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The change in tissue stiffness caused by pathological changes in the tissue’s structure
could be detected earlier, prior to the manifestation of their clinical features. Magnetic
resonance elastography (MRE) is a noninvasive imaging technique that uses low-
frequency vibrations to quantitatively measure the elasticity or stiffness of tissues. In
tumor tissue, stiffness is directly related to tumor development, invasion, metastasis, and
chemoradiotherapy resistance. It also dictates the choice of surgical method. At present,
MRE is widely used in assessing different human organs, such as the liver, brain, breast,
prostate, uterus, gallbladder, and colon stiffness. In the field of oncology, MRE’s value lies
in tumor diagnosis (especially early diagnosis), selection of treatment method, and
prognosis evaluation. This article summarizes the principle of MRE and its research and
application progress in tumor diagnosis and treatment.
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INTRODUCTION

Stiffness is an important mechanical parameter and one of the physical properties of human tissues,
closely related to biological characteristics (1, 2). Different tissues or organs have different degrees of
stiffness (see Figure 1A). It was found that the elasticity of tumor cells (0.05-3.0 kPa) was lower than
that of normal human cells (0.75-90 kPa), while the stiffness of tumor tissue is higher than that of
normal tissue (3, 4). This is due to the rapid proliferation of tumor cells and increased cell density
after normal tissues have become cancerous; at the same time, a large amount of microvascular
reconstruction and reduction of normal gland structure has resulted in tumor tissues becoming
harder and tougher than the surrounding normal tissues (5). The infiltration of tumor tissue into the
surrounding tissue also leads to increased collagen deposition (6, 7). In addition, microvascular
pressure, abnormal blood flow, lymphatic and vascular leakage, and increased osmotic pressure in
the interstitial space are also factors that increase the stiffness of tumor tissues. In sum, the abnormal
structure and composition increased the stiffness of the tumor tissue. Therefore, studying the
stiffness of tumor tissue leads to better understanding of its features and behavior, especially in
terms of local invasion, distant metastasis, and chemoradiotherapy resistance. More importantly, it
will influence the choice of surgical method to be used as part of the treatment (8–10).

Elastography, also known as “palpation by imaging,”was proposed by Ophir et al. in 1991 (11). It
was first used in ultrasound, but its accuracy in assessing tissue elasticity was poor due to factors
such as increased subjectivity and lack of uniform operating specifications. MRE is a noninvasive
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imaging technique that quantifies the elastic characteristics of
tissues. It has been used in clinical research and application that
involve different kinds of tumors. It is considered an ideal
diagnostic tool because it is safe to use, noninvasive, highly
repeatable, produces reliable results, less operator-dependent,
and provides a clear, highly detailed images of tumors (12).
PRINCIPLE OF MRE

MRE is based on magnetic resonance technology. First, it applies
continuous and dynamic mechanical shear waves to the target
tissue through an exciter. Then, the motion-sensitive gradient of
magnetic resonance (MR) is used to obtain the phase distribution
information of the mass points in the tissue. By doing this, the
phase and wave patterns of the dynamic shear wave propagation
are obtained. Finally, both the full amplitude and full quantitative
color-coded elastic graph are generated by the inversion
algorithm of the waveform map through the elastic imaging
software (see Figure 1B) (8, 13). The MRE imaging process can
be summarized as follows: 1) Shear waves are generated in the
tissue; 2) MR images reflecting the propagation of the shear
Frontiers in Oncology | www.frontiersin.org 2
waves are created; 3) After processing the shear wave image, the
elastogram quantifying the stiffness of the tissue is obtained (9).
By selecting any region of interest (ROI) in the graph, the
elasticity value (in kiloPascal or kPa) in the region can be
obtained to quantitatively evaluate the elasticity attribute. MRE
can combine different magnetic resonance imaging (MRI)
sequences to acquire signals, such as gradient echo (GRE),
spin-echo (SE), spin-echo echo-planar imaging (SE-EPI), and
balanced steady-state free precession (bSSFP) (13–16). At
present, the most commonly used clinically is the traditional
60 Hz 2D gradient echo (GRE) sequence. Compared with the
GRE sequence, SE-EPI has the advantage of short scanning time,
high image quality and success rate of tumor detection. This
makes it highly favorable to researchers (17, 18). MRE that
combines SE-EPI sequence and 3D increases spatial coverage
and reduces the errors caused by oblique wave propagation and
edge artifacts, so the measured values obtained are more stable
and accurate (19, 20). In addition, the SE-EPI sequence is less
sensitive to liver iron overload and requires less patient
cooperation, both of which make obtaining data faster (21).
3D-MRE’s current scanning time is long, which makes it less
ideal to use (19). However, at the rate that technological advances
A

