
ulation cascade activation, lipid metabolism, and complement activation. However, the
pathogenesis of EOPE also involved processes associated with greater placental injury.
This study provided several newproteins in the serumwhichmay be valuable for clinical
diagnosis of EOPE and LOPE, and offered potential mechanisms underpinning the
development of these disorders.

Subjects Bioinformatics, Gynecology and Obstetrics, Women’s Health
Keywords Preeclampsia, Early-onset preeclampsia, Late-onset preeclampsia, Proteomics, LC–
MS/MS, iTRAQ

INTRODUCTION
Preeclampsia (PE), a hypertensive disorder complicating pregnancy, is the main cause
of increased perinatal mortality among mothers and infants worldwide. The rate of
PE in the United States is approximately 3.4% (Ghulmiyyah & Sibai, 2012), and it is
higher in developing countries (Ananth, Keyes & Wapner, 2013). PE is marked by new-
onset hypertension occurring after 20 weeks of gestation, accompanied by either new-
onset proteinuria or systemic multiple organ damage (Committee on Practice Bulletins—
Obstetrics, 2019). Severe PE may lead to convulsions, coma, cerebral hemorrhage, heart
failure, placental abruption, disseminated intravascular coagulation, and even death
(Bibbins-Domingo et al., 2017). Fetal delivery is the most effective treatment for PE, with
other treatments of relieving symptoms used only as an attempt to gain time for enabling
further maturity of the fetus. As a result, PE is the leading cause of premature birth and
low birth weight, especially severe PE (Ananth & Vintzileos, 2006).

The exact pathogenesis of PE remains unclear. However, PE is considered a placenta-
derived disease because the syndrome resolves once the placenta is removed. There are two
subtypes of PE: early- and late-onset preeclampsia. Their pathogeneses are not identical.
Early-onset preeclampsia (EOPE) has a higher degree of placental damage, whereas late-
onset preeclampsia (LOPE) may focus on the interaction between the normal senescence of
the placenta and a maternal genetic susceptibility to cardiovascular and metabolic disease
(Burton et al., 2019). However, pathophysiological changes of the placenta further lead to
endothelial dysfunction and systemic inflammatory response, which are their common
pathogenesis link (Young, Levine & Karumanchi, 2010).

The placenta is in direct contact with the maternal circulation. Therefore, any changes in
the protein expression of placental tissue are reflected in maternal serum proteins (Norwitz,
2007). If the types and levels of differentially expressed proteins (DEPs) in the serum of
patients with PE can be researched quantitatively and holistically, specific serumbiomarkers
may be found for predicting PE and for further study of its pathogenesis. Compared
with other proteomics methods, isobaric tags for relative and absolute quantitation
(iTRAQ) combined with liquid chromatography–tandemmass spectrometry (LC-MS/MS)
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is considered more effective for searching for serum or plasma biomarkers (Moulder et al.,
2018). Therefore, in the present study, we used iTRAQ and LC-MS/MSmethods to identify
serum proteins differentially expressed between EOPE and LOPE and between women
with PE and healthy pregnant women. We then used bioinformatics analyses to determine
the key proteins and related signaling pathways associated with the development of EOPE
and LOPE.

MATERIALS & METHODS
Participants and clinical samples
The Medical Research Ethics Committee of Anhui Medical University reviewed and
approved our research protocol and an informed patient consent form (Anhui Medical
Ethics approval No. 20150192). All patients signed the approved written informed consent
form prior to being included in the study.

Blood samples were collected from December 2018 to May 2019 from 16 pregnant
women, eight of whom had received a diagnosis of PE, and were in the Maternal and
Child Health Hospital Affiliated with Anhui Medical University. A PE diagnosis was made
consistent with the 2019 American College of Obstetricians and Gynecologists pregnancy
hypertension guidance (Committee on Practice Bulletins—Obstetrics, 2019). All included
pregnant women were primipara and without a disease that may have affected their serum
protein levels, such as infection, multiple pregnancy, or gestational diabetes mellitus. Four
serum samples were obtained from and allocated to each of the following four groups:
EOPE, the EOPE control, LOPE, and the LOPE control groups.

