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Excitability—a threshold-governed transient in transmembrane
voltage—is a fundamental physiological process that controls the
function of the heart, endocrine, muscles, and neuronal tissues.
The 1950s Hodgkin and Huxley explicit formulation provides a
mathematical framework for understanding excitability, as the
consequence of the properties of voltage-gated sodium and
potassium channels. The Hodgkin–Huxley model is more sensi-
tive to parametric variations of protein densities and kinetics
than biological systems whose excitability is apparently more
robust. It is generally assumed that the model’s sensitivity reflects
missing functional relations between its parameters or other
components present in biological systems. Here we experimen-
tally assembled excitable membranes using the dynamic clamp
and voltage-gated potassium ionic channels (Kv1.3) expressed in
Xenopus oocytes. We take advantage of a theoretically derived
phase diagram, where the phenomenon of excitability is reduced
to two dimensions defined as combinations of the Hodgkin–
Huxley model parameters, to examine functional relations in
the parameter space. Moreover, we demonstrate activity depen-
dence and hysteretic dynamics over the phase diagram due to
the impacts of complex slow inactivation kinetics. The results
suggest that maintenance of excitability amid parametric vari-
ation is a low-dimensional, physiologically tenable control pro-
cess. In the context of model construction, the results point to
a potentially significant gap between high-dimensional models
that capture the full measure of complexity displayed by ion
channel function and the lower dimensionality that captures
physiological function.

excitability | dynamic clamp | sodium channels | potassium channels |
slow inactivation

The canonical Hodgkin–Huxley model of excitability (1) con-
sists of four dynamical variables (membrane voltage and

three protein state variables) and more than 10 parameters.
Several of the parameters represent actual, measurable physi-
cal entities (membrane capacitance, ionic concentrations inside
and outside the cell, and densities of ionic channel membrane
proteins). Other parameters shape the six exponential func-
tions relating membrane voltage to probabilities of transitions
between protein states (2–4). The considerable sensitivity of the
model to parametric variations—especially protein densities and
kinetics—is not on par with the robustness of many biological
systems, as revealed in experiments showing a high degree of
resilience to variation in values of measurable parameters (5–8).
Since the Hodgkin–Huxley model is biophysically solid, it is gen-
erally assumed that its sensitivity reflects functional relationship
between parameters (7). Hence, a low-dimensional represen-
tation of Hodgkin–Huxley parameter space within which the
seemingly complicated and parameter-sensitive system becomes
tractable would help to understand how a biological system
could control its state and adapt to changes using a simple and
physiologically relevant process.

Recently, a biophysically oriented parameterization of the
Hodgkin–Huxley model was introduced (4), offering a frame-
work for understanding control of excitability amid changes

in protein densities and their kinetics. In the resulting phase
diagram, the excitability status of a given Hodgkin–Huxley real-
ization is determined by rational functions fully defined in terms
of Hodgkin–Huxley parameters along two physiological dimen-
sions: structural and kinetic. The structural dimension (denoted
S) is a measure for the relative contribution of maximal excit-
ing (i.e., sodium) conductance. The kinetic dimension (denoted
K) is a measure of the relative contribution of restoring voltage-
dependent rate functions that pull the membrane back to its
hyperpolarized potential (i.e., closure of sodium channels and
opening of potassium channels). Thus, a point in the S–K phase
diagram represents many different possible sets of the model
parameters, explicit instantiations of a Hodgkin–Huxley model
that give rise to similar functional outcome. Examined in the S–K
plane, the Hodgkin–Huxley model reveals order that is impossi-
ble to detect at higher-dimensional representations. The three
different excitability statuses are clustered in phases: nonex-
citable, excitable, and oscillating (depicted in Fig. 1, Left). Note
that the S–K phase diagram is different from a phase space
where each point depicts a unique membrane state of a given
instantiation and where lines connecting such states depict phase
portraits, a trajectory in time (e.g., refs. 9–12).