B

FIGURE 1 | (A) Elastic value of some human tissues. (B) Flowchart of magnetic resonance elastography.
August 2021 | Volume 11 | Article 722703

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang and Qiu Noninvasive Diagnosis of Tumor
are happening right now, it would not be long before 3D-MRE
becomes the main application of MRE.
APPLICATION OF MRE IN TUMOR
DIAGNOSIS AND TREATMENT

Changes in the elasticity and stiffness of human tissues reflect the
pathological development process to a certain extent (22). For
example, 80–90% of patients with liver cirrhosis will develop
liver cancer, with tumor stiffness directly related to tumor grade
(23–25). In addition, high tumor stiffness hinders the effective
delivery of anti-cancer drugs in the body (26–28). Accurately
identifying and reducing elastic stiffness between tissues
contribute to the efficient delivery of drugs in patients
undergoing treatment (29, 30). MRE technology provides a
new strategy for the precise diagnosis and treatment of tumors.

Liver Cancer
Currently, MRE is extensively applied in the diagnosis of liver
diseases. It is used in accurately assessing normal liver
parenchyma, liver fibrosis, focal nodular hyperplasia, and
liver cancer (22). MRE effectively identifies the stages of liver
fibrosis and detects early liver cirrhosis (see Table 1). The
sensitivity of MRE in distinguishing between severe and mild
liver fibrosis is 98%. The increase in liver stiffness in patients with
liver cirrhosis is an important risk factor for developing
hepatocellular carcinoma (HCC) (24).

Richard et al. evaluated 29 patients with 44 liver tumors using
MRE with improved gradient echo sequence. The results showed
that the average stiffness of malignant liver tumor (10.1 kPa) was
higher than that of benign liver tumor (2.7 kPa), liver fibrosis (5.9
kPa), and normal liver parenchyma (2.3 kPa) (45). There was no
significant difference in shear stiffness between benign liver tumors
and normal liver parenchyma. They initially determined that the
stiffness value of the liverwas 5 kPa,whichwas the critical value that
distinguishes malignant liver tumor from benign liver tumor or
normal liver parenchyma (see Figures 2A, B).

Garteiser et al. found that the loss modulus of hepatocellular
carcinomas was significantly higher than that of benign
Frontiers in Oncology | www.frontiersin.org 3
hepatocellular tumors (47). In addition, MRE can also be used
to initially assess the level of hepatocellular carcinoma (HCC).
For example, compared with poorly differentiated liver cancer
(4.9 ± 1.2 kPa; N = 8), well-differentiated/moderately
differentiated HCC (6.5 ± 1.2 kPa; N = 13) tumor stiffness
increased significantly (see Figure 2C). However, there is no
exact correlation between the stiffness of liver tumors and tumor
size. MRE is a promising diagnostic technique for evaluating
solid liver tumors.