Protein extraction and quality testing
High-abundance proteins were removed from the serum samples using Pierce Top 12
Abundant Protein Depletion Spin Columns (Thermo Fisher). The protein concentration
was determined by the Bradford method. Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) was performed to separate the proteins and evaluate the
quality of samples.

Trypsin enzymatic hydrolysis and peptide iTRAQ isobaric labeling
After protein quantification, a centrifuge tube containing 60 µg of protein solution was
mixed with 5 µL 1 M dithiothreitol at 37 ◦C for 1 h. Then 20 µL of 1 M iodoacetamide
was added and the solution allowed to react for 1 h at room temperature. All samples were
pipetted into ultrafiltration tubes, and the filtrate was discarded after centrifugation. UA
buffer (8M urea, 100 mMTris-HCl, pH 8.0, 100 µL) was added and the sample centrifuged
at 14,000 g for 10 min; this step was repeated twice. Then, 50 mM NH4HCO3 (50 µL) was
added and the filtrate discarded after centrifugation; this step was repeated three times.
Trypsin buffer (40 µL) was added and mixed, and the samples were centrifuged at 600 rpm
for 1 min. The samples were then subjected to enzymatic hydrolysis at 37 ◦C for 12–18
h. Transfer the enzymatic hydrolysate to a new centrifuge tube. After labeling with 8plex
iTRAQ reagents multiplex kit, the same volume of each sample was mixed together and
desalted using a C18 cartridge.
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Figure 1 Flowchart of the data analysis procedure.
Full-size DOI: 10.7717/peerj.9753/fig-1

LC-MS/MS analysis
The labeled samples were redissolved in 40 µL of 0.1% formic acid aqueous solution. The
peptides were loaded onto a C18-reversed phase column (3 µm C18 resin, 75 µm ×15
cm). The mobile phases consisted of 2% methyl cyanide/0.1% formic acid/98% water
and 80% methyl cyanide/0.08% formic acid/20% water. The gradient for the B phase
increased linearly at 0–68 min from 7% to 36% and at 68–75 min, from 36% to 100%.
Each sample was separated by capillary high-performance liquid chromatography and was
analyzed by an Orbitrap Fusion Lumos mass spectrometer (Thermo Science). After the
data were collected, they were processed according to the flowchart shown in Fig. 1. Protein
identification and quantification were done by using the ProteinPilot Software, version 4.2
(Sciex). Human proteome databases containing UniProt sequences were used to perform
peptide identification. Serum proteins with fold changes in their levels compared with
control groups of at least 1.2 (in two of two replicates) and that were also statistically
significantly different between the groups at P < 0.05 were further analyzed.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) signaling pathway analyses
Metascape, a web-based resource (http://metascape.org) for gene and protein annotation,
visualization, and integration discovery (Fang et al., 2019; Soonthornvacharin et al.,
2017) was used to perform GO analyses. The KOBAS online analysis database
(http://kobas.cbi.pku.edu.cn/kobas3) was used to performed KEGG pathway analyses
(Kanehisa & Goto, 2000). A two-sided P < 0.05 was regarded significantly different.
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Enzyme linked immunosorbent assay (ELISA)
PSG9, the downregulated protein in the LOPE group, was verified by ELISA kit
(specification and catalogue number: 96T, OM626395). The experiment was performed
according to the manufacturer instructions. Blood samples were collected from women
with LOPE or normal pregnancies.

Statistical analysis
Two-tailed Mann–Whitney U test was performed with SigmaPlot software. Values are
expressed as means ± SEM. A value of P < 0.05 was considered statistically significant.