The present study aims to experimentally uncover the S–K
phase diagram, with actual biological components rather than
mathematical modeling. The challenge is this: By definition, a
cell at a specific moment in time is an instantiation of one
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Fig. 1. Structural–kinetic (S–K) phase diagram of excitability status in the Hodgkin–Huxley model. (Left) Ten thousand realizations of a full Hodgkin–
Huxley model, following the procedure described in Ori et al. (4). ĜX is the maximal membrane conductance to ion X relative to the Hodgkin–Huxley
standard model values ḠX, where ḠNa = 120 mS/cm2 and ḠK = 36 mS/cm2. k̂ is a linear scalar of ionic channel transition rate function. The subscripts
of k̂res and k̂ex depict transition rate functions contributing to restoring and exciting forces: αn(V) and βm(V) for the former and αm(V) and βn(V) for
the latter. Parameters (maximal sodium and potassium conductance, leak conductance, membrane capacitance, and the six rate equation functions) vary
randomly and independently over a ±0.25 range compared to their values in the original Hodgkin–Huxley model. The resulting membrane responses
to above-threshold stimuli are classified (different colors) to three excitability statuses: excitable (2,225; blue), not excitable (4,884; orange), and oscil-
latory (2,891; green). (Right) Dataset of Left replotted with colors depicting response peak amplitude clusters, classified to four bins indicated in the
horizontal color bar.

point in the S–K phase diagram, one set of parameters. It is
therefore impossible to systematically cover the S–K plane of a
given biological cell (neuron, cardiac myocyte, etc.) by manip-
ulating the kinetic and structural features of its constituents,
the ionic channel proteins. Collecting data from many individ-
ual cells of similar type would not help, because similar types
have a tendency to be residents of same phase (e.g., cardiac
myocytes are mostly oscillating, and cortical neurons are mostly
excitable but not oscillatory). Here we face the challenge of
systematically sampling the Hodgkin–Huxley S–K phase dia-
gram by combining the established methodology of heterologous
expression of channel proteins in Xenopus oocytes (13, 14) and
hard real-time dynamic clamp (15–18). With this approach we
experimentally reconstruct the first phase transition in the S–K
diagram: the transition between the nonexcitable and excitable
phases (depicted in Fig. 1, Right). Moreover, we show that
directional “walk” within the S–K plane exposes hysteresis in
the organization of the phase diagram, which we explain in
terms of channel protein slow and activity-dependent gating
that potentially enables control of excitability amid parametric
variation (3, 4).

Results and Discussion
The Xenopus oocyte protein expression system is frequently
used in physiological studies of ionic channels; several funda-
mental studies of ion channel structure–function relations were
made using this simple and experimentally elegant system (e.g.,
refs. 19–21). For all practical purposes the oocyte is an ideal
electrophysiological ghost: it is a large and spherical (i.e., isopo-
tential) leaky capacitor, it does not express significant voltage-
sensitive membrane conductances, and it readily expresses func-
tional conductances following injection of ionic channel coding
mRNAs. Wedding heterologous Xenopus oocyte expression with
dynamic clamp makes it possible to split the system’s compo-
nents between those that are biologically expressed in the oocyte
membrane and those that are computationally expressed in the
dynamic clamp algorithm. Fig. 2A demonstrates the efficacy of
this approach in generating a biosynthetic excitable system: An
oocyte is impaled by two sharp electrodes. Signals from the
voltage measuring electrode are read by a real-time processor
that calculates Hodgkin–Huxley sodium and potassium currents,
feeding the sum of these currents back to the oocyte through
the current injecting electrode. The oocyte contributes mem-
brane capacitance and leak conductance, the linear components;
the dynamic clamp algorithm contributes sodium and potassium
voltage-dependent conductance, the nonlinear components. The
nature of the system’s response (Fig. 2A, Bottom) depends on the

Hodgkin–Huxley parameters implemented in the dynamic clamp
algorithm.