Liver stiffness measured by MRE can be used to predict the
early recurrence of liver tumors after treatment. The stiffness of
liver tumors is an independent factor in the early recurrence
of HCC (48). For every 1 kPa increase in tumor stiffness, the risk
of tumor recurrence increased by 16.3%. The relapsed HCC has
higher tumor stiffness (49). Liver stiffness measured by MRE can
also be used as a prognostic indicator for HCC patients
undergoing hepatectomy. Liver stiffness (≥ 4.02 kPa) was the
only important factor for poor overall survival (OS) (50).
Meanwhile, the value of liver stiffness is negatively correlated
with the regenerating ability of the residual liver after
hepatectomy (51). Therefore, liver stiffness measured by MRE
can be used to predict liver regeneration in patients with liver
cirrhosis and liver cancer. Moreover, MRE data of patients with
colorectal liver metastases treated by transcatheter arterial
chemoembolization (TACE) showed that the stiffness of the
metastases was higher (P< 0.001) (52). MRE provides a
reference value for the treatment of patients with liver metastasis.

Breast Cancer
MRE imaging of the breast requires low-frequency emission
(generally, 40–100 Hz). Ehman et al. detected MRE with 100 Hz
shear wave in healthy volunteers and breast cancer patients. The
results showed that the average elastic values of normal adipose
tissue, fibroglandular tissue, and tumor tissue were 3.3 kPa, 7.5
kPa, and 33 kPa, respectively (see Figure 3A) (53). Between these
elastic values, the stiffness of breast cancer tissue is four times
that of normal fibroglandular tissue. Meanwhile, Lorenzen et al.
found that the median elasticity of breast adipose tissue, breast
parenchyma, benign tumor tissue, and malignant tumor tissue
were 1.7 kPa, 2.5 kPa, 7.0 kPa, and 15.9 kPa, respectively (see
Figure 3B) (54). The elasticity value of breast cancer tissue was
TABLE 1 | Liver shear stiffness (kPa) under different physiological or pathological conditions.

Different physiological or pathological conditions of liver shear stiffness (kPa) Reference

F0 F1 F2 F3 F4

Non-alcoholic fatty liver disease 2.36 2.76 3.36 4.56 5.68 (31–36)
Hepatitis C virus 2.10 2.42 3.16 4.22 6.21 (37, 38)
Hepatitis B virus 2.52 2.88 3.46 4.35 6.54 (37, 39)
Autoimmune hepatitis untreated 3.10 2.94 3.20 4.10 6.50 (40)

treated 2.61 2.74 2.63 3.99 5.90
Primary sclerosing cholangitis 3.49 3.68 3.84 4.11 (41)
Alcoholic liver disease 2.20 2.57 3.31 4.00 (42)
Cholestatic 3.53 2.76 4.00 3.91 6.38 (37, 43)
Portal Hypertension HVPG <5mmHg HVPG ≥5mmHg HVPG <10mmHg HVPG ≥10mmHg (44)

2.31 5.14 3.88 5.86
August 2021 | Volume 11 | Art
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higher than that of normal tissue around the tumor, benign
tumor, and normal breast tissue (55).

Balleyguier et al. studied 43 breast tumor patients with high
scores in the breast imaging report and data system (BI-RADS),
and found that the sensitivity, specificity, positive predictive
Frontiers in Oncology | www.frontiersin.org 4
value, and negative predictive value of MRE for breast cancer
diagnosis were 79%, 90%, 96%, and 56%, respectively. MRE with
an AUC (Area under the curve) value of 0.92 as compared with
0.84 for MRI alone (56). Sinkus et al. observed an increase in
specificity from 40 to 60% at 100% sensitivity, and Siegmann
A B

FIGURE 3 | (A) Shear stiffness estimates of different types of breast tissue (mean value). Reproduced with permission from ref. (53), copyright 2002, American
Roentgen Ray Society; (B) MRE–based elasticity values for malignant, benign, parenchyma, fatty, and stiff lesions (median). Reproduced with permission from ref.
(54), copyright 2002, Georg Thieme Verlag KG.
A B