RESULTS
Participants
Themean and standard deviation (SD) age of the patients in the EOPE groupwas 31.8± 5.0
years, and they were at a mean (SD) gestation of 31.9 ± 2.9 weeks; the mean (SD) age
of the participants in the EOPE control group was 30.0 ± 1.0 years, with a mean (SD)
gestation of 31.5 ± 1.4 weeks. No significant difference was found in age (P = 0.57) or
gestational weeks (P = 0.84) between these two groups. The mean (SD) age of the patients
in the LOPE group was 24.8 ± 1.5 years, with 37.8 ± 1.5 weeks’ gestation; the mean (SD)
age of the participants in the LOPE control group was 27.0 ± 1.3 years, with a mean (SD)
of 38.9 ± 1.3 weeks’ gestation. No significant difference was found in age (P = 0.15) or
gestation (P = 0.37) between these two groups.

SDS-PAGE
The total proteins in the molecular weight range of 10–220 kDa from 16 samples were
effectively separated by SDS-PAGE. The proteins were not degraded, and the high-
abundance proteins were obtained (Fig. 2).

MS/MS spectrum analysis and Identification of DEPs
LC-MS/MS is a powerful tool for identifying proteins in serum samples. We identified
413 serum proteins in the EOPE and EOPE healthy control groups, of which 70 were
significantly and differentially expressed between the two groups, with 51 upregulated and
19 downregulated (Table 1, Fig. 3). We also identified 470 proteins in the LOPE and LOPE
control groups, of which 24 proteins were significantly and differentially expressed between
the two groups, with 10 upregulated and 14 downregulated (Table 2, Fig. 3). Clustergrams
generated describing the expression of these DEPs indicated that the expression patterns
between the patient EOPE or LOPE groups obviously differed from their control groups,
but the two patient groups, EOPE and LOPE, clustered together (Figs. 3B and 3D).

GO functional annotation and enrichment analysis
GO analysis is an important method and tool in the field of bioinformatics. It includes
three categories: cellular component, molecular function, and biological process. GO
functional annotation analysis results show the number of DEPs under each item in the
three categories. GO functional enrichment analysis provides significant GO functional
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Figure 2 Removal of high-abundance proteins. (A) Lane E is the original sample from the early-onset
preeclampsia (EOPE) group. Lane M contains markers. Lanes 1–4 are from serum samples obtained from
the EOPE group after removing the highly abundant proteins, whereas lanes 5–8 are from the EOPE con-
trol group after removing the highly abundant proteins. (B) Lane L is the original sample from the late-
onset preeclampsia (LOPE) group. Lane M contains markers. Lanes−1 to−4 are from the LOPE group
after removing the highly abundant proteins, whereas lanes−5 to−8 are from the LOPE control group
after removing the high-abundance proteins. The bands are clear and uniform and without protein degra-
dation.

Full-size DOI: 10.7717/peerj.9753/fig-2

terms associated with the DEPs, that is, those biological functions significantly correlated
with the DEP. In vivo, different proteins interact to generate a biological behavior, and a
pathway-based analysis helps to further understand those biological functions. A significant
pathway enrichment analysis can determine themost important biochemical andmetabolic
pathways and signal transduction pathways associated with the DEPs.

The GO functional annotation analysis results for the EOPE group are shown in Fig. 4.
For the biological process category, the highest percentages of the proteins were associated
with the term biological regulation (n= 43 proteins; with the top three upregulated proteins
in this process being CHL1, LRP1, and CNTN1). For the cellular component category,
the highest percentages of the proteins were associated with the term extracellular region
(n= 49 proteins; with the top 2 upregulated proteins in this process being MMP2 and
CHL1). For the molecular function category, the highest percentages of the proteins were
associated with the term binding (n= 45 proteins; with the top 3 upregulated proteins
in this process being MMP2, CHL1, and PEPD). For the LOPE group vs. their controls,
the highest percentages of the proteins in the biological process category were associated
with the term biological regulation (n= 17; with the top 3 upregulated proteins in this
process being PAPPA2, F7, and vWF). The highest percentages of the proteins in the
cellular component category were associated with term extracellular region (n= 18; with
the top three upregulated proteins in this process being PAPPA2, CETP, and F7). The
highest percentages of the proteins in the molecular function category were associated
with the term binding (n= 13; with the top 3 upregulated proteins in this process being
APPA2, CETP, and F7). The terms in the GO functional enrichment analysis for the EOPE
group vs. their controls mainly included response to stress, defense response, and negative
regulation of catalytic activity, whereas the terms in the GO functional enrichment analysis
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Table 1 List of differentially expressed proteins in the early-onset preeclampsia group.