Following Ori et al. (4), the structural dimension (S) is defined
as ĜNa/(ĜNa + ĜK), where ĜX is the maximal membrane con-
ductance to ion X scaled to the Hodgkin–Huxley standard model
values ḠX, where ḠNa = 120 mS/cm2 and ḠK = 36 mS/cm2.
For instance, ĜNa = 1.25 stands for ḠNa = 150 mS/cm2. The
kinetic dimension (K) is defined as K = Σk̂res/(Σk̂res + Σk̂ex),
where k̂ is a linear scalar of ionic channel transition rate
function. For instance, the expression β̂m(V ) = 0.75 stands for
0.75βm(V ). The subscripts of k̂res and k̂ex depict transition rate
functions contributing to restoring and exciting forces: αn(V )
and βm(V ) for the former and αm(V ) and βn(V ) for the lat-
ter. As shown in Ori et al. (4), the phase diagram of Fig. 1 is
largely insensitive to varying fast inactivation rates (αh and βh)
in a range of ±0.25 compared to their values in the 1952 original
Hodgkin–Huxley model.

To experimentally construct an S–K phase diagram in
the dynamically clamped Xenopus oocyte, a random list of
ĜNa; α̂m(V ) pairs was generated ([0,10];[0,2], respectively).
These, in turn, were translated to S–K values, as S =
ĜNa/(ĜNa + 1) and K = 2/(3 + α̂m(V )). The excitability sta-
tus of the oocyte for each instantiation of an S–K value was
determined by its response to a single, constant amplitude cur-
rent stimulus (0.5 ms; Methods). The resulting phase diagrams
of two experiments are presented in Fig. 2B. Similar to the
theoretical phase diagram of Fig. 1, Right, the plot of Fig. 2B
shows well-structured S–K planes with soft but relatively well-
defined borders that separate nonexcitable from excitable phases
(colors depict response amplitude clusters, classified to four
bins indicated in horizontal color bars). In Fig. 2B, Top, the
parameters of sodium and potassium conductance were taken
from the Hodgkin–Huxley canonical model. In Fig. 2B, Bot-
tom, the potassium conductance parameters are those of the
Kv1.3 channel (22–24).

To validate the reduction to an S–K space, we take the above
experimental system a step further by relocating the voltage-
dependent potassium conductance from the dynamic clamp algo-
rithm into the biological domain (Fig. 3A). This is achieved
by injection of mRNA that codes the voltage-dependent Kv1.3
potassium channel (25). Within a few days, the channels are
extensively expressed in the oocyte membrane. As demon-
strated in Fig. 3A, Bottom, upon activation of the dynamic
clamp, excitability emerges with biological capacitance, leak, and
potassium conductance, while the sodium conductance and its
related kinetics are expressed computationally. (Our attempts to
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Fig. 2. Dynamic clamp constructed phase diagram of excitability in naive (i.e., no channel mRNA injected) Xenopus oocyte. (A) Equivalent electrical circuit
of the basic system configuration (Top and Middle). An oocyte is impaled by two sharp electrodes. Signals from the voltage measuring electrode are read
by a real-time processor that calculates Hodgkin–Huxley sodium and potassium currents, feeding the sum of these currents back to the oocyte through
the current injecting electrode. The oocyte contributes membrane capacitance and leak conductance; the dynamic clamp algorithm contributes sodium
and potassium voltage-dependent conductance. Excitability may be induced (Bottom) upon activation of the dynamic clamp algorithm. The nature of the
system’s response to stimuli (in this case, 0.5 ms, 10 µA; Methods) depends on the scaling of the Hodgkin–Huxley parameters implemented in the dynamic
clamp algorithm (Bottom; ĜNa = [0,10], α̂m(V) = [0.75,1.25]; see Results and Discussion for scaling notation). (B) S–K phase diagrams. The ranges of S and
K accessible for scanning by dynamic clamp differ between experiments; they are dictated, mainly, by leak and capacitance contributed by the oocyte
and affected by the quality of electrode–membrane interactions. In both experiments, soft but relatively well-defined borders separate nonexcitable from
excitable phases (colors depict peak response amplitude clusters, classified to four bins indicated in horizontal color bars). The diagrams were constructed
under different conditions: in Top, the parameters of sodium and potassium conductance were taken from the Hodgkin–Huxley canonical model. In Bottom,
the potassium conductance parameters are those of the Kv1.3 channel (22). Both experiments were conducted in the same oocyte.

implement the inverse experimental condition, where sodium
conductance is biologically expressed, did not succeed; the
expression of sodium conductance was too weak to support
full-blown excitability.)