C

FIGURE 2 | (A) MRE of liver tumors. The stiffness value of benign tumors (focal nodular hyperplasia, a-c; liver adenoma, d-f) is equivalent to that of normal liver
parenchyma (generally less than 5 kPa), while the stiffness of malignant tumors (hepatocellular carcinoma-cholangiocarcinoma, g-i; colorectal cancer metastasis, j-l) is
increased Reproduced with permission from ref. (46), copyright 2013, John Wiley & Sons Inc. (B) Shear stiffness of different tissues. Reproduced with permission
from ref. (45), copyright 2008, American Roentgen Ray Society. (C) Schematic diagram of HCC tumor grade corresponding to tumor stiffness (kPa). Reproduced
with permission from ref. 23, copyright 2017, Elsevier.
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et al. also improved the specificity from 75% to 90% while
maintaining a high sensitivity of 90% (57, 58). In these studies,
MRE improved the accuracy of MRI in diagnosing breast cancer.
This is because the elasticity of benign and malignant tumors
overlaps. MRI alone cannot provide an accurate diagnosis; it
needs to be combined with viscoelastic parameters (elasticity,
viscosity, etc.) in order to provide a more comprehensive
evaluation. It is also necessary to reduce scanning time and
improve spatial resolution in the future to promote the clinical
application of MRE in the diagnosis of breast cancer (59).

Brain Tumor
MRE possesses significant clinical value as a tool in the diagnosis
and treatment of brain tumors. The nondestructive conduction
Frontiers in Oncology | www.frontiersin.org 5
of shear waves into the skull is the key to this (60). Wuerfel et al.
first discovered the correlation between brain stiffness and
pathological process sensitivity in multiple sclerosis (MS). The
average shear modulus of the white matter and gray matter of a
normal human brain, independent of age, are 14.8 and 5.22 kPa,
respectively (61).

One of the most important factors determining the difficulty
of brain tumor resection is the consistency of the tumors. Several
studies have shown that the shear stiffness of meningiomas and
pituitary adenomas measured by MRE is closely related to the
subjective assessment of tumor consistency by surgeons during
surgery (62) (see Figure 4A). The sensitivity, specificity, positive
predictive value, and negative predictive value of MRE for
judging meningioma heterogeneity are 75%, 100%, 100%, and
FIGURE 4 | (A) Brain imaging of stiff meningioma subjects (top row) and soft meningioma subjects (bottom row). The area encircled by the green dots represents
the location of the tumor. Normal brain parenchyma, dural meningioma, and soft meningioma have different mechanical properties, indicating the great potential of
MRE in brain imaging. Reproduced with permission from ref. (62), copyright 2013, American Association of Neurological Surgeons. (B) The image of a sliding
interface in the case of adherent (top) and non-adherent (bottom) meningiomas. In non-adherent cases, the tumor was surrounded by bright rings. Left: T2-weighted
fluid-attenuated inversion recovery (FLAIR) images; Right: shear strain maps. Reproduced with permission from ref. (63).
August 2021 | Volume 11 | Article 722703
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87%, respectively; while the sensitivity, specificity, positive
predictive value, and negative predictive value of MRE for
judging tumor stiffness are 60%, 100%, 100%, and 56%,
respectively (7). Another important factor affecting brain
tumor resection is tumor adhesion. The slip interface imaging
(SII) technology that was developed based on MRE is a
noninvasive method of assessing the degree of adhesion of
meningioma to adjacent brain tissues (63–65). SII’s ability to
strongly predict tumor compliance indicates that it is a
promising technique for surgical planning to help predict the
duration and risk of surgery (see Figure 4B) (63).

Prostate Cancer
Shear wave excitation devices for prostate MRE have been
reported, such as transurethral excitation device, transrectal
excitation device, and transperineal excitation device. These
devices can observe uniform shear waves in animal and human
experiments and have high rate of repeatability (66–69). The
results of prostate MRE through perineal stimulation showed
that the average elastic value of prostate cancer tissues was
different from that of normal tissues, and their diagnostic
sensitivity and specificity were 63% and 68%, respectively (5).
Initial data showed that the average elasticity values of prostate
cancer tissue, prostatitis tissue, and normal prostate tissue were
6.55 kPa, 1.99 kPa, and 2.26 kPa, respectively (70). Salcudean
et al. developed a novel active shielding electromagnetic sensor
and adopted a fast pulse sequence, which shortened the MRE
data acquisition time to 8–10 minutes, making it more acceptable
to patients (71).