Regulated type Protein accession Gene name Protein description FC

UP A0A024R6R4 MMP2 Matrix metallopeptidase 2 21.48
UP A8K2X4 - cDNA FLJ75401 12.87
UP O00533 CHL1 Neural cell adhesion molecule L1-like protein 7.69
UP J3K000 PEPD PEPD protein 6.6
UP A8K3I0 - cDNA FLJ78437 6.31
UP Q6UXB8 PI16 Peptidase inhibitor 16 5.76
UP Q07954 LRP1 Prolow-density lipoprotein receptor-related protein 1 4.82
UP Q12860 CNTN1 Contactin-1 4.64
UP V9HWB4 HEL-S-89n Epididymis secretory sperm binding protein Li 89n 4.63
UP P35527 KRT9 Keratin, type I cytoskeletal 9 4.51
UP P14543 NID1 Nidogen-1 3.86
UP O95236 APOL3 Apolipoprotein L3 3.4
UP A6XNE2 - Complement factor D preproprotein 3.34
UP P41222 PTGDS Prostaglandin-H2 3.17
UP V9H1C1 - Gelsolin exon 4 (Fragment) 2.95
UP Q9Y5Y7 LYVE1 Lymphatic vessel endothelial hyaluronic acid receptor 1 2.95
UP Q13201 MMRN1 Multimerin-1 2.83
UP B3KQF4 - cDNA FLJ90373 2.74
UP Q6MZL2 DKFZp686M0562 Uncharacterized protein DKFZp686M0562 (Fragment) 2.71
UP J3KPA1 CRISP3 Cysteine-rich secretory protein 3 2.65
UP P01034 CST3 Cystatin-C 2.64
UP A0A0S2Z4F1 EFEMP1 EGF Containing Fibulin Extracellular Matrix Protein 1 2.62
UP P23142 FBLN1 Fibulin-1 2.57
UP A0A384N669 - Epididymis secretory sperm binding protein 2.48
UP J3KNB4 CAMP Cathelicidin antimicrobial peptide 2.47
UP B7Z544 - cDNA FLJ51742 2.43
UP A8K061 - cDNA FLJ77880 2.42
UP A0A087WV75 NCAM1 Neural cell adhesion molecule 1 2.37
UP Q9NQ79 CRTAC1 Cartilage acidic protein 1 2.24
UP B2RBW9 - cDNA, FLJ95746 2.23
UP A0A024RAA7 C1QC Adiponectin B 2.15

2.06
UP P16070 CD44

CD44
antigen 2.01

UP Q76LX8 ADAMTS13 Von Willebrand Factor-Cleaving Protease 2.01
UP Q6EMK4 VASN Vasorin 2
UP D6RE86 CP Ceruloplasmin (Fragment) 1.88
UP H6VRG1 KRT1 Keratin 1 1.87
UP Q86U17 SERPINA11 Serpin A11 1.81
UP Q9UKE5 TNIK TRAF2 and NCK-interacting protein kinase 1.75
UP P61626 LYZ Lysozyme C 1.74
UP P02743 APCS Serum amyloid P-component 1.74

(continued on next page)
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Table 1 (continued)