Since there is no standard model for excitability with Kv1.3
conductance, we express the structural dimension in terms of
actual maximal conductance normalized to membrane capaci-
tance; thus, S = ḠNa/(ḠNa + ḠKv1.3). Maximal potassium con-
ductance (ḠKv1.3), potassium Nernst potential, and membrane
capacitance are estimated by standard voltage clamp procedures
(Fig. 3B and Methods). We take the voltage-dependent rate func-
tions of the Kv1.3 conductance (22, 24) as reference to express
the kinetic dimension; hence, α̂Kv1.3(V ) = β̂Kv1.3(V ) = 1.

The phase diagrams of three different experiments are pre-
sented in Fig. 4, where S–K planes with well-defined borders that
separate nonexcitable from excitable phases validate the reduc-
tion of the original Hodgkin–Huxley high-dimensional parame-
ter space to the lower S–K phase diagram. Borders that separate
nonexcitable from excitable phases in 12 different experiments
are summarized in Fig. 4, Bottom Right.

The power of the parameterization may be further appreciated
by observing multiple instantiations of the same S–K coordi-
nate, demonstrating that the outcome is quite resilient to the
actual set of parameters used to determine a given coordinate
(Fig. 5). Even delicate response features (e.g., the poststimulus
subthreshold depolarization in the rightmost traces of Fig. 5, Bot-
tom), not accounted for in the construction of the theory (4), are
nicely caught by the S–K coordinates.

Over the years since Hodgkin and Huxley presented their
canonic model, physiologists have continued to explore the com-
plex behavior of voltage-gated ion channels. In particular, not all

transition rates are voltage-dependent, and their characteristic
time scales span a wide range that extends from submilliseconds
to minutes (26–30). The results presented in Figs. 2, 4, and 5 are
limited to the short, millisecond time scale; hence, slow activity-
dependent effects could not be detected. However, slow channel
protein gating and its impacts on response dynamics might be
exposed by traveling in a directional manner within the S–K
diagram; for instance, by moving up and down along a ramp
within the diagram. The kinetics of Kv1.3 are particularly rele-
vant in this context as they involve voltage and state-dependent
transition rates and a mix of slow and fast reactions spanning
a wide range of time scales (22, 24). Moreover, these kinetics
of Kv1.3 were suggested to have significant impacts on excitabil-
ity on longer time scales (31–34). Fig. 6, Left, shows membrane
responses of a Kv1.3-expressing oocyte as a function of S–K coor-
dinates in a directed walk within the diagram. A gradual (up
and down ramp; total trajectory 450 s) change is implemented
in ḠNa and α̂m(V ), dynamic clamp parameters of Hodgkin–
Huxley sodium conductance. The spikes are plotted over an S–K
diagram constructed for that same oocyte. Each trace depicts a
membrane response to a short above-threshold current stimula-
tion. As the system is moved toward the excitable phase (Fig. 6,
Left, top left corner of the diagram), the oocyte responds to the
stimulus with a self-propelled depolarization that becomes a fully
blown action potential. At some point, as might be expected, the
structural exciting force (S) is so high and the kinetic restoring
force (K) is so low (0.95, 0.42, depicted by arrow in Fig. 6, Right)
that the membrane cannot hyperpolarize back to resting poten-
tial and remains stuck in a depolarized, not excitable value. Upon
return, clear hysteresis is revealed, reflecting recovery of the
Kv1.3 from long-lasting inactivation. Fig. 6, Right, Insets, show
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Fig. 3. Dynamic clamp and excitability in Kv1.3 mRNA-injected Xenopus oocyte. (A) Taking the experimental system described in Fig. 2 a step further by
relocating the voltage-dependent potassium conductance from the dynamic clamp algorithm into the biological domain (Top). This is achieved by injection
of mRNA that codes the voltage-dependent Kv1.3 potassium channel (Middle). Within a couple of days, the channels are extensively expressed in the oocyte
membrane. Upon activation of the dynamic clamp, excitability emerges with biological capacitance, leak, and potassium conductance, while the sodium
conductance and its related kinetics are computationally expressed. The nature of the system’s response depends on the scaling of the Hodgkin–Huxley
parameters implemented in the dynamic clamp algorithm (Bottom; ĜNa = [0,16], α̂m(V) = [0.5,1.6]; see Results and Discussion for scaling notation), as well
as on the kinetics and density of the expressed Kv1.3 channels. (B) Maximal potassium conductance, potassium Nernst potential, and membrane capacitance
are estimated by standard voltage-clamp procedures. (Top) Cell capacitance is estimated from the capacitive current step upon instantaneous switch from
−2.66 V/s to +2.66 V/s (in a range between −70 and −110 mV). (Bottom) Tail current protocol (Inset) to establish potassium Nernst potential based
on current reversal; depolarizations to +40 mV followed by hyperpolarization to different values. ḠK was estimated from maximal current and Nernst
potential and validated using tail current data.