Recently, Klatt et al. found that MRE can overcome some
limitations of MRI in evaluating prostate cancer, such as
interobserver variability and low specificity (72). In a 9.4T
preclinical scanner, 14 patients with prostate cancer were examined
using MRE at 500 Hz immediately after prostatectomy. MRE data
showed that the average stiffness of tumor tissue and healthy tissue
were 10.84 ± 4.65 and 5.44 ± 4.40 kPa (p ≤ 0.001), respectively,
indicating that MRE is a highly promising imaging technique for
diagnosing prostate cancer. The Youden index showed that the
sensitivity and specificity of diagnosis were 69% and 79%,
respectively. In addition, Wang et al. found that the detection of
MRE-based prostate cancer (PCa) stiffness may help noninvasively
predict the degree of lymph node metastasis prior to surgery, with
sensitivity and specificity as high as 100% and 86.5%,
respectively (73).

Pancreatic Cancer
Among the main problems encountered regarding the early
diagnosis of pancreatic cancer are early clinical symptoms that
are not obvious and the unsuitableness of biopsy or laparotomy.
Pancreatic cancer tumor cells infiltrate and grow into
surrounding tissues, so they produce a large amount of
collagen, which leads to increased stiffness. Generally, the
stiffness of pancreatic cancer tissue is 6.06 ± 0.49 kPa, which is
higher than that of normal pancreatic tissue (2.47 ± 0.11 kPa,
P<0.0001) (74). Guo et al. found that the sensitivity, accuracy,
and specificity of MRE in evaluating pancreatic cancer and
pancreatitis were higher than 0.9, showing better diagnostic
Frontiers in Oncology | www.frontiersin.org 6
performance than carbohydrate antigen 19-9 (CA199) (75).
Low frequency 40 Hz MRE combined with MRI can improve
the specificity of diagnosis of pancreatic cancer (96.9% versus
62.1%, P = 0.002) (76). Hence, MRE has important research and
clinical application value for the diagnosis and treatment of
pancreatic cancer.

MRE has also been used in the diagnosis of myoma, colorectal
cancer, and thyroid tumors (77–81). Overall research shows that
MRE can accurately distinguish between benign and malignant
tumors, which helps improve the specificity and sensitivity of
tumor diagnosis.
CONCLUSION AND PROSPECT

MRE is a noninvasive technology that can improve the diagnosis
and treatment of malignant tumors. It has gradually become a
new research method in the field of oncology. MRE has the
advantage of being highly accurate, producing clearer results,
being highly repeatable, and having a high success rate. It can
better assess the characteristics of malignant tumors, so that the
best treatment and surgical methods are identified and applied.
However, MRE technology still has many questions to be
answered. Biological tissues filter the spectrum out of control,
how does this frequency filter affect the measurement result?
What is the role and relationship between stiffness, elasticity, and
viscosity? The urgent challenge is to standardize the technology
and to standardize the MRE examination and the “units” used.
So far, elastography still without strict measurement conditions,
MRE provides stiffness in kPa by calculating the shear modulus,
while transient elastography provides Young’s modulus, which is
nearly three times the shear modulus. Not to mention the
limitations of the clinical application of tumor MRE: 1)
vulnerability to respiratory factors and artifacts when
diagnosing liver cancer and breast cancer; 2) limited ability to
track calcified lesions; 3) low spatial resolution; 4) high iron
content affecting data acquisition of liver MRE; 5) estimation
error caused by different measurement parameters, such as field
strength, scanning sequence, and shear wave frequency; 6)
human error when processing and analyzing the image. Given
these current limitations, it is necessary to further improve the
MRE’s in vitro excitation device, optimize the acquisition
parameters and stimulation frequency, and combine multiple
parameters for comprehensive diagnosis. When these technical
issues are addressed, with the application of artificial intelligence
and machine learning in medical image processing, the MRE’s
wider clinical application, especially in the field of oncology, will
be fully realized.
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