Regulated type Protein accession Gene name Protein description FC

UP Q16853 AOC3 Membrane primary amine oxidase 1.73
UP Q9NZP8 C1RL Complement C1r subcomponent-like protein 1.73
UP A0A024R035 C9 Complement C9 1.71
UP A0A0A0MRJ7 F5 Coagulation factor V 1.66
UP P09871 C1S Complement C1s subcomponent 1.65
UP Q6PIL8 IGK@ IGK@ protein 1.63
UP P49908 SELENOP Selenoprotein P 1.55
UP P02654 APOC1 Apolipoprotein C-I 1.55
UP D3DRR6 ITIH2 Inter-alpha (Globulin) inhibitor H2 1.54
UP B4DPQ0 C1R Complement C1r subcomponent 1.52
UP J3KNP4 SEMA4B Semaphorin-4B 1.51
DOWN Q6GMX6 IGH@ IGH@ protein 0.56
DOWN A0A0X9TD47 - MS-D1 light chain variable region (Fragment) 0.43
DOWN Q9UNU2 C4B Complement protein C4B frameshift mutant (Fragment) 0.43
DOWN P01591 JCHAIN Immunoglobulin J chain 0.34
DOWN Q14213 EBI3 Interleukin-27 subunit beta 0.34
DOWN P28799 GRN Granulins 0.33
DOWN B2R7N9 - cDNA, FLJ93532 0.32
DOWN P00709 LALBA Alpha-lactalbumin 0.29
DOWN G5E9F7 PSG1 Pregnancy specific beta-1-glycoprotein 1 0.25
DOWN A0A075B6A0 IGHM Immunoglobulin heavy constant mu (Fragment) 0.23
DOWN A0A075B6R9 IGKV2D-24 Immunoglobulin kappa variable 2D-24 0.23
DOWN O75636 FCN3 Ficolin-3 0.22
DOWN O43866 CD5L CD5 antigen-like 0.2
DOWN P06733 ENO1 Alpha-enolase 0.16
DOWN P09172 DBH Dopamine beta-hydroxylase 0.16
DOWN Q15485 FCN2 Ficolin-2 0.13
DOWN Q86TT1 Full-length cDNA clone CS0DD006YL02 of Neuroblastoma 0.08

DOWN P00739 HPR Haptoglobin-related protein 0.06
DOWN P00738 HP Haptoglobin 0.01

for the LOPE group vs. their controls included enzyme inhibitor activity and serine-type
endopeptidase inhibitor activity (Fig. 5).

KEGG signaling pathway analysis
The KOBAS online analysis tool was used to identify the functions associated with the
DEPs and the KEGG signaling pathways. Results of the KEGG pathway enrichment
analysis showed that complement and coagulation cascades, proteoglycans in cancer,
and metabolic pathways were the main signaling pathways associated with the EOPE
group, whereas complement and coagulation cascades were the main signaling pathways
associated with the LOPE group (Fig. 6). Thus, the results indicated that a functional
change in coagulation was the main finding for both EOPE and LOPE.
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Figure 3 Differential protein expression. (A and C) Volcano plots with red dots on the right-hand side
indicating upregulation, green dots on the left-hand side indicating downregulation, and black dots in-
dicating no significant change in protein expression levels based on the criteria of an absolute log10 fold
change and P < 0.05 between early-onset preeclampsia and its control group (A), and between late-onset
preeclampsia and its control group (C). (B and D) Clustergram for the expression of the DEPs between
early-onset preeclampsia and control (B) and between late-onset preeclampsia and control (D).

Full-size DOI: 10.7717/peerj.9753/fig-3

PSG9 protein level in serum
Serum level of PSG9 was measured by ELISA. The data showed a significant difference
between LOPE group and control group (4.54 ± 1.22 vs. 6.32 ± 1.73, Fig. 7). The result is
consistent with the study of mass spectrometry.

DISCUSSION
Proteomics methods have provided some important information regarding PE. For
example, Blumenstein et al. (2009) used a differential in gel electrophoresis–based approach
to identify changes in the plasmaproteomeof pregnantwomenwho subsequently developed
PE. They found that those DEPs are mainly involved in lipoprotein metabolism, the blood
coagulation system, and the complement system. The results of the present study were
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Table 2 List of differentially expressed proteins in the late-onset preeclampsia group.