two repetitions of the same ramp protocol in another oocyte,
demonstrating reversibility of the hysteresis phenomenon. Such
hysteresis is not seen with the Hodgkin–Huxley original model
and is in line with reports pertaining to impacts of slow Kv1.3
inactivation on adaptive membrane excitability.

Concluding Remarks
We live in a time marked by capacity to collect data at ever-
increasing speed and resolution. As a result, it is tempting to use
these data to construct numerical models of increased dimen-
sionality, making them more and more biologically realistic. To
avoid the fallacy of attributing importance to each and every
measurable parameter, good practice combines methods that
point to functional relations between parameters (35) and for-
mulation of low-dimensional phase diagrams. However, reduc-
tion of dimensionality—a Via Regia to formal understanding—
also comes at a price. In many cases it is a unidirectional
path where measurables are abstracted and compressed to an
extent that loses the explicit properties of the physiological
data from the abstract representation. Consequently, once an
abstract low-dimensional model is constructed, evaluation of
impacts and subsequent incorporation of new biological features
into the low-dimensional model become challenging, if at all
possible.

Here we approached the problem by implementation of a
methodology that has a long and successful history in membrane
physiology: system identification using closed-loop control (i.e.,
voltage clamp, patch clamp, and dynamic clamp). We describe
an experimental–theoretical hybrid, a framework enabling bidi-
rectional real-time interaction between abstract low-dimensional
representation and real biological entities. This is not a post
hoc fitting procedure; rather, it is a live experiment where

the impacts—of a given biological component—on the abstract
low-dimension representation are identified by implementing a
real-time closed loop design.

Specifically, combining dynamic clamp and heterologous
expression of ionic channel proteins in Xenopus oocytes, we con-
structed an excitable system composed of a mix of biologically
and computationally expressed components. This experimen-
tal configuration enabled systematic sampling of the Hodgkin–
Huxley parameter space. The resulting phase diagram validates
a theoretically proposed diagram (4).

A spectrum of Hodgkin–Huxley single-compartment repre-
sentations exists, extending from concrete and computationally
intensive Markov kinetic models of channel state transitions, to
abstract models that are computationally efficient yet biophysi-
cally less realistic (10, 11, 36). The S–K phase diagram is situated
in between, touching both ends. On one hand, its two dimen-
sions are expressed in physiologically accessible parameters, and
on the other hand, the two dimensions are intimately related to
the abstract nonlinear oscillator inspired models with S linked to
the cubic polynomial expression that provides fast positive feed-
back, and K is related to the recovery variable that introduces
slow negative feedback. As such, the S–K phase diagram may
serve as a common ground to relate various representations in
this spectrum to each other.

The shape of the S–K phase diagram proposed in ref. 4
and experimentally constructed in this report suggests that
maintenance of excitability amid parametric variation is a low-
dimensional, physiologically tenable control process. Moreover,
we show that the basic ingredients for such control—namely,
memory and adaptation—are manifested in the phase dia-
gram as a natural outcome of ion channel slow inactivation
kinetics.