Regulated type Protein accession GENENAME PROTEINDESCRIPTION FC

UP Q9BXP8 PAPPA2 Pappalysin-2 5.27
UP A0A0S2Z3F6 CETP Cholesteryl ester transfer protein plasma isoform 1 3.51
UP P08709 F7 Coagulation factor VII 2.8
UP Q6NS95 IGL@ IGL@ protein 2.67
UP P04275 VWF von Willebrand factor 2.46
UP C0JYY2 APOB Apolipoprotein B 1.93
UP A0A140VK24 - Testicular secretory protein Li 24 protein 1 1.74
UP P05546 SERPIND1 Heparin cofactor 2 1.52
UP O95445 APOM Apolipoprotein M 1.34
UP P80108 GPLD1 Phosphatidylinositol-glycan-specific phospholipase D 1.26
DOWN P05543 SERPINA7 Thyroxine-binding globulin 0.82
DOWN Q9NZP8 C1RL Complement C1r subcomponent-like protein 0.63
DOWN A8K2T7 - Receptor protein-tyrosine kinase 0.61
DOWN Q00887 PSG9 Pregnancy-specific beta-1-glycoprotein 9 0.6
DOWN P07333 CSF1R Macrophage colony-stimulating factor 1 receptor 0.56
DOWN Q2L9S7 AAT Alpha-1-antitrypsin MBrescia variant receptor 1 0.53
DOWN A0A2S0BDD1 ATIII-R2 Antithrombin III isoform 0.49
DOWN Q8WW79 SELL L-selectin 0.48
DOWN P40189 IL6ST Interleukin-6 receptor subunit beta (Fragment) 0.47
DOWN B2R7Y0 - cDNA, FLJ93654 0.41
DOWN Q12860 CNTN1 member 2 (SERPINB2) 0.36
DOWN Q8WWZ8 OIT3 Oncoprotein-induced transcript 3 protein 0.31
DOWN A0A140TA29 C4B Complement C4-B 0.21
DOWN B2R950 - cDNA, FLJ94213 0.18

consistent with those of Blumenstein et al. (2009), but we also made some new discoveries
(discussed below). These results suggest that the pathogenesis of PE is complex and is
associated with multiple proteins and signaling pathways.

To maintain pregnancy and fetal growth progress within normal reference ranges,
healthy pregnant women develop physiological hyperlipidemia. However, they do not
experience angiopathy because high-density lipoprotein (a vascular protection factor)
and low-density lipoprotein (LDL, an atherogenic factor) also increase to protect the
vascular endothelium from injury (Jin et al., 2016; Wang et al., 2017). Compared with
healthy pregnant women, pregnant women with PE display significantly increased serum
triglycerides and LDLs, which may enhance oxidative stress and ultimately lead to vascular
endothelial cell injury (Huda, Sattar & Freeman, 2009; Pohanka, 2013). Our study found
that there were six DEPs associated with lipid regulation increased in the PE groups,
including ApoB, LRP1, ApoL3, ApoC-I, CETP, and ApoM. ApoB, the main carrier protein
of LDL, is an atherogenic risk factor. Previous evidence supports that ApoB is significantly
upregulated in the plasma of patients with PE (Lin et al., 2019). CETP plays an important
role in high-density lipoprotein metabolism and reverse cholesterol transport and is
upregulated in the third trimester of pregnancy. Another study has reported that the TaqIB
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Figure 4 Gene ontology functional annotation. The upregulated and downregulated proteins in the
three categories of biological process, cellular component, and molecular function in (A) the early-onset
preeclampsia group vs. its control group and (B) the late-onset preeclampsia group vs. its control group.

Full-size DOI: 10.7717/peerj.9753/fig-4

polymorphism of the CETP gene is significantly correlated with the triglyceride and total
cholesterol levels in patients with severe PE (Belo et al., 2004). Here, we reported for the first
time, to our knowledge, that LRP1, ApoC1, and ApoL3 are increased in the EOPE group.
LRP1 and ApoC1 accelerate the development of atherosclerosis through different pathways
(Mueller et al., 2018;Westerterp et al., 2007). Endothelial function decreases during PE, and
endothelial dysfunction is a characteristic of atherosclerosis. ApoL3, as a regulator ofMAPK
and FAK signaling in endothelial cells, has been shown to be involved in angiogenesis in
vitro (Khalil et al., 2018). Increased ApoL3 in PE may be a compensatory response to
endothelial dysfunction. Therefore, the current evidence suggests that dyslipidemia may
be related to the development of PE, but the specific pathogenesis remains to be explored
in future studies.