3578 | www.pnas.org/cgi/doi/10.1073/pnas.1916514117 Ori et al.
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Fig. 4. Dynamic clamp constructed phase diagram of excitability in Kv1.3-injected oocytes. Top Right, Top Left, and Bottom Left demonstrate phase
diagrams of three different experiments, where biological capacitance, leak, and potassium conductance are contributed by the oocyte, while the sodium
conductance and its related kinetics are computationally expressed in the dynamic clamp algorithm. Note S–K planes with relatively well-defined borders that
separate nonexcitable from excitable phases. (Bottom Right) Summary of 12 experiments, showing that a positive slope diagonal separating nonexcitable
from excitable phases (demonstrated in the three other panels) is consistent across experiments. To this end, a histogram of response amplitudes was
generated for each experiment. Of the 9,889 responses in all 12 experiments, 529 responses were identified within an intermediate range [0.2, 0.8] of
response amplitudes (the amplitude of the passive response to the stimulus was defined as zero). The S–K coordinates of these 529 responses are plotted
in Bottom Right, together with a fitted straight line (S = 0.7 + 0.4K; 99% confidence bands for mean predictions). Numerical symbols depict the different
experiments. The slopes of the individual lines fitted separately for each of the 12 experiments are 0.66, 0.62, 0.62, 0.75, 0.58, 1.01, 0.49, 1.46, 0.67, 1.25,
2.2, and 0.73. Note that these slopes are significantly less steep compared to the slope of the Hodgkin–Huxley model reported by Ori et al. (4).

Many theoretical and experimental analyses show that the
wide range of temporal scales involved in slow inactivation is
sliced thinly to a degree effectively equivalent to a continuum
of scales, indicative of the extensive network of configurations
within which the channel protein may diffuse giving rise to
slow activity-dependent gating and adaptive firing patterns (28,
32, 37–44). Indeed, slow activity-dependent gating was sug-
gested as a means for maintenance and control of membrane
excitability. Specifically, activity dependence of protein kinetics
at relatively slow time scales, entailed by multiplicity of protein
states, was pointed at as a general automatic and local means
for stabilization of cellular function, independent of protein syn-
thesis, and operates over a wide—minutes and beyond—range
of time scales (3, 4, 45, 46). Thus, precisely because these ion
channels do not have a single, fixed time constant encoded
in their molecular structure but rather slide through multiple
states, cells have a built-in mechanism to smoothly function
over a larger range of firing patterns and voltages. A similar
argument holds for the wide range of time scales contributed
by the plethora of different Kv channels (25), which also can
expand stable operating ranges. This partially mitigates the con-
trol problem that cells face: getting it right may not require
the perfect match between channel numbers that might other-

wise be necessary. Viewed from another angle, multiple states
of channel inactivation and recovery from inactivation neces-
sarily result in hysteresis, and the time scales of that hystere-
sis become a memory mechanism (32, 34, 38) so that cells
can use it to keep track of their recent pattern of activity
and inactivity. This again expands the time course over which
patterns of activity can influence the way the cell responds
to physiological inputs. Interestingly, we usually think of the
fastest membrane events (action potentials) having little last-
ing effect on the cells in which they are seen; but, looking only
at the fast voltage deflections such as action potentials hides
the effects of the slower channel dynamics that influence future
events.

It remains to be seen how far the approach described here
may be used in system identification of excitable membranes
more complicated than the minimal, two-conductance single-
compartment Hodgkin–Huxley configuration. Certainly, cells
that contain many different types of ion channels will show a
range of time scales and history dependence (47). Developing
intuition into how a given set of firing properties depends on con-
ductance densities of many channels may require new kinds of
principled dimensionality reduction to complement brute force
numerical simulations.