Physiological hypercoagulability in healthy pregnant women can prevent intrapartum
and postpartum hemorrhage. However, abnormalities in coagulation, the anti-coagulation
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Figure 5 Gene ontology (GO) functional enrichment. Enriched GO terms for the upregulated and
downregulated proteins and the associated protein numbers in (A) early-onset preeclampsia vs. its control
and (B) late-onset preeclampsia vs. its control.

Full-size DOI: 10.7717/peerj.9753/fig-5

system, and the fibrinolytic system lead to pathological hypercoagulability in PE (Dusse
et al., 2011). In the LOPE group of the present study, coagulation factors VII, vWF,
and SRPIND1 were upregulated group, whereas AAT and ATIII were downregulated
compared with healthy controls. In the EOPE group, coagulation factor V, plasminogen,
and ADAMTS13were upregulated. These results are consistent with those ofmany previous
trials (discussed below). The level of plasma FVII in patients with severe PE is significantly
higher than that in healthy pregnant women; therefore plasma FVII levels may show high
sensitivity and specificity in differentiating between PE and normal pregnancy (Dusse et al.,
2016). The coagulation factor vWF is a specific marker that reflects damage of endothelial
cells; thus, damaged microvascular endothelial cells in PE promote the expression of
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Figure 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. KEGG pathways
enriched for the upregulated and downregulated proteins and the associated protein numbers in (A) early-
onset preeclampsia vs. its control and (B) late-onset preeclampsia vs. its control.

Full-size DOI: 10.7717/peerj.9753/fig-6

vWF. Owing to the activation of the intrinsic and exogenous coagulation pathways by
damaged endothelial cells, a large number of coagulation factors are activated. This leads to
a massive generation of thrombin, which antagonizes a large amount of anti-thrombin III,
resulting in a significant decrease in its level (Demir & Dilek, 2010; Pottecher et al., 2009).
In response to abnormalities in the coagulation mechanism of PE, evidence-based medical
study has also shown that oral administration of low-dose aspirin during early pregnancy
can significantly reduce the incidence rate of PE (Rolnik et al., 2017).

A growing number of studies have shown that abnormal expressionwith the complement
system is associated with PE (Agostinis et al., 2010; Derzsy et al., 2010). Our results support
this evidence, showing that expression levels of CFD, CIQC, CIRL, C9, C1S, and C1R were
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Figure 7 Protein level of pregnancy-specific beta-1-glycoprotein 9 (PSG9) in serum. Concentration of
PSG9 in the patient serum in control and LOPE groups. Values are shown as the mean±SEM (n = 10); *P
< 0.05 for Control vs. LOPE.

Full-size DOI: 10.7717/peerj.9753/fig-7

significantly increased, while expression levels of C4B, FCN2, and FCN3 were significantly
decreased in the EOPE group compared with their control group. Moreover, the expression
levels of complement C1RL and C4B were decreased in the LOPE group compared with
their controls.

Downregulation of PSG1 and PSG9 expressed in the PE groups is an interesting finding
in our study. PSG is a pregnancy-specific glycoprotein that is synthesized and secreted
into the blood by placental syncytiotrophoblast cells. Rong et al. (2017) found that PSG9
significantly promotes the angiogenesis of human umbilical vein endothelial cells. Chang
et al. (2016) found a significant increase in the number of cases with deletions in the
PSG gene locus among patients with PE. We hypothesize that downregulation of the PSG
protein family may be involved in the pathogenesis of PE by affecting the proliferation of
endothelial cells although no specific experimental evidence currently supports or disproves
this hypothesis.

PE is considered a placenta-derived disease. In the classic two-stage model, placental
stress leads to dysfunction of maternal peripheral endothelial cells, systemic inflammatory
response, and the clinical syndrome of PE (Staff, 2019). This model is also reflected in
our mass spectrometry results. In both the EOPE and LOPE groups, abnormalities of
coagulation cascade activation, lipid metabolism, and complement activation were found.
However, the main stressor associated with EOPE is placental hypoperfusion secondary
to impaired spiral artery remodeling; by contrast, in LOPE, the cause is more likely
attributable to a mismatch between normal maternal perfusion and the metabolic demands
of the placenta and fetus (Burton et al., 2019). Spiral artery remodeling is completed by
the placental trophoblast cells continuously invading and destroying the uterine spiral
arterial wall and gradually replacing the endothelial cells. Many studies have focused on
the control of this invasion (Pollheimer et al., 2018;Wagner, Otomo & Christians, 2011;Wu
et al., 2016).
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Unexpectedly, we also found 19 DEPs in the EOPE group that were closely related
to placental development or invasion of tumor cells. This result was not detected in the
LOPE group, which showed an increase only in PAPPA2, which affects the invasion and
metastasis of placental trophoblasts and leads to a gradual decline in placental function
(Wagner, Otomo & Christians, 2011). LYVE1, CST3, and NCAM1 are also reportedly
involved in placental vascular remodeling (Pawlak et al., 2019; Song et al., 2010; Zhang,
Xu & Han, 2019). GRN, CD5L, ENO1, CHL1, CRISP3, VASN, and TNIK promote the
invasive ability of tumor cells (Aran et al., 2018; Bhandari et al., 2019; Buhusi et al., 2003;
Chon et al., 2016; Song et al., 2014; Voshtani et al., 2019; Wang et al., 2019). By contrast,
SEMA4B, KRT1, KRT9, FBLN1, and PTGDS are involved in the anti-invasive activity
of tumor cells (Blanckaert et al., 2015; Jian et al., 2015; Marano et al., 2018; Zhang et al.,
2018). MMP2 plays an important role in trophoblast invasion and is generally thought
to be downregulated in PE (Wu et al., 2016). We found the opposite result, that is, the
expression of MMP2 was upregulated in EOPE; however, expression of PI16, which
inhibits MMP2 activity (Hazell et al., 2016), was also upregulated. PEPD is a hydrolase
that affects collagen biosynthesis, cell proliferation, and matrix remodeling. Pehlivan et al.
(2017) have shown that PEPD activity in the plasma, umbilical cord, and placental tissue
of women with pregnancy-induced hypertension is higher than that of healthy pregnant
women. Our results also indicated an upregulation of PEPD in the EOPE group. The
dysregulation of the expression of these proteins may be an important cause of placental
dysfunction in EOPE.

Furthermore, previous studies have shown that soluble form of placenta-derived
endoglin (sENG) was upregulated in the serum of EOPE, which is involved in endothelial
dysfunction in coordination with soluble fms-like tyrosine kinase (Venkatesha et al., 2006).
Our mass spectrometry results were similar to that previous finding showing that endoglin
was upregulated in EOPE but not in LOPE group. This finding may also indicate more
severe endothelial dysfunction in EOPE.

CONCLUSIONS
In summary, the use of iTRAQ combined with LC-MS/MS was effective for screening
serum for DEPs in PE. We used bioinformatics to analyze the DEPs that showed significant
changes in their expression levels to provide potential indicators for detecting PE and ideas
for the study of pathogenesis in PE. In conclusion, the pathogenesis of EOPE and LOPE
appeared to be related to dysfunctions in coagulation cascade activation, lipid metabolism,
and complement activation. However, compared with that in LOPE, the pathogenesis of
EOPE was associated with greater placental injury. This study provides several new proteins
in the serum which may potentially have value in clinical diagnosis of EOPE and LOPE
and offers potential mechanisms for the development of EOPE and LOPE, contributing to
the future research on prediction, prevention, and pathogenesis of PE.
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