Ori et al. PNAS | February 18, 2020 | vol. 117 | no. 7 | 3579



Fig. 5. The adequacy of the S–K parameterization estimated by observing multiple instantiations of the same S–K coordinate. A Kv1.3 mRNA-injected
oocyte (Cm oocyte = 0.33 µF, GLeak oocyte = 0.035 mS, ḠKv1.3 oocyte = 0.4 mS) is coupled to a dynamic clamp algorithm where the Hodgkin–Huxley sodium,
potassium, and leak conductance (ḠNa injected, ḠK injected, and GLeak injected, respectively) and their related kinetics are computationally expressed. A set of
3,000 instantiations was prepared, within the following ranges: ḠNa injected = [2.46, 4.95], ḠK injected = [0.40, 0.73] or set to zero (see below), GLeak injected =

[0.06, 0.10], { α̂m(V), β̂m(V), α̂h(V), β̂h(V), α̂n(V), β̂n(V) } = [0.75, 1.25]. The membrane response to a 0.5-ms stimulus (14.5 µA) was recorded. Different
instantiations were delivered at a rate of 5/s. Assuming α̂Kv1.3(V) = β̂Kv1.3(V) = 1 and considering both potassium conductance (ḠKv1.3 oocyte and ḠK injected),
the values of S and K for each instantiation were calculated and binned to 0.02 resolution. For clarity, the total of 3,000 traces was down-sampled by a factor
of 3, and each of the sampled responses is plotted in its corresponding S–K coordinate bin in Top Left. The brown colored traces are those corresponding to
cases where ḠK injected = 0; the red colored traces are those corresponding to cases where ḠK injected = [0.40, 0.73]. (Top Right) Contour plot of mean peak
amplitudes for all binned S–K coordinates (3,000 spikes). (Bottom) Examples of several responses in four of the S–K coordinates (arrows depict stimulus time;
traces were smoothed by moving average of 120 µs). The responses are fairly resilient to the actual set of parameters used to determine a given coordinate.
Even delicate response features (e.g., the poststimulus subthreshold depolarization in the rightmost traces), not accounted for in the construction of the
theory, are nicely caught by the S–K coordinates. Note that ringing in several of the fast–high-amplitude spikes (depicted by gray oval in Bottom) is due to
limits imposed by the rate of the real-time processor and/or the current injection device (Methods).

Methods
Clusters of Xenopus oocytes were kindly provided by N. Dascal’s laboratory
(Tel Aviv University, Tel Aviv, Israel). Individual oocytes were separated from
their clusters by standard mechanical and enzymatic treatment and kept at
18 to 20 ◦C overnight prior to mRNA injection. The mRNAs were prepared
from Kv1.3 carrying vectors kindly provided by Alomone Labs (Jerusalem).
Oocytes were allowed to express injected mRNA over 2 to 6 d before elec-
trophysiological experiments. A two-electrode voltage clamp system (NPI
TURBO TEC-03X) and a National Instruments board (NI 625x series) were
used to control the experiments. A sufficiently short loop duration (40 µs)
was achieved within Real Time Experiment Interface (RTXI; www.rtxi.org)
environment implemented in CPP software. The sequence of an experiment
was as follows: An oocyte situated in a perfusion chamber was impaled
with two Agarose cushioned electrodes prepared as described elsewhere
(14). The bath solution, under continuous perfusion, was composed of 96
mM NaCl, 2 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 5 mM Hepes, adjusted
to pH 7.5 with 5 M NaOH. The reported results are based on experiments
conducted at room temperature (air-conditioned ca. 22 ◦C) on 7 naive
and 13 Kv1.3-injected oocytes (see ref. 25 for expected impacts of tem-
perature on gating kinetics). Each experiment began with a voltage clamp
protocol to determine leak conductance, membrane capacitance, potas-
sium Nernst potential, and maximal string conductance (in Kv1.3-expressing
oocytes). Potassium Nernst potential (−81.5± 10.0 mV) was estimated from
tail current reversals under voltage clamp. Maximal potassium string con-
ductance (0.23± 0.12 mS) was estimated from maximal current and Nernst
potential; in several cases, the conductance was also validated using the
slope around Nernst potential in tail current protocols (e.g., Fig. 3B). Leak

conductance in Kv1.3-injected oocytes (0.07± 0.06 mS) was estimated from
current responses to series of 20 mV hyperpolarizing voltage clamp pulses,
from −90 mV holding potential. Cell capacitance in Kv1.3-injected (0.30±
0.22 µF) and naive (0.21± 0.05 µF) oocytes was estimated from the cur-
rent step upon instantaneous switch between −2.66 and +2.66 V/s (in a
range between −70 and −110 mV). Following the voltage clamp protocol,
the system configuration was switched to dynamic clamp mode to screen
the S–K plane. A digitally expressed leak conductance was added to set a
resting membrane potential around −65 mV; in the case of Kv1.3-injected
oocytes, the digital leak added was in most instances two orders of mag-
nitude smaller compared to the biological leak estimated from the above
voltage clamp experiments. The actual resting membrane potential upon
activation of the dynamic clamp mode was −66± 5.4 mV (hereafter, values
of the experiment described in Fig. 5, in which the dynamic clamp proto-
col was different, were excluded from the statistics). The average drift in
resting potential during a dynamic clamp experiment was 1.5± 4.2 mV. For
each S;K point, a 99-ms relaxation phase was allowed before a 22-ms dura-
tion trace was recorded, within which a 0.5-ms depolarizing stimulus was
delivered, followed by 20 ms recording. Above-threshold stimulus ampli-
tude in Kv1.3-injected oocytes varied between cells, ranging from 50 to
60 µA/µF (15.7± 13.9 µA), sufficient to reliably elicit a spike in the high-
S low-K range. Once set, the stimulus amplitude was kept fixed throughout
the experiment. Rate equations of digitally expressed conductances were
those used by Hodgkin and Huxley (1), or—where indicated—the Kv1.3 rate
equations (22, 24).

Three comments on difficulties associated with technical aspects of the
experimental approach employed here are as follows: 1) Completion of
a protocol such that S–K coordinates are properly characterized entails
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Fig. 6. Activity dependence and hysteretic dynamics due to the impacts of Kv1.3 slow inactivation kinetics. (Left) Membrane responses of a Kv1.3-expressing
oocyte as a function of S–K coordinates in a directed walk within the diagram. A gradual (up and down ramp; total trajectory ca. 450 s) change is imple-
mented in the dynamic clamp parameters of Hodgkin–Huxley sodium conductance (ḠNa and α̂m(V)). The spikes are plotted over an S–K diagram constructed
for that same oocyte. Each trace depicts membrane response to a short above-threshold current stimulation. As the system is moved toward the excitable
phase (top left corner of the diagram), the oocyte responds to the stimulus with a self-propelled depolarization that becomes a fully blown action potential.
At some point, as might be expected, the structural exciting force (S) is so high and the kinetic restoring force (K) is so low ({0.95, 0.42}, depicted by arrow
in Right) that the membrane cannot hyperpolarize back to resting potential and remains stuck in some depolarized not excitable value. Upon return, a clear
hysteresis is revealed, reflecting recovery of the Kv1.3 from long lasting inactivation. (Right, Insets) Two repetitions of the same ramp protocol in another
oocyte, demonstrating reversibility of the hysteresis phenomenon.

voltage clamp procedures for maximal conductance, leak, capacitance, and
maintenance of relatively stable resting potential, while going through the
S–K plane. Thus, stable electrophysiological settings are necessary for a typ-
ical experiment lasting ca. 30 min. In our hands, continuous superfusion
of the bath medium and use of Agarose cushioned electrodes promoted
such stability. 2) Another difficulty arises due to the hardware used. Some-
times, the real-time processor and/or the limits of the current injection
device were not sufficient to catch up at high S and low K values, giv-
ing rise to ringing about the peak of the spike. We assume that advanced
hardware can do better. 3) We were not able to implement an experi-
mental condition where sodium conductance was biologically expressed,
whereas potassium conductance is computationally expressed. In our hands,
the expression of sodium conductance is too weak to support full-blown
excitability. Higher expression would have introduced problems in both esti-

mation of maximal conductance and dynamically clamping the fast sodium
current, which might be solved by conducting the experiments at lower
temperatures.

Data Availability. Dynamic clamp data files are archived in Mendeley Data
(https://data.mendeley.com/datasets/72pv9sfxkw/1) (48), enabling construc-
tion of the phase diagrams described in the present manuscript.